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Metaheuristics have been showing interesting results in solving hard optimization problems.
However, they become limited in terms of effectiveness and runtime for high dimensional
problems. Thanks to the independency of metaheuristics components, parallel computing ap-
pears as an attractive choice to reduce the execution time and to improve solution quality.
By exploiting the increasing performance and programability of graphics processing units
(GPUs) to this aim, GPU-based parallel metaheuristics have been implemented using differ-
ent designs. Recent results in this area show that GPUs tend to be effective co-processors
for leveraging complex optimization problems. In this survey, mechanisms involved in GPU
programming for implementing parallel metaheuristics are presented and discussed through
a study of relevant research papers.
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1. Introduction

The objective of optimization problems is to find an optimal solution among all
the feasible solutions in a given search space. They are classified as continuous
or combinatorial, constrained or unconstrained, single or multi-objective, static or
dynamic [14]. Their importance rise in several areas such as industry, management,
engineering, networks, etc [73]. Often, for an adressed optimization problem, a solu-
tion of good quality has to be quickly obtained. To cover this issue, metaheuristics
have been proposed to give near optimal solutions with the respect of a reasonable
time.
However, most of metaheuristics suffer from the lack of scalability: the performance
decreases in both terms of time complexity and effectiveness when facing high di-
mensional problems. To overcome this limit, GPU-based parallel metaheuristics
have been proposed. This latter has attracted a growing interest from the scientific
community in order to reduce the execution time and to improve the quality of the
solutions found. According to [73], the parallel design of metaheuristics is classified
into three classes:

(1) Algorithmic level: this level allows the run of many algorithms in paral-
lel. The algorithms can run independently with different starting solutions
and/or different parameters and choose the best results of the run. In this
case, the result will be the same as if we run all these algorithms sequen-
tially, i.e. we reduce the execution time. The algorithms can also cooperate
with each other which means that the behavior of the metaheuristics can
change and improve the quality of resulting solutions.
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(2) Iteration level: this level allows a parallelization in each iteration. This is
a parallelization of the evaluations and/or the generation of the neighbor-
hood. Different parts of the neighborhood are executed in parallel. The
behavior of the metaheuristic is not altered. The main objective is to speed
up the algorithm by reducing the search time.

(3) Solution level: this level allows a parallelization of a single solution. For
example, to evaluate the objective function or constraints for a generated
solution. The behavior of the metaheuristic is not altered. The objective is
mainly the speed up of the search.

With different designs, many parallel algorithms have been successfully imple-
mented using GPUs. Nowadays, the GPUs have become a powerful tool in high
performance computing. They rely on the single-instruction-multiple-data (SIMD)
architecture which supports a parallel execution of hundreds of threads at the same
time. This survey aims to complement previous reviews which covered the use of
GPUs to implement nature-inspired metaheuristics [48], and described different
parallelism strategies and communication patterns of metaheuristics on GPUs [9].
Moreover, it uses a different organization based on the metaheuristics classification
to allow covering more works.
The rest of the paper is organized as follows. Section 2 presents the basic concepts
of GPU computing. Section 3 describes implementations of parallel metaheuristics
using GPUs to solve combinatorial and continuous problems, which are discussed
in Section 4. Finally, concluding guidelines to implement an efficient parallel algo-
rithm are presented in Section 5.

2. GPU computing

GPUs have achieved great performances in the last years. This modern hardware
has been mainly designed to support video games and 3D graphic applications [17],
but subsequently, it has been employed for general computational purposes. It is
now used in various fields such as data compression [59], image processing [87],
data mining [33], etc. The availability of application programming interfaces (API)
has eased implementing parallel applications, but there is still a need to follow
some crucial principles in order to get efficient performance from GPUs.
The understanding of the underlying parallel programming model of GPU is neces-
sary to design a parallel application (in our case metaheuristics). The kernel is the
fundamental unit for a parallel application, by which the execution is conducted.
It is a piece of code called from the CPU (also called the host) and duplicated on
the GPU (also called the device). The kernel is run within a grid (set of blocks)
where each block is a set of threads [25].
The memory management is a crucial aspect and represents a challenge when
dealing with GPU based applications [47]. The memory architecture within Nvidia
architecture consists of six types of memory. The first is the global memory which
is the largest memory but its frequent exploitation affects negatively the perfor-
mance. As a result, it is recommended to avoid its use as much as possible. The
second is the constant memory. It is used when all the threads have the same space
address. The third type is the shared memory. It is an on-chip memory of 64KB
and used to share data between threads within a single block [46] . Thanks to
its low latency, the shared memory can positively affect the efficiency when it is
used properly. The last memory is the local memory which is the fastest but also
the smallest. Each thread has its own local memory that can not be used by other
threads. For further details about the Nvidia GPU architecture, we refer the reader
to [58] [46] [47].
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3. GPU architecture for parallel metaheuristics
3.1. Solving combinatorial problems using GPU-accelerated metaheuristics

This section reviews GPU-accelerated metaheuristics for solving combinatorial
problems. We distinguish between metaheuristics according to their classification
(single solution/population-based) [13] regarding the different designs that have
been proposed for their implementations.

3.1.1. Single solution based metaheuristics

In this subsection, we outline different implementations for single solution based
metaheuristics adressed to solve combinatorial problems. Single solution based
metaheuristics start with one initial solution and generate a large neighborhood
to pick the next solution according to a selection mechanism. We conclude the
subsection by presenting Table 1 that summarizes the results and characteristics
of these implementations.

Tabu Search (TS) is a single solution based metaheuristic that takes an initial
solution to a problem and checks its neighbors looking for an improved solution
[37]. Moreover, tabu search uses a short term memory to store the visited solutions,
or some of their attributes, in order to avoid coming back to previously visited
solutions [39].
From the literature, we mention [71] where a parallel multi-objective version of
TS is proposed to tackle multi-criteria vehicle routing problem (MVRP), using an
external archive of non dominated solutions. This algorithm performs a number
of parallel local searches with different starting points from solutions of current
Pareto front (algorithmic level). Solutions are evaluated and compared with their
predecessors: if the new solution is better than the old one, then it takes its
place in next iteration, else the algorithm ignores the solution and the search
continues with the current solution. A new solution is added to the Pareto front if
it dominates the solutions of the front. Their results show that the parallel version
of the algorithm is faster than the sequential version by 14 times and it explores
over 16 times more neighborhoods.

In 2013, a parallel multi start tabu search has been proposed to solve the
quadratic assignment problem (QAP) [27]. The design presents two level of
parallelism (algorithmic level/iteration level). It generates initial solutions from
which parallel tabu search instances are run (algorithmic level). Then, a par-
allel neighborhood generation is performed for each instance (iteration level)
because each permutation in the neighborhood can be evaluated independently.
In [27], the tabu list is represented as an array, in which a value equal to zero
indicates that the respective move is not tabu, while a positive value indicates
how many iterations the move will stay in the list. The array of accepted
moves is divided into blocks, and the best move is found in each block by the
tournament method. This method is applied again to find the final minimum
value (best move selection). The authors have noticed the impact of an appro-
priate memory management (coalesced memory or non coalesced memory), and
the nature of the instance (symmetric or not) on neighborhood generation speedup.

In the same context, QAP has been addressed in [8] by proposing another version
of iterative parallel tabu search (ITTSD), where different instances of TS are run
in parallel (algorithmic level). Afterwards, a diversification strategy proposed in
[38] is applied. This strategy is performed after each global iteration on the best
global solution, in order to strengthen the exploration capability of the algorithm.
In addition, if the TS instances could not improve the solutions quality after a
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Table 1.: Single solution based metaheuristics
Ref Problem Algorithm Parallelism level Acceleration Benchmark Quality improvement System CPU/GPU
[27] QAP TS Algorithmic

level+Iteration
level

420x compared to CPU
implementation and 70x
faster than a parallel
CPU implementation on
a high-end six-core CPU

Randomly generated
following the method
proposed by [72] and
QAPLIB [5]

Quality improved in long
runs

CPU:six-core In-
tel Core i7-980x
(3.33 GHz) / GPU:
NVidia GTX 480
with 480 cores at
1401 MHz

[8] QAP TS Algorithmic level +
Iteration level + So-
lution level

GPU implementation
saves up to 3 hours com-
pared to CPU sequential
implementation

QAPLIB [5] + in-
stances taken from
[31]

Quality improved with
deviation between -
3.61% and -31.98%
compared to the best
known results

CPU:Intel Core
processor i5-3330
(3.00GHz) / GPU:
NVIDIA GeForce
GTX680 with 1536
cores at 1058 MHz

[71] MVRP TS Algorithmic level 14x compared to CPU
sequential implementa-
tion

Instances of size from
10 to 500

Quality improved (90
non dominated solutions
found) compared to clas-
sic TS (3 non dominated
solutions found)

CPU: sequential
implementation
on Tesla S2050
(1.55 GHz)/GPU:
GeForce GTX 480
with 480 cores at
1006 MHz

