26 research outputs found

    Monte Carlo sampling for the tourist trip design problem

    Get PDF
    Introduction: The Tourist Trip Design Problem is a variant of a route-planning problem for tourists interested in multiple points of interest. Each point of interest has different availability, and a certain satisfaction score can be achieved when it is visited. Objectives: The objective is to select a subset of points of interests to visit within a given time budget, in such a way that the satisfaction score of the tourist is maximized and the total travel time is minimized. Methods: In our proposed model, the calculation of the availability of a POI is based on the waiting time and / or the weather forecast. However, research shows that most tourists prefer to travel within a crowded and limited area of very attractive POIs for safety reasons and because they feel more in control. Results: In this work we demonstrate that the existing model of the Probabilistic Orienteering Problem fits a probabilistic variant of this problem and that Monte Carlo Sampling techniques can be used inside a heurist solver to efficiently provide solutions. Conclusions: In this work we demonstrate the existing model of the Probabilistic Orienteering Problem fits the stochastic Tourist Trip Design Problem. We proposed a way to solve the problem by using Monte Carlo Sampling techniques inside a heuristic solver and discussed several possible improvements on the model. Further extension of the model will be developed for solving more practical problems.info:eu-repo/semantics/publishedVersio

    Solving Continuous Replenishment Inventory Routing Problems with Route Duration Bounds

    Get PDF
    In a public health emergency, resupplying points of dispensing (PODs) with the smallest number of vehicles is an important problem in mass dispensing operations. To solve this problem, this paper describes the Continuous Replenishment Inventory Routing Problem (CRIRP) and presents heuristics for finding feasible solutions when the duration of vehicle routes cannot exceed a given bound. This paper describes a special case of the CRIRP that is equivalent to the bin-packing problem. For the general problem, the paper presents an aggregation approach that combines low-demand sites that are close to one another. We discuss the results of computational tests used to assess the quality and computational effort of the heuristics and the aggregation approach

    Towards an IT-based Planning Process Alignment: Integrated Route and Location Planning for Small Package Shippers

    Get PDF
    To increase the efficiency of delivery operations in small package shipping (SPS), numerous optimization models for routeand location planning decisions have been proposed. This operations research view of defining independent problems hastwo major shortcomings: First, most models from literature neglect crucial real-world characteristics, thus making themuseless for small package shippers. Second, business processes for strategic decision making are not well-structured in mostSPS companies and significant cost savings could be generated by an IT-based support infrastructure integrating decisionmaking and planning across the mutually dependent layers of strategic, tactical and operational planning. We present anintegrated planning framework that combines an intelligent data analysis tool, which identifies delivery patterns and changesin customer demand, with location and route planning tools. Our planning approaches extend standard Location Routing andVehicle Routing models by crucial, practically relevant characteristics like the existence of subcontractors on both decisionlevels and the implicit consideration of driver familiarity in route planning

    An Integer L-Shaped Algorithm for the Dial-a-Ride Problem with Stochastic Customer Delays

    Get PDF
    Abstract This paper considers a single-vehicle Dial-a-Ride problem in which customers may experience stochastic delays at their pickup locations. If a customer is absent when the vehicle serves the pickup location, the request is fulfilled by an alternative service (e.g., a taxi) whose cost is added to the total cost of the tour. In this case, the vehicle skips the corresponding delivery location, which yields a reduction in the total tour cost. The aim of the problem is to determine an a priori Hamiltonian tour minimizing the expected cost of the solution. This problem is solved by means of an integer L-shaped algorithm. Computational experiments show that the algorithm yields optimal solutions for small and medium size instances within reasonable CPU times. It is also shown that the actual cost of an optimal solution obtained with this algorithm can be significantly smaller than that of an optimal solution obtained with a deterministic formulation

    Approximation Algorithms for the A Priori TravelingRepairman

    Full text link
    We consider the a priori traveling repairman problem, which is a stochastic version of the classic traveling repairman problem (also called the traveling deliveryman or minimum latency problem). Given a metric (V,d)(V,d) with a root rVr\in V, the traveling repairman problem (TRP) involves finding a tour originating from rr that minimizes the sum of arrival-times at all vertices. In its a priori version, we are also given independent probabilities of each vertex being active. We want to find a master tour τ\tau originating from rr and visiting all vertices. The objective is to minimize the expected sum of arrival-times at all active vertices, when τ\tau is shortcut over the inactive vertices. We obtain the first constant-factor approximation algorithm for a priori TRP under non-uniform probabilities. Previously, such a result was only known for uniform probabilities

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.

    Routing Optimization Under Uncertainty

    Get PDF
    We consider a class of routing optimization problems under uncertainty in which all decisions are made before the uncertainty is realized. The objective is to obtain optimal routing solutions that would, as much as possible, adhere to a set of specified requirements after the uncertainty is realized. These problems include finding an optimal routing solution to meet the soft time window requirements at a subset of nodes when the travel time is uncertain, and sending multiple capacitated vehicles to different nodes to meet the customers’ uncertain demands. We introduce a precise mathematical framework for defining and solving such routing problems. In particular, we propose a new decision criterion, called the Requirements Violation (RV) Index, which quantifies the risk associated with the violation of requirements taking into account both the frequency of violations and their magnitudes whenever they occur. The criterion can handle instances when probability distributions are known, and ambiguity when distributions are partially characterized through descriptive statistics such as moments. We develop practically efficient algorithms involving Benders decomposition to find the exact optimal routing solution in which the RV Index criterion is minimized, and we give numerical results from several computational studies that show the attractive performance of the solutions

    GPU parallelization strategies for metaheuristics: a survey

    Get PDF
    Metaheuristics have been showing interesting results in solving hard optimization problems. However, they become limited in terms of effectiveness and runtime for high dimensional problems. Thanks to the independency of metaheuristics components, parallel computing appears as an attractive choice to reduce the execution time and to improve solution quality. By exploiting the increasing performance and programability of graphics processing units (GPUs) to this aim, GPU-based parallel metaheuristics have been implemented using different designs. RecentresultsinthisareashowthatGPUstendtobeeffectiveco-processors forleveraging complex optimization problems.In thissurvey, mechanisms involvedinGPUprogrammingforimplementingparallelmetaheuristicsare presentedanddiscussedthroughastudyofrelevantresearchpapers. Metaheuristics can obtain satisfying results when solving optimization problems in a reasonable time. However, they suffer from the lack of scalability. Metaheuristics become limited ahead complex highdimensional optimization problems. To overcome this limitation, GPU based parallel computing appears as a strong alternative. Thanks to GPUs, parallelmetaheuristicsachievedbetterresultsintermsofcomputation,and evensolutionquality

    An integer L-shaped algorithm for the Dial-a-Ride Problem with stochastic customer delays

    Get PDF
    AbstractThis paper considers a single-vehicle Dial-a-Ride Problem in which customers may experience stochastic delays at their pickup locations. If a customer is absent when the vehicle serves the pickup location, the request is fulfilled by an alternative service (e.g., a taxi) whose cost is added to the total cost of the tour. In this case, the vehicle skips the corresponding delivery location, which yields a reduction in the total tour cost. The aim of the problem is to determine an a priori Hamiltonian tour minimizing the expected cost of the solution. This problem is solved by means of an integer L-shaped algorithm. Computational experiments show that the algorithm yields optimal solutions on several instances within reasonable CPU times. It is also shown that the actual cost of an optimal solution obtained with this algorithm can be significantly smaller than that of an optimal solution obtained with a deterministic formulation
    corecore