[18] RCPSP TS Algorithmic level +
Iteration level

5.4x compared to paral-
lel CPU and 22x com-
pared to sequential CPU
implementation

J30, J60, J90 and
J120 from [4]

Quality improved com-
pared to other TS imple-
mentations

CPU: AMD Phenom
II X4 945 server (3
GHz) /GPU: NVidia
GeForce GTX 650
Ti with 768 CUDA
cores at 928 MHz

[30] MKP GRASP Algorithmic level +
Iteration level

No acceleration ORLIB [12] Quality improved com-
pared to ACO and GA
and slightly better com-
pared to CPU sequential
implementation (CPU
sequential implementa-
tion outperformed for
some instances)

Not mentioned

[82] TSP SA Algorithmic level +
Iteration level

14.84x compared to
CPU implementation

9 instances taken from
TSPLIB [7]

Improving the best
known solution by
27% compared to CPU
implementation

CPU: AMD
A8-3870K (3.0
GHz)/GPU:
NVIDIA GeForce
GTX680 with 1536
CUDA cores at 1058
MHz

certain number of global iterations, the algorithm applies a perturbation factor on
them to lead the search toward new regions. Because of the computational cost
of an evaluation, the authors propose a parallel evaluation of neighborhood using
delta matrix (iteration level). Each value in this matrix is the cost of one of the
possible permutations (one permutation is considered to generate one neighbor).
Two kernels are used: the first initializes the costs of neighborhoods within delta
matrix, and the second applies the best move on the solution. Then, it updates the
delta matrix. After the experimentation, the authors found out that their algorithm
attains promising results in terms of quality, achieving 19 new better results than
the best solutions found in the literature, and saving from 2.34 and 3.87 hours of
computation compared to the CPU sequential implementation with an approximate
speedup of 1%.

In 2015, a parallel TS has been proposed to solve the resource constrained
project scheduling problem (RCPSP) [18]. In their design, a kernel is run in several
blocks, and each block represents a TS instance (algorithmic level). In every TS
instance, an initial solution is generated by finding the longest paths from activity
0 to all other activities. Then, it assembles activities with the same distance from
activity 0 into levels (distance is defined by how many activities are performed
before the considered activity starts). Afterwards, a feasible schedule (solution)
can be created from these levels. At the parallel neighborhood generation phase
(iteration level), neighbors are generated by a set of moves where a move is
considered as a swap in the schedule. Infeasible moves that violate the precedence
relations between activities are ignored to reduce the time-consuming evaluation
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of the neighbors. The blocks (TS instances) communicate with each other using
the global memory, and the co-operation is performed by exchanging solutions
using a working set F which contains the best known solution so far. Solutions
exchange occurs if the last read solution in F has not been improved for more than
a certain number of iterations, or if the block has found an improvement of it. The
algorithm achieves up to 5.4/22 times faster compared to the parallel/sequential
CPU respectively, and 10.5/42.7 times faster in J90 benchmark instances.

A sequential and parallel greedy randomized adaptive search procedure
(GRASP) algorithm has been presented in [30] to solve the 0-1 multidimensional
knapsack problem (MKP) using CUDA. The CUDA based algorithm allows
to expand the neighborhood search. It launches different threads to construct
initial solutions distributed on the search space (algorithmic level). Afterwards, it
executes parallel local search in order to improve them (iteration level). The CPU
controls the iterations, and it gets the best solution at the last stage. The results
have shown the effectiveness of the algorithm. It obtains better results compared
to genetic algorithms (GA) and ant colony optimization (ACO). The parallel
version shows better solutions thanks to the large neighborhood exploration but
without improvement in execution time.

In the same year, simulating annealing (SA) has been mapped in [82] on GPU.
The authors propose a parallel SA algorithm to solve TSP. In their design, the CPU
generates solutions for each block thread where blocks represent SA instances (Al-
gorithmic level). Each thread in the same block generates one neighbor in parallel
(iteration level). Instead of taking the best neighbor solution, the algorithm picks
a random neighbor solution chosen from the best solutions found (best solutions
are retained by performing a reduction operation). In order to generate the neigh-
borhood in parallel, each thread randomly chooses two cities, and performs a swap
operation between them on the path specified by the current solution, then it calcu-
lates the new cost. The authors have noticed that it is time consuming to calculate
the cost of the new path from the head to the tail. They have observed that the
cost of the old and the new paths differ only for the line segments connecting to
a or b. Instead of swapping the two cities a and b then computing the cost of
new path, they compute only the difference between the new cost and the current
cost based on the distances of a and b with the cities (a-1, a+1, b-1, b+1) that
are in the path. The set of better neighbor solutions is generated by a parallel
reduction operation. The algorithm picks one solution among them randomly to
the next iteration. Finally, the best solution is retained by a reduction operation
on the blocks. The algorithm improves the solution quality by 27% and reaches an
acceleration factor of 14.84 compared to the sequential version.

3.1.2. Population-based and hybrid metaheuristics

Unlike single solution based metaheuristics, population-based metaheuristics
generate an initial group/groups of individuals that evolve using certain operators
defined by the algorithm. In this subsection, we outline some works that exploit
GPUs power in implementing this kind of metaheuristics for combinatorial prob-
lems. Finally, the characteristics and the results obtained by these metaheuristics
are summarized in Table 2.

Ant colony optimization (ACO):
Thanks to the independent nature of ACO, a major focus has conducted the

scientific community to implement parallel versions of the algorithm in order to
tackle several optimization problems. We mention from the literature [21] which
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has stated that the traditional way of parallelizing tour construction in ACO
is to run threads (threads represent ants) in parallel looking for the best tour
that they can find. According to [21], this approach has many limitations. For
instance, it requires a relatively low number of threads. Furthermore, it presents
an unpredictable memory access pattern, and a great probability of divergence
within the warp (threads take different paths). In [21], an alternative design for
solving Traveling Salesman Problem (TSP) is proposed. Besides, a tabu list is
used to decide whether a city is visited or not. Moreover, 2 types of ants are
proposed, namely queen ants and worker ants. Queen ant represents a thread
block (Iteration level) where each thread represents a worker ant that can visit a
city . In this proposed version, each thread (worker ant) loads a heuristic value
choiceinfo[i][j] which is proportional to the probability for an ant located in city
i to visit the next city j (solution level). Then, a selection process is performed
via Independent roulette wheel selection mechanism (I-Roulette), which is an
alternative selection method. It generates a random number per city. Then,
for each city, this random number is multiplied by the heuristic value, and by
the tabu list value (this value is to represent whether the concerned city has
been already visited or not). The result of these multiplications are stored in
an array on which a reduction operation is performed to select the next city to visit.

Following the work proposed in [21], three parallel implementations of the
Ant Colony System (ACS) have been proposed in [68]. The first implementation
ACS-GPU adds elements to the partial solutions in parallel. If simultaneous
memory read and write operations on the pheromone table are performed, then
some of the pheromone values can be lost. As a result, ACS-GPU implements
local pheromone update using atomic operations to behave as the sequential
implementation. The second implementation, called ACS-GPU-ALT, is designed
to achieve more speedup. Its solution construction phase and local pheromone
update are parallelized. Since it does not the atomic operations, it will have an
impact on the probability to select the next edge by ants. However, according to
[68], it will not lead to the construction of invalid solutions. The third implemen-
tation ACS-GPU-SPM, which is the main contribution of this paper, replaces the
pheromone matrix by a selective pheromone memory of smaller size. The idea
behind the selective pheromone memory is to pick the most important edges, in
terms of pheromone, and put them in a memory. Indeed, the authors have noticed
that, during the search process, only a subset of edges are selected because they
have a high amount of pheromone.

Unmanned Aerial Vehicles (UAV) path planning problem is close to the TSP.
The aim is to plan a path for UAV to visit sensor nodes within a wireless
sensor network keeping a minimum cost (decreasing the length of the path, fuel
consumption and mission time). A parallel ACO based on GPU has been proposed
in [22] to solve the problem. According to the authors, the algorithm has four
main steps: the first three are computed once, and the fourth is repeated until
a termination criterion is satisfied (tour construction). The first step generates
N random numbers for N sensor nodes using cuRAND library. The second step
calculates the distance table between the sensor nodes using a kernel of N blocks
and N threads, then the initialization occurs by assigning each ant to a random
point (sensor node). Inspired by the approach of [21], each ant is represented
in [22] as a block running N threads. Each ant chooses to visit the next node
(iteration level) according to an appropriate model using the random numbers
generated earlier (solution level). When the ants finish constructing their tour,
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they calculate their fitness values, and update the shared pheromone table. By
sharing pheromone table, read and write operations are performed sequentially
while updating the table. The algorithm has been tested on 6 instances from
TSPLIB to demonstrate its performance. It shows that GPU based ACO is faster,
and it gives more accurate results than the sequential implementation.

A GPU accelerated ACO has been proposed to solve vertex coloring problem
[56]. The implementation is based on Recursive Largest First (RLF) [26]. Their
ACO algorithm places randomly m ants (m blocks of n threads where n represent
the next vertices that an ant can visit) at vertices to build solutions (tour construc-
tion), and each ant builds a stable set by visiting selected vertices (iteration level).
To select the next vertex to visit, the ant follows the pheromone values where
pheromone values of adjacent two vertices are always zero (solution level). The ant
repeats the selection until no vertex is selected, and it colors the vertices of the
stable set. Afterwards, it restarts visiting vertices to find another stable set from
the non colored vertices. When all vertices are colored, the number of colors is a
solution for the problem. Next, the pheromone update phase is performed by two
steps which are the pheromone evaporation and the pheromone deposit. The evap-
oration has been considered to avoid falling in local optima, and it is performed by
decreasing each pheromone value. The pheromone values are multiplied by a fixed
constant factor between 0 and 1. Then, the pheromone deposit is performed using
the tours obtained by the m ants according to an appropriate equation mentioned
in the paper. The pheromone values are stored in a 2-dimensional array and they
are updated using a kernel of m blocks composed of n threads. The threads of each
block load the ith row of the 2-dimensional array into the shared memory, in order
to apply the evaporation and deposit operation in parallel (coalesced memory).
The algorithm has been tested on 6 instances and has achieved a speedup of 36.81x.

Another version of ACO has been proposed in [35] to solve multidimensional
knapsack problem (MKP), where the ants are divided into colonies. Moreover,
only one ant from each colony performs the update of the pheromone table
(the ant that has the best solution). To add an object to the knapsack, the
ant computes the desirability of the n objects and chooses one among them.
To perform this task, each ant (iteration level) runs n threads to compute the
desirability (solution level). Afterwards, each desirability value is multiplied by a
random number between 0 and 1. The object that has the largest value is picked.
The update of the pheromone table is performed in a separate kernel of c blocks
and n threads, where c represents the number of knapsacks and n represents the
number of objects. The pheromone values are updated by multiplying the values
of the pheromone table by 1-ev where ev is an evaporation factor. If ev = 0,
then all pheromones evaporate and the algorithm becomes a generator of random
solutions, but if ev = 1, there will be no pheromone evaporation. The pheromones
are updated by a factor 1.0/(1.0 + Best - Roundbest), where Best is the fitness of
the best solution known so far for the colony and Roundbest is the fitness of the
best solution of the current round. This algorithm is not very effective in terms of
quality because several algorithms as [11] and [15] outperform it, but it is faster
compared to these algorithms.

In 2014, a parallel ACO has been presented for edge detection in images [29]. An
image is represented in memory using a 2D array representation of a graph. At the
construction tour phase, each ant moves to neighbor node (horizontally, vertically
or diagonally), and updates the pheromone matrix. Each node constructs its own
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solution using the transition rule to select the next neighbor node. If an ant has
visited all the neighboring nodes, it moves randomly to another node in the graph,
then the pheromone level of every node is updated according to an appropriate
equation, and considering also an evaporation rate to avoid stagnation of the
colony. Unlike [21], where ants are assigned to thread blocks, it has been found in
[29] that it is a wasteful use of GPU to assign an entire thread block for one ant
because most of threads will be idle at each iteration. According to [29], assigning
four ants into a thread block (iteration level) using a total of 128 threads (solution
level) and operating on a warp level yields a better performance. The algorithm
has been executed entirely on GPU and has achieved a speedup of 150x faster
than the sequential version.

ACO has been adopted in [32] to simulate the pedestrian movement, where
an equal number of individuals (two equal groups of pedestrians placed in the
opposite sides) try to reach the other side of an environment (2D grid divided
into cells where the environment size is multiple of 16) following an optimal path.
Each individual is surrounded by eight cells (except individuals who are placed at
the top and the bottom cells). The individual selects directly the forward cell if
it is available. Otherwise, it selects an available cell based on the transition rule
of ACO. When the individuals finish the tour construction (reaching the opposite
side), pheromone update stage is performed. In their parallel implementation,
a kernel of n blocks and 256 threads (n * 256 is the size of the environment)
is launched to calculate the availability of surrounding cells (iteration level).
Then, their distances are used to compute the transition rule (solution level). The
next kernel selects the next cell for the pedestrian according to the transition
rule. The third kernel composed of n blocks and 256 threads is responsible for
individuals movement. It updates also the matrices of pheromone and the state
of environment. Finally, the last kernel initializes the values of the scan matrix
(matrix used in the early stages to store the transition probability values) to zero.

Later in 2015, the Satisfiability Problem (SAT) has been solved in [88]. A SAT
instance is represented as a matrix of clauses denoted by q of boolean values. To
test a solution candidate d which is represented as an array, an operation qij ∧ dj
bitwise for each literal j of each clause of the SAT instance is computed such that
1 ≤ i ≤ b and 1 ≤ j ≤ n, and we say that d satisfies q if and only the resulting
matrix from the last operation contains at least one TRUE for each clause of the
instance.
Their proposed parallel ACO creates an artificial ant colony that looks for a
solution candidate (ChooseSolution routine or tour construction). Then, it
evaluates it (iteration level). ChooseSolution launches a kernel to compute the
literal probability pl and to generate a random number rl for each literal (each
thread represents a literal). The assignment of the literal is TRUE if rl ≤ pl, and
FALSE otherwise. For the solution evaluation (solution level), three kernels are
launched:
The first kernel is launched with a 2-D grid of blocks of length n in x-dimension
and b in y-dimension, each block size is 32*32 threads (each thread represents
a literal). The second and the third kernels calculate the sum of the solved
clauses and they evaluate the quality of the solutions respectively according to an
appropriate function mentioned in [88].
The second stage updates pheromone levels using the best solution known by
the ant colony. This process is launched by a kernel of 512 threads, where each
thread performs evaporation and deposit processes. The last stage is called
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blurPheromones. It adds a certain computed value rl.phl to each pheromone
quantity where rl is random number in [ -maxi , +maxi ]. maxi is computed
as follows: maxi = u.ei/σ where u is the blurring base value and σ is a decline
factor. Their results show that the parallel ACO implementation runs 21x faster
compared to its sequential version.

Particle swarm optimization (PSO) for combinatorial problems:
Standard PSO has been adapted to solve the multidimensional knapsack

problem (MKP) in [89]. Since PSO is not naturally appropriate for combinatorial
problems, a sigmoid transformation function has been used, in order to adapt PSO
update position equation to the MKP. In the parallel design of PSO, particles
are initialized by a kernel involving random number generations. Afterwards, the
main loop of the algorithm consists in the following steps. First, the particles
are evaluated using a separate kernel that performs this operation by assigning
a single block to each particle (iteration level). Within the kernel, each thread
evaluates one item (solution level), it reads its item profit, and then multiplies it
by 0 or 1 based on the existence of the item in the solution. When the results of
all threads are collected, a reduction operation is performed. Then, a decision is
made whether to replace the best local position or not. The best global position is
computed then by performing again a reduction operation using the library. After
defining the best global and local positions, updating particles is performed using
another kernel, which is divided into p thread blocks and every block divided into
d threads (p represents the number of particles within the swarm and d represents
the number of dimensions), where each thread updates one dimension according
to the PSO equation. The results show that the GPU implementation outperforms
multi thread CPU version by a factor of 3.5 to 9.6, depending on the problem size.

In 2015, two parallel approaches which are GPU-PSO and GPU distributed PSO
(GPU-DPSO) have been presented in [28] to solve max constraint satisfaction
problems (Max-CSPs). The mathematical formulation adapted to define the
movement of a particle in the search space is taken from [66]. The parallel design
of GPU-PSO uses four kernels: the first kernel initializes the population (iteration
level). The second kernel evaluates the fitness of each particle by calculating the
number of constraints violated (iteration / solution level). The third kernel up-
dates the best local positions. Finally, the last kernel calculates the velocities and
updates the positions using PSO equations. In the second approach (GPU-DPSO),
the idea is to partition the swarm into sub-swarms (algorithmic level), where
each sub-swarm contains particles that violate the same number of constraints.
In the exchange phase, particles are transferred to a proper sub-swarm based on
their new fitness. If there is no appropriate sub-swarm for a concerned particle, a
kernel is launched to create another sub-swarm. In this design, each sub-swarm is
associated with one block and each particle represents a thread while in the first
approach, each particle is represented by one block and each thread computes one
dimension. The results reveal that GPU-DPSO achieves better results compared
to GPU-PSO in terms of execution time.

Other evolutionary algorithms:
Other algorithms have achieved a significant success in solving combinatorial

problems. We start with solving Golomb ruler problem. The problem objective
is to find a set of marks at integer positions of an imaginary ruler, such that
no two pairs of marks are the same distance apart. The number of marks on
the ruler is its order, and the largest distance between two of its marks is its
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length (distance between the last and the first element). The Golomb ruler is
optimal if no shorter ruler of the same order exists [62]. An evolutionary algorithm
(EA) has been employed in [62] in order to solve the problem. The GPU based
implementation runs the crossover, the mutation, and the memetic part (random
modified hill climbing (RMHC) and simulated annealing are used) in parallel.
First, the population is initialized on the host. Then, it is sent to the GPU to
perform the other operations. In the first kernel, each thread generates a random
number between [1, SizeOfRepresentation] for the crossover, while in the second
kernel, each thread copies genomes between crossed over representations. The
third kernel evaluates the individuals after the changes. The mutation kernel is
run on a number of blocks. Each block copies a solution in the shared memory
(iteration level). Next, all the threads run mutation operator on the solution
(solution level). Each thread generates two random numbers to apply mutation
(two random numbers mentioned earlier). After the mutation process, a reduction
operation will be performed over the blocks (based on solution fitness) in order to
select the best mutated solution. Their GPGPU implementation shows that it is
10 times faster than an optimized multicore CPU.

Scatter Search (SS) is a population-based metaheuristic identified by the follow-
ing components:

– Initialization(): a generation method of an initial set of solutions.
– Improvement(): a procedure to improve the quality of the solutions (e.g., Tabu

Search).
– UpdateReferenceSet(): a procedure to generate a reference set of solutions using

the initial solutions.
– GenerateSubset(): a procedure that selects solutions from the reference set, then

arranging them in groups.
– SolutionCombination(): a method that creates new solution by combining infor-

mation contained in a concerned group of solutions.
– RestartReferenceSet(): once the reference set is stagnating, a refresh method is

used to generate new solutions.

According to [63], one of the suited components of SS to parallelism is the
improvement method. To implement the improvement method, two algorithms are
tested: random mutation hill climbing and simulated annealing. The improvement
method is run on a kernel composed of several blocks (each block represents a
solution). When random mutation hill climbing is used, the threads perform the
mutation operator on the solution (solution level), and they exchange between
each other the optimal solution by a temporary minimal ruler found in each
block. When simulated annealing is used, each thread stores a single solution.
The threads synchronize after a given number of iterations. In the other hand,
a crossover operator is also implemented in the improvement method, and
considered to be parallelized, but its impact appears only on the big instances.
At the generate subset stage of SS, K-means algorithm is used for the clustering
where two kernels are used. The first is responsible to classify solutions that
belong to the centroids, and each thread is responsible for the classification of
each solution (iteration level). The second kernel is responsible of the centroids
update. Another phase is considered to be parallelized which is the initialization
where GRASP is implemented in such a way that each thread is responsible for
one solution. The authors noticed that parallelizing the improvement method has
the greatest impact on performance compared to other components of SS. The
results can be seen in Table 2.
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Another algorithm, called the systolic neighborhood search (SNS) [60], has been
used in [79] to solve three combinatorial optimization problems: massively multi-
modal deceptive problem (MMDP), subset sum problem (SSP), and maximum cut
problem (MAXCUT). SNS is defined as a set of cells (GPU threads in our case)
that create a mesh network between each other. Each thread creates a solution
(iteration level), and performs some operations like mutation and crossover to
improve it. Then, it sends it to the neighbor cell. A CPU-GPU cooperative hybrid
implementation of an hybrid systolic search has been proposed in [79]. In this
design, a CPU thread 1 is dedicated to transfer data to GPU. Then, a CPU
thread 2 invokes the GPU kernel. In order to keep CPU busy, CPU thread 1 is
run in parallel with SNS using uGA, in order to generate a set of new solutions.
This set is inserted to SNS to look for a quality improvement. The paper sets
few requirements for the algorithm that run on CPU which are: fast, light, and
capable of interacting with GPU several times. The algorithm has achieved a
speedup of 118x for the MMDP, 365x for the SSP, and 166x for the MAXCUT
with an average of 216x for the three problems compared to the CPU sequential
implementation.

Min-Min heuristic and Cellular Genetic Algorithms (CGA) have been presented
in [64] to solve scheduling of independent tasks problem. Graphic cell is the pro-
posed algorithm which is a new parallel design of the CGA. In Graphic cell, the
population is initialized randomly except one individual that is generated using
Min-Min heuristic. The algorithm uses two recombination operators that are specif-
ically designed for algorithms implementing cellular topologies. The two proposed
operators follow the same design: the offspring solution is generated by assigning
to each task the machine of one of the neighboring solutions. These operators dif-
fer only in the criterion used for the selection of the neighbor solution to perform
recombination:

– Fitness: the probability of selection of a neighbor solution is proportional to its
fitness.

– The completion time: the probability of selection of a neighbor solution is pro-
portional to the estimated time of one machine to perform a considered task (the
machine is in the neighboring solution).

These selection mechanisms are both used each time with a probability Psel
for fitness based operator and 1-Psel for completion time based operator. This
decision is made for every task, and not for the entire solution. These recom-
bination operators are implemented within two kernels. The first calculates the
probability for each solution (iteration level) in the neighborhood to be selected.
The second kernel randomly selects the recombination operator (UPRf or UPRct)
to be applied where one thread is assigned to one task per solution (solution
level). The algorithm implements three other kernels by assigning one thread per
solution. The first kernel changes the assignment of a chosen task to a randomly
chosen machine (mutation). The second kernel computes the fitness for the
solution (makespan). Finally, the last kernel replaces the old solution with the
new computed solution if it is better. We did not find clear results that show the
performance of GPU implementation over CPU. Actually, the results shown in
the paper are related to the effect of the two proposed recombination on solution
quality, and the advantage of Graphic cell over the Min-Min heuristic.

Earlier in 2013, a parallel memetic algorithm has been proposed to solve
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the task scheduling problem in heterogeneous environments [54]. An adaptive
sorting strategy to achieve maximum speedup is proposed. This work presents a
hybridization between a genetic algorithm and the variable neighborhood search
(VNS). In their parallel algorithm, the population is initialized by randomly
generating individuals. The initialization is performed on GPU using a kernel of
PopSize x Tasks (iteration level/solution level). Each thread initializes one cell
in a considered schedule by generating a random number (this random number
represents the processor number to which a considered task is assigned). In the
other hand, the evaluation is performed by a separate kernel of PopSize threads,
where each thread computes the makespan of every solution. The selection, the
crossover and the mutation are also parallelized in two kernels of PopSize threads
(selection and crossover in one kernel). For the selection, each thread selects
randomly a parent solution from the population to cross with its concerned
solution. Then, the crossover is applied, and the mutation is run with a predefined
probability (i.e., mutation rate). Finally, to perform the replacement strategy, the
population must be sorted based on the makespans. For this sorting operation,
an adaptive sorting strategy is proposed to choose the sorting mechanism, this
latter is based on the population size. A parallel single thread block bitonic sort
algorithm is selected when the population size is less than a specific threshold,
while multiple thread block merge sort is chosen for the large populations. At
this stage, parallel VNS is applied on all solutions in one kernel that is run with
PopSize number of threads. This kernel calls four device functions which are
shacking, local search, task priority, and evaluation. These functions are executed
iteratively until the termination criterion is satisified. The algorithm could achieve
a speedup even on the small populations by 696x compared to the CPU sequential
implementation.
A CUDA framework implementation based genetic algorithm (GA) has been
used to solve QAP in [55]. The algorithm initializes in parallel a population
of popesize individuals by a kernel of popesize threads (iteration level), then
it evaluates them. To perform the selection procedure, Ncross individuals are
selected randomly. Then, the best individual is picked among them to be crossed
with the concerned individual. Parallel crossover is performed in a separate kernel
of Ncross threads using one point approach, where a crossover rate is considered
to represent whether to perform the crossover or not. Afterwards, the mutation is
run by performing a permutation between two random points in the individuals.
To avoid falling in a local optimum, the replacement operation is performed. It
selects the half of the new population to be in the next generation, while the
other half is selected randomly. The experimentation has been performed on 10
instances of QAPLIB and it shows an acceleration factor of 30x compared to the
sequential implementation.

Connected sensors that cover all discrete targets in a given network is called the
connected sensor cover (CSC). An artificial bee colony algorithm (ABC) on GPU
has been proposed in [65] for minimizing the number of connected sensors that
cover all discrete targets (CSCDT) to reduce energy and communication cost. The
algorithm constructs in CPU an initial solution CSCDT using repeateddeletion
method which removes the sensors if they are redundant (area can be covered
by another sensor). Then, the solution is copied to all m bees. Using a kernel
of m threads, each bee (thread) executes Sensorreduction (iteration level) that
removes two adjacent sensors si and sj from the solution if a sensor sk exists from
the vertices set that does not belong to CSCDT and that covers the areas of both
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Table 2.: Characteristics of GPU-accelerated metaheuristics on combinatorial problems
Ref Problem Algorithm Parallelism level Acceleration Benchmark Quality improve-

ment
System CPU/GPU

[62] Golomb ruler EA Iteration level + solu-
tion level

10x 8 instances of different
length of ruler

Optimal solutions
in three instances
and deviation of
30% for the other
instances

CPU: QEMU Intel 64-
rhel6 (2.4 GHz)/ GPU:
NVIDIA Tesla m2090
with 512 cores at 1.3
GHz

[63] Golomb ruler SS Iteration level + solu-
tion level

1.22x 4 instances of different
length of ruler

Quality improved CPU: Intel Xeon E5645
(2.40 GHz)/ GPU:
Nvidia Tesla m2090 with
512 cores at 1.3 GHz

[21] TSP ACO Iteration level + solu-
tion level

20x TSPLIB [7] Quality improved CPU: Intel Xeon E5620
Westmere processor
(2.40 GHz)/ GPU:
Nvidia Tesla C2050
Fermi graphics card
endowed with 448 cores
at 1.15 GHz

[68] TSP ACO Iteration level + solu-
tion level

24.29x TSPLIB [7] Quality improved
by ACS-GPU-
SPM

CPU: Intel Xeon E5-
2670 (2.6 GHz)/ GPU:
Nvidia Kepler GK104
with 1536 CUDA cores
at 745 MHz.

[22] TSP ACO Iteration level + solu-
tion level

546.66x TSPLIB [7] Quality improved CPU: Intel i5 Sandy
Bridge (3100 MHz)/
GPU: NVIDIA GeForce
GTX 680 Kepler with
1536 CUDA cores at
1002 MHz

[32] The pedestrian
movement

ACO Iteration level + solu-
tion level

18x 2D grid and agents manu-
ally generated

No improvement CPU: Intel Core i7-930
(2.8 GHz)/ GPU: Nvidia
GeForce GTX 560ti with
448 cores at 1.464 GHz

[56] Vertex coloring ACO Iteration level + solu-
tion level

19.68 to 36.81x 6 instances from [2] Quality improved
for one instance

CPU: Intel Core i7-
4790 (3.66GHz) /GPU:
NVIDIA GeForce GTX
1080 with 2560 cores at
1544 MHz

[35] MKP ACO Iteration level + solu-
tion level

575x ORLIB [12] No improvement Not mentioned

[29] Edge detection ACO Iteration level 150x The standard test images
[6]

Quality improved
compared to [57],
Sobel and Canny
algorithm

CPU: Intel i7 950 (3.06
GHz)/GPU: NVIDIA
GTX 580 with 580 cores
at 1544 MHz

[88] SAT ACO Iteration level + solu-
tion level

21x Benchmark instances from
the SAT CNFs

No improvement CPU: Intel core i7
3770K (4.5 GHz) /GPU:
NVIDIA Geforce GTX
680 with 1536 processing
cores at 1.058 GHz

[79] MMDP, SSP,
MAXCUT

SNS+uGA Iteration level 216x Large instances with k =
20, 30, 40 for MMDP, in-
stances generated as de-
scribed in [45] for SSP,
MAXCUT instances gener-
ated as described in [45]
and [3]

Quality improved CPU: Intel i7 920 (2.66
GHz)/ GPU: GeForce
GTX 650 with 384 cores
at 1058 MHz

[64] Task scheduling Graphic cell Iteration
level+Solution level

Not mentioned Instances created as de-
scribed in [10]

Quality improved CPU: Intel Xeon E5440
(2.83 GHz)/ GPU:
Nvidia Tesla C2050 with
448 cores at 1.15 GHz

[54] Task scheduling
with precedence
relations

Memetic al-
gorithm

Iteration level + Algo-
rithmic level

696x Instances chosen from
benchmark of [84]

No improvement CPU: Intel Xeon pro-
cessor (2.8 GHz)/ GPU:
GTX480 with 480 cores
at 1006 MHz

[85] Probabilistic
TSP with
deadlines

RRLS Iteration level + solu-
tion level

10x Benchmark instances from
[20]

Quality improved CPU: Quad-Core AMD
Opteron (2 GHz)/GPU:
GeForce GTX 580 with
512 cores at 1544 MHz

[55] QAP GA Iteration level 30x 10 instances from QAPLIB
[5]

Quality improved
in 5 instances

Not mentioned

[89] MKP PSO Iteration level + solu-
tion level

3.5 to 9.6x Benchmark taken from [23]
and [83]

No improvement CPU: quad core intel i7-
920 (2.66 GHz)/ GPU:
NVIDIA GTX 580 with
512 cores at 1.5 GHz

[28] Max-CSPs 2 variants of
PSO

Iteration level + solu-
tion level + algorith-
mic level

1.318x compared
to GPU-PSO

Randomly generated in-
stances using [69]

No improvement CPU: Intel core i7-
2630QM (2.0Ghz)/
GPU: NVIDIA GeForce
GT 525M with 96 cores
at 1200 MHz

[65] Small number
of connected
cover sensors

ABC Iteration level 5x 100x100 square area, sen-
sors and targets are ran-
domly located in the re-
gion, the number of tar-
gets is 20. Sensing radius
and communication radius
of each sensor are both 10

No improvement CPU: Intel Core i3-
4130 (3.4GHz)/ GPU:
NVIDIA GeForce GTX
760 with 1152 cores at
980 MHz

si and sj . Then, each bee evaluates the new solution according to the number of
deleted sensors by Sensorreduction. Afterwards, the bee becomes a recruiter or
a follower by a given probability. If the bee Bj is recruiter then it maintains its
CSCDTj . Otherwise, it selects one of CSCDTs owned by recruiters according to
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a certain probability defined by an appropriate formula. In this design, sensors
data and targets are copied in constant memory, variables of the kernel function
are stored in a register, and all informations are exchanged via the global memory.
The experimental results show that this algorithm is 5 times faster than the
sequential version.

According to [85], the evaluation of the objective function and constraints are
the most expensive tasks. Since a lot of metaheuristics generate a set of solutions to
be evaluated, the simplest approach is to evaluate the solutions in GPU. Unfortu-
nately, this approach leads to two main drawbacks: the first is that the number of
solutions has to be sufficiently large to achieve an efficient use of GPU. The second
is that the evaluation does not allow for straight flow without branches and jumps
(thread divergence). To overcome these drawbacks, a novel framework is proposed
in [85]. The framework is designed to problems for which the objective function
and constraints can be evaluated approximately using Monte Carlo sampling. The
idea is to create a set of samples according to a given probability distribution.
These samples are used then for an approximate evaluation. As an advantage, it is
possible to parallelize the evaluation of one sample instead of one solution. It leads
to a much better grade of parallelism. Besides, the evaluation of one sample shows
a simpler flow control with less branches and jumps. To test this framework, a
parallel random restart local search has been applied on the probabilistic traveling
salesman problem with deadlines achieving a speedup of 10x compared to CPU
sequential implementation.

3.2. Solving continuous problems by GPU accelerated metaheuristics
Thanks to GPUs, tackling high dimensional continuous problems has become

also relatively straightforward. By exploiting GPU, fitness evaluation, computa-
tion, and convergence to near optimal solutions are handled efficiently. In this
section, we outline a set of papers addressed to solve continuous optimization
problems. We conclude it with Table 3 that presents the characteristics of the
implementations and the results.

Particle swarm optimization (PSO) for continuous problems:
In 2016, a parallel implementation of PSO using GPU has been presented in

[42]. Their implementation has been tested on a benchmark of known optimization
functions. Besides, it has achieved a speedup of 46 times faster than the sequential
algorithm. Their GPU proposition consists in seven kernels with a ring topology
to form a virtual neighborhood for particles. The first kernel allocates memory
on GPU, and each thread uses Curand library to generate random numbers
needed for the algorithm. The second kernel initializes basic information, such
as position and velocity. The third kernel generates ((n+32-1)/32) blocks of 32
threads for computing the fitness function (Solution level) where n is the number
of individuals in the swarm. It performs a reduction process to calculate the fitness
values. Then, via these values, Pbest is updated. The fourth kernel is responsible
of calculating local best Lbest. In this kernel, each particle compares his Pbest
with its neighbors Pbest (left and right neighbors). The fifth kernel computes the
velocities and positions for the next iteration(solution level/iteration level). A
sixth kernel computes the global best position of the entire swarm using atomic
functions. The last kernel liberates the structures used on GPU. The results have
shown the positive impact of coalesced memory on the acceleration. However, the
speedup is decreased when the population size is more than 2000 and dimension
size is more than 50.
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The traditional PSO algorithm has been improved in [50], where a new parallel
algorithm that employes two levels of PSO has been proposed. In the bottom level,
the particles are divided into N groups, each of which runs the PSO (algorithmic
level), and sends the best particle to the top level individually. Afterwards, the
bottom level updates its own particles (position and velocity) according to the
top level results. In their parallel implementation, the method is designed as
each thread represents a particle, and each block represents a group of particles
(iteration level). The algorithm has six main steps: initializing all the particles in
the CPU side, updating the speed and the velocity of the particles at the bottom
level of PSO, generating top level particles by gathering the best particles from
the bottom level, executing PSO by the top level particles, mixing the top level
and the bottom level particles together, and finally sending the best particle of
one group to its neighbor group. The results have shown that it can achieve good
convergence and speed.

An implementation of parallel cooperative PSO has been presented in [49].
In this version, the population is divided into different subpopulations. Each
subpopulation optimizes only one component. Their GPU implementation consists
in six kernels. The first initializes the position and the velocity of particles on
GPU instead of CPU. The second is responsible of evaluating the fitness of all
the particles (solution level/iteration level). In this kernel, one block of threads
was mapped to evaluate the fitness of one individual. Next, another kernel is run,
where one thread block is used to find the global best position. A separate kernel
is used to update the position of each particle. Then, another kernel is invoked
with one block of threads to update the global best position. Finally, position
velocity update Kernel is run, where one thread is updates one element from
velocity and one element from position vectors using the appropriate equations of
PSO. The algorithm has been tested on Shifted Sphere, Shifted Elliptic, Shifted
Rastrigin, Shifted Rosenbrock, and on Shifted Ackley and the results have shown
a great reduction of time.

An alternative version of PSO has been implemented in [44] along with a commu-
nication strategy, called genetic migration (PPSOGM ). It adopts coarse-grained
parallel model, and uses N subswarms. Each subswarm runs the classical PSO
independently (algorithmic level). Considering that each subswarm is represented
as individual of a genetic algorithm, and the members within the subswarm are
considered as variables, the communication between subswarms is established by
implementing genetic operators (selection, crossover, mutation) on them. Besides,
the fitness of each individual is the best fitness of variables within the subswarm. In
their parallel implementation, each block represents a subswarm, and the threads
represent particles (iteration level). The threads calculate the fitness, and update
the velocity and the position in parallel. The algorithm uses a set of kernels. The
first kernel initializes the subswarms, and makes the particles evolve for a certain
number of iterations. Next, another kernel implements the genetic migration
strategy, in order to exchange individuals between subswarms. The algorithm is
terminated after a certain number of communications. According to the authors,
PPSOGM has a better convergence consuming approximately the same time as
PPSO with unidirectional ring migration. Besides, it has achieved a global speedup
of 56x when using subswarms of 1024 particles and a speedup of 300x when us-
ing subswarms of 16384 particles compared to the CPU sequential implementation.

Achieving an average speedup of 17x, Dynamic Cooperative Hybrid MPSO+GA
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has been designed in [36]. MPSO+GA alternates between Multi-Swarm PSO
(MPSO) and genetic algorithm (GA). The proposed design integrates the follow-
ing genetic operations: mutation, crossover, and selection into the update phase of
PSO. Besides, particles are divided into subswarms forming a ring topology (algo-
rithmic level). GA operates by applying the same three operators to the population.
GA uses tournament selection to pick groups of individuals. Then, the best individ-
ual is selected within each group for crossover (each group executes in parallel). In
the mutation phase, genes in the individual are mutated with defined probability
between 0 and 1. Moreover, a heuristic is used to change the algorithm if it does
not improve the best solution found during a certain number of iterations. The
parallel version of this design is expressed in 8 kernels and they are implemented
as follows:

(1) Particle Initialization Kernel: using one thread per particle dimension (solu-
tion level), this kernel initializes the positions and the velocities vectors (it-
eration level), i.e. position is randomly initialized between [−xmax,+xmax]
and velocity is initialized to zero.

(2) Update Fitness Kernel: in this kernel, multiple threads cooperate to com-
pute the fitness of each particle. First, each thread reads four position values
from global memory, computes the values of the corresponding four terms
to perform a partial sum for them. Next, all the partial results are used to
perform reduction, in order to compute the fitness value of one particle. Fi-
nally, the final fitness of all particles are written back to the global memory
fitness buffer.

(3) Update Bests Kernel: it uses one thread per particle. First, each thread
compares the new and old local fitness for its particle in order to update
the best local position. Next, the kernel performs a reduction operation to
update the best global position for each swarm.

(4) Update Position/Velocity: it uses one thread per dimension. Velocity and
position are computed using the equations of PSO. Afterwards, mutation
is performed on both position and velocity with a defined probability β.
5-Find Best/Worst Particles: this kernel performs a reduction operation to
find the best and the worst particles in each subswarm.

(5) Swap Particles Kernel: this kernel performs the exchange between sub-
swarms. Each thread represents one dimension to be exchanged, and a given
number of the best particles in subswarm j overwrite the worst particles in
subswarm j+1 mod s (ring topology).

(6) Mutation Restoration Kernel: this kernel is proposed to recover the fitness,
velocities and positions of unhealthy subswarms if the mutation performed
on the previous iteration has led to very bad results. In this kernel, each
thread restores 4 dimensions of each particle after checking if the subswarm
is unhealthy. To do so, it compares the current fitness with the last fitness
that was before mutation. If it is worse, old position and velocity from their
saved buffers are restored.

(7) Crossover and Mutation Kernel: for each particle, t/4 threads randomly
select 4 particles, and perform a parallel reduction in order to find the
best fitness. With a probability γ, a single point crossover is performed
by randomly choosing a shared crossover point between all the threads.
Besides, half of the threads reads the right half of the first parent, and the
other half reads the left half of the second parent. Afterwards, one thread
combines these chunks. In the same kernel, mutation is applied by all the
threads to their chunks of values.
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In 2015, a parallel PSO has been designed in [52] using CUDA. This design is
handled in a collection of remote computing services, called Amazon Web Services
Cloud (AWS). According to the authors, the calculation stress of PSO is propor-
tional to the size of the particle. It means that the larger the particle is, the greater
the pressure is. The following phases are parallelized:

– Calculation of the fitness values of particles: one particle is represented by one
block and each thread computes one of its dimensions (solution level/iteration
level). Then, partial results are reduced to thread 0 that writes the final fitness
value in the global memory.

– Update best local position and best global position: since updating positions
needs to update each dimension of each particle, each particle is represented by
one block, and each thread updates each dimension of the particle. Finally, the
last kernel updates position and velocity of each particle.

Their experiment has been performed by comparing CPU implementation with
GPU local implementation, and GPU AWS implementation. Their results show
that the GPU AWS based PSO runs 80 times faster than the sequential algorithm,
and 64 times faster compared to GPU local implementation.

Differential Evolution (DE): Earlier in 2012, a parallel DE algorithm
has been presented in [90], combined with an elite opposition-based learning
strategy (EOBL). The proposed parallel EOBDE consists in two parts which are
DE and EOBL strategy [76]. The algorithm initializes a population randomly
(iteration level). Then, EOBL is applied. The strategy firstly selects the best
20% individuals of the population as a set of elite individuals. Next, the dynamic
interval boundaries are updated according to an equation mentioned in [90].
Then, opposite solutions are generated according to a model mentioned in [90].
Finally, the fittest individuals are selected to be in the population. The algorithm
handles these operations by implementing three kernels: the first kernel finds
maximum and minimum values of each dimension. The second kernel generates
opposite solutions of the elite individuals. The last one is designed selects the
fittest individuals to insert them into the next population. To perform this task
in parallel, 2 x NP individuals are assigned to each thread block (iteration level).
Each individual is compared with other 2 x NP −1 individuals to calculate its
rank value in order to find the members of the new population. Afterwards, DE is
applied. To handle DE operators (mutation, crossover and selection), individuals
are represented by threads within a separate kernel. As mentioned above, This
Algorithm has been tested on 10 functions with dimensions 500 and 1000. Besides,
it has been compared with 4 other algorithms from the literature. The results
show that EOBDE achieves the best results on 8 of the 10 problems when D=500.
In case of D=1000, EOBDE performs better for 9 functions. Besides, EOBDE
shows an average speedup of 4.475x compared to the sequential implementation.

A hybridization between DE and Backtracking Search Optimization Algorithm
(BSA) and Simulated Annealing (SA) has been carried out in [16]. The algorithm
consists mainly in two stages. The first stage consists in five phases. The first,
called Selection-I is a backtracking strategy to store the old population of the
previous generation (history). This populations is replaced with a probability of
0.5 by the current population. Afterwards, the mutation of individuals phase takes
place, where a hybrid equation is proposed by combining mutation equations
of both BSA and DE/target-to-best/1 where a SA schedule is proposed to
decrease the scaling factor. Next, two crossover strategies are randomly used
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(with probability 0.5) to generate a new trial population T from the current and
the mutant population. The first strategy depends on a parameter that controls
how many dimensions of the mutant will be incorporated in the trial individual.
The second strategy ensures that only one dimension from the mutant individual
will be concerned in the new trial individual. Due to the fact that the mutation
equation can generate trial individuals outside the search space, the confinement
phase has a role of regenerating the dimensions that are out of the space inside the
appropriate bounds. Finally, in Selection-II phase, Ti replaces an individual Pi if it
is better. The second stage performs a DE/target-to-best/1 iteration on the worst
individual. In their GPU based implementation, for the most of the phases (for
example, mutation, evaluation) the algorithm assigns to each individual a block
(iteration level), and to each dimension a thread (solution level) to compute it
(kernel of N blocks of D threads). However, sometimes another data decomposition
is needed: for example, a thread is assigned to each individual in order to update
the global best solution.

According to [78], detecting objects in images is a frequently tackled problem
in computer vision and pattern recognition. This problem can be turned into a
continuous optimization problem, as it is done in [78]. A parallel PSO and DE
have been proposed to tackle two problems in this field: hippocampus localization
in histological images and human body pose estimation in video sequences.
The objective of human body pose estimation in video sequences is to estimate
accurately the posture of human body in a video stream. In this problem, the
input is N views of the body from several angles. Afterwards, the silhouette of
the body within each image is extracted. The silhouette is a binary image where
all pixels belonging to the body are set to 1. To solve the problem, three steps
are followed. First, a pose estimation is generated by the search algorithm using
an appropriate parametric model. Then, a 3D rendering of the body is applied
for the pose. Finally, a set of N images, corresponding to the projections of the
rendered body (silhouettes) on the image planes of the input is computed. For
further details about the parametric model used, we refer the reader to [78].
In CUDA-based implementations of PSO and DE, three kernels are implemented.
For PSO, the first kernel initializes and updates the velocity and position of all
particles. The second kernel evaluates the fitness. Finally, the third kernel updates
the best positions. In DE, the first kernel generates the offspring solutions. The
second kernel evaluates the fitness of all produced solutions. Then, the third
kernel performs the selection of the new population. PSO and DE have the same
structure, each thread block is responsible of one particle (iteration level), where
each thread updates one dimension of the problem (solution level). The exper-
imentation shows that PSO gives more accurate results than DE when dealing
with human body pose estimation. However, DE gives slightly better results in
case of hippocampus localization in histological images without mentioning any
details about the speedup gained by GPU implementation over CPU.

Other evolutionary algorithms: A new design of a memetic algorithm, called
MA-SW-Chains is presented in [51] for GPU architecture. Its main idea is to com-
bine a steady-state genetic algorithm (SSGA) [86] with a local search procedure,
called Solis Wets search method [70]. According to [51], the GPU accelerated MA-
SW chains has two natural sources of parallelism: the number of individuals in the
population (iteration level), and the number of variables of each individual (solu-
tion level). The steps that have been parallelized in the algorithm are: evaluation of
the fitness function, adaptation of the crossover operator to the GPU, optimization
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of the local search, random number generation process, and population sorting.

(1) Fitness function evaluation: each thread block is assigned the processing of
a set of dimensions of each individual (iteration level). Within each block,
each thread processes several variables (bucket). Each bucket processed
is composed of interleaved elements to make thread warps access consec-
utive elements (coalesced memory). Afterwards, a reduction operation is
performed to compute the partial result for each thread. The final fitness
function of an individual is then computed by another reduction operation.

(2) Crossover: each thread processes a bucket of pairs of dimensions (so-
lution level). Then, it writes the result in the memory. In fact, the
crossover operation is designed such that each thread crosses BucketSize
elements of the two parent individuals. It means that each block generates
ThreadsPerBlock ∗ BucketSize elements for the new individual. In the
proposed design, n crossing operations are performed in parallel to increase
the thread parallelism where n is the number of individuals. Another op-
eration has been parallelized which is the Euclidean distance to select the
parents to be crossed.

(3) Local search: the operations that have been parallelized are: individual
change operations, bias values increment and decrement operations, indi-
vidual substitution in the population, and fitness evaluation.

(4) The generation of random numbers and population sorting.

A GA has been parallelized in [67] to tackle continuous functions. In their
proposition, the selection procedure is implemented using Roulette wheel selection
function with a separate kernel, and it is performed by generating random numbers
between 0 and the sum of the fitness values of the population. If the fitness of the
corresponding individual is greater than the random number, then it becomes a
parent chromosome. Afterwards, another kernel performs a uniform distribution
crossover with a fixed ratio. Unlike single and double point crossover where mixing
is done at segment level, uniform distribution crossover creates child chromosome
at gene level (solution level). The authors claims that it is more suitable for the
large populations. The last genetic operator is mutation. It is implemented in
single kernel, where each individual is mutated by a thread (iteration level). The
parallel GA has been tested on seven test functions and it shows to be faster with
4.15x than the sequential version.

A parallel bee algorithm (CUBA) has been proposed in [53] to tackle continuous
problems. CUBA is a multi-colony bee algorithm that brings a good efficiency
and a high speedup. The algorithm initializes the population and evaluates the
fitness of individuals through parallel threads (iteration level/solution level). To
get the best sites, the population needs to be sorted. For this reason, the authors
have used Odd–Even Sorting algorithm. In their design, bees are grouped into
colonies. Each thread is assigned to its colony according to the thread ID. In the
standard bee algorithm, more bees are recruited for the best sites. However, in
this proposition, the authors aims to balance the loading among the threads. They
have proposed to assign nep bees to recruit m sites. The algorithm overcomes
the overhead due to the communication between the colonies by using shared
memory and adapting 2 phase communication strategy. CUBA has been applied
on 9 minimization functions, and has achieved a speedup of 13x times compared
to the standard sequential bee algorithm.

A parallel multi-objective tabu search (MOTS2) has been designed in [77] to
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handle multi-objective high-dimensional problems, where the GPU acts as a co-
processor that supports CPU by evaluating large number of solutions. The high
level and complex parts of the code are performed by the host. However, the neigh-
borhood evaluations are carried out in batches by the device (iteration level), where
each neighboring solution will be evaluated asynchronously. As a result, the number
of solutions to be evaluated determines the grade of parallelism. In other words,
parameters are configured automatically within the kernel. The implemented al-
gorithm has been tested on the ZDT and ZDT2 functions, and it has achieved an
average speedup of 23.7x compared to the CPU implementation.

4. Discussion

This section is devoted to discuss parallel works that have been reviewed. It is
based on the acceleration factor and the achieved solutions quality to demonstrate
GPU role within metaheuristics.

Table 3.: Characteristics of GPU-accelerated metaheuristics on continuous problems
Ref Algorithm Parallelism

level
Acceleration Benchmark Quality improvement System CPU/GPU

[90] DE Iteration
level

4.475x Functions from CEC 2008 [75], and [40] Results improved compared to CHC, DE,
SOUPDE and GODE

CPU: Intel Core
2 Quad Q8200
(2.33GHz)/GPU:
NVIDIA GeForce GTX
285 with 240 cores at
1476MHz

[16] DE-BSA-SA Iteration
level + Solu-
tion level

40x Functions taken from [24] No improvement CPU:Intel Core
processor i5-3330
(3.00GHz)/GPU:
NVIDIA GeForce
GTX680 with 1536
cores at 1058 MHz

[78] DE+PSO Iteration
level + Solu-
tion level

Not men-
tioned

4 test sequences made by the CVSSP, Uni-
versity of Surrey for Human body pose esti-
mation + 15 images of hippocampi by man-
ually segmenting the anatomical structures
for Hippocampus localization in histological
images

PSO performs better in human body pose
estimation in video sequences but DE is
better in hippocampus localization in his-
tological images

CPU: Intel Core i7
CPU (2.80 GHz)/GPU:
NVIDIA GeForce
GTS450 with 192 cores
at 1566 MHz

[51] MA-SW chains Iteration
level + Solu-
tion level

82.17x CEC 2010 [74] + a benchmark setup men-
tioned in [51]

No improvement CPU: Intel Core i7-
930 (2.8 GHz)/GPU:
Nvidia Titan with 2688
CUDA cores at 837
MHz

[42] PSO Iteration
level + Solu-
tion level

46x Sphere, Rosenbrock, Rastrigin, Griewank,
Ackley, De Jong, Easom

Quality improved in Sphere and Griewank
function compared to the CPU sequential
implementation

CPU: Intel Core i7
(860 MHz) /GPU:
GeForce GTX 980
with 2048 cores at
1126 MHz

[50] PSO Algorithmic
level+Iteration
level

4.9x com-
pared to
HBPSO
algorithm

Griewank, Rastrigin, Rosenbrock No improvement CPU: Intel Pen-
tium G2020 (2.9
GHz)/ GPU: NVIDIA
GeForce GT 630 with
902 cores at 1804 MHz

[67] GA Iteration
level

1.18 to
4.15x

Function taken from [43] No improvement CPU: Intel Core i5
4200 (2.6 GHz)/ GPU:
nVIDIA GeForce GT
740M with 384 cores at
810 - 980 MHz

[49] PSO Iteration
level + Solu-
tion level

7.26x CEC 2008 [75] and CEC 2010 [74] Quality improved in Shifted Rosenbrock
compared to the CPU sequential imple-
mentation

CPU: not mentioned/
GPU: Tesla M-2070
with 448 cores at 1.15
GHz

[44] PSO Algorithmic
level+Iteration
level

178x com-
pared to
PPSOURM

Functions taken from [66] Quality improved in all the functions com-
pared to PPSOURM and the CPU sequen-
tial implementation

CPU: Intel Core i5-
4670 (3.4 GHz)/ GPU:
NVIDIA GTX660 with
960 cores at 980 MHz

[36] PSO Algorithmic
level+Iteration
level + Solu-
tion level

17x CEC 2010 [74] Quality improved compared to Static
MPSO+GA and CPU sequential imple-
mentation but it doesn’t achieve the best
results of MPSO-MCS

Not mentioned

[53] CUBA Iteration
level + Solu-
tion level

13x Functions from [61] No improvement CPU: AMD Athlon
II (3.0 GHz)/ GPU:
GeForce GTX 460 with
336 CUDA cores at
1350 MHz

[52] PSO Iteration
level + Solu-
tion level

80x Sphere, Rastrigin, Griewank, Rosenbrock No improvement CPU: i5-4670
(3.4GHz)/GPU:
NVIDIA GTX660
with 960 cores at 980
MHz

[77] MOTS2 Iteration
level

23.7x ZDT and ZDT2 functions No improvement CPU: not mentioned/
GPU: Quadro 1000M
with 96 cores at 1400
MHz
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We have tried to cover as possible the recent works published from 2012. For the
best of our knowledge, only few papers adapt single solution based metaheuristics
to tackle continuous problems with GPU, like [77] where ZDT and ZDT2 functions
have been addressed using multi-objective tabu search.
To adapt single solution based metaheuristics for GPU, iteration level is imple-
mented to speedup the time-consuming generation and evaluation of the neighbors
without affecting the behavior of the algorithm. Besides, algorithmic level is im-
plemented for two reasons, which are to achieve a high occupancy of GPU, and to
enhance the exploration ability of the algorithms by launching multiple instances
[8, 18, 30]. We noticed that communication strategies are implemented between pro-
cesses in order to guide the search towards promising search regions. For instance,
in [8], processes form a ring topology and exchange solutions based on a diversi-
fication strategy mentioned in [19]. In [18], a working set F is used to exchange
solutions. Solutions are exchanged if the last read solution has not been improved
for a certain number of iterations, or if an improvement of the last read solution
occurred. Compared to CPU sequential implementation, we noticed improved re-
sults thanks to the large generation of neighborhood, and to the communication
strategies. Nevertheless, Table 1 shows that the acceleration factor of the described
algorithms does not exceed 14.86x [82]. We think that it is a humble factor if we
consider the huge computing power of GPU.
When using population-based metaheuristics to solve combinatorial problems, iter-
ation level is always used regarding the large set of individuals being evaluated and
evolved [21, 22, 28, 29, 32, 35, 54–56, 62–65, 68, 79, 85, 88, 89]. However, algorith-
mic level is considered only in few papers like [28], where partitioning the swarm
into sub swarms is proposed. Each subswarm runs PSO separately. To further accel-
erate the execution time, the solution level has been also implemented to generate,
evaluate solutions, or both in parallel [21, 22, 28, 29, 32, 35, 54, 56, 62, 64, 88, 89].
As an example, in papers like [21] [22] [32], ACO algorithm have been implemented,
where tour construction phase can be performed in parallel. More specifically, an
ant generates a set of possible moves in parallel. Then, it selects the best move. On
the other hand, solution quality has been considered in works like [63, 64] with a
small acceleration factor of at best 1.19x [63]. While in works like [32, 35, 54, 88],
the behavior of GPU parallel implementations is not modified compared to the
CPU implementations (quality not improved) but a significant acceleration factor
of at best 696x [54] is achieved. Few works as [21, 56, 60, 62, 68, 81] made the
exception. They improve the quality along with keeping a high acceleration factor.
In the same context, population based metaheuristics have been widely exploited
to solve high dimensional continuous problems. Besides iteration level, in most of
works, as [16, 36, 42, 49, 51–53], dimensions of individuals are computed in par-
allel (solution level), which increases the acceleration of the algorithms. Quality
has been preserved, and even improved as it is the case in [36, 42, 44, 49, 90].
However, for the best of our knowledge, algorithmic level is less covered and found
only in [36, 44, 50]. This level is implemented by partitioning a given population
into subpopulations where a defined algorithm is run for a certain number of iter-
ations. Then, a communication strategy is performed between them to exchange
individuals.
Finally, the common point of the works in designing a GPU based algorithm is try-
ing to maximize data parallelism. Works like [16, 21, 42, 50, 51] represent solutions
as thread blocks where threads evaluate dimensions, or perform specific operators,
such as crossover, mutation or to generate the neighborhood. Moreover, GPU im-
pact becomes clear when big instances are addressed. We take as an example [71],
in which solving an instance of 10 takes 0,33 s in CPU sequential implementation
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and 2.12 s on GPU. However, solving an instance of 500 takes 4331,783 s in CPU
sequential implementation, but it takes only 1628 s on GPU. Another example is
taken from [55] solving QAP, where the CPU sequential implementation converges
to the final solution in 1442.38 s for an instance of 100 while it takes 45.78 s using
GPU.

5. Guidelines and conclusion

Inspired by [17] and from what we have reviewed, we cite some guidelines to build
an efficient parallel GPU based metaheuristic. These guidelines are summarized as
follows:

– To guarantee a GPU based metaheuristic performance, a relatively high occu-
pancy of GPU is mandatory. It would cover the high latency of the memory. A
high occupancy can be ensured by:
(1) Increasing the size of neighborhood (single solution based metaheuristics).
(2) Representing solutions as thread blocks, where threads are responsible of

computing.
(3) Increasing the number of individuals within the population (case of popu-

lation based metaheuristics).
However, very high occupancy can also degrade the performance [29]. The reason
is the memory restrictions, e.g. registers memory is limited which means that
each thread has a specific amount of registers. Increasing the number of threads
would require using the global memory to overcome registers memory limitation
[17]. As an example, we can cite [42], where a high speedup has been achieved,
but the performance decreases when the population size is greater than 2000 and
the problem dimension is greater than 50.

– Thread divergence: thread divergence can be handled by different mechanisms.
These mechanisms are strongly related to the problem being solved and to the
algorithm itself. From our review, one of the mechanisms that has been adopted
to avoid thread divergence is to run many thread blocks that have few number
of threads [54]; propose a tabu list to check whether a city is visited or not to
solve TSP [21]; filter infeasible moves [18]; evaluate the individuals using Monte
Carlo sampling to provide a simple flow control without branching during the
evaluation [85].

– Coalescing memory access: ensuring coalescing memory access has a positive
impact on the performance [1]. Papers cited in our review have shown the im-
portance of coalescing memory access on the speedup of their algorithms, such
as [27, 42, 51].

– When transferring data between the GPU and the CPU over the PCI express
bus, it is recommended to use the so called Page Locked Memory. It will disable
the memory paging (physical RAM continuous memory is guaranteed) [17].

– A further optimization is to use Write Combining Allocation. It disables CPU
caching of a memory that the CPU will only write to, and improves transfer
performance by 40% [17].

The main bottlenecks that can occur in the GPU based applications are: instruc-
tion throughput, memory throughput, latencies, or CPU-GPU communications. To
locate kernel bottlenecks, several approaches can be used as employing a CUDA
profiler [17]. One of the options of the CUDA profiler to locate kernel bottlenecks is
to modify the source code and compare the execution time of the different kernels
[17]. The profiler can identify whether a kernel is limited by bandwidth or by the
arithmetic operations. This is done by using a strategy that adopts three modified
versions of kernels: the original kernel, the math version and the memory version.
In the math kernel, all memory load and store operations are removed. While in
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the memory kernel, all the arithmetic operations are removed. Then, the runtime
between the three versions can be compared [17].
In the same context, reducing data traffic to off-chip memory can be achieved
through mechanisms such as kernel fusion. This recent strategy relies on the com
-bination of kernels that share data arrays to larger kernels [34] where the shared
data arrays are held by on-chip cache. Furthermore, a scalable method is proposed
in [80] to find the best kernel fusion possibility. Kernel fusion is defined as an
optimization problem where the optimal kernel fusion (in terms of performance)
is found using a genetic algorithm. Besides, the understanding of memory access
patterns and the efficiency of the different GPU storage types is essential for im-
proving GPU based-applications. According to [41], finding the best way to make
use of GPU memory (buffering strategy) is a challenging task. A buffering strat-
egy mainly concerns the assignment control of the available storage types to given
grid functions (stencil computations on arrays). Due to the multiple storage types
and the grid functions, it is difficult to find the best buffering strategy. For given
β buffering strategies and N grid functions, there are Nβ possible configurations,
which is a huge search space. Especially, if there are dozens of grid functions. This
issue has been addressed in [41], where an assignment algorithm is proposed to find
an optimal configuration along with a reduced search space to O(βN2). Moreover,
a performance model is presented to measure the effects of the different storage
types on several buffering strategies.
For further details about the kernel fusion or the buffering strategies, we refer the
reader to [80] and [41] respectively.
Finally, following these guidelines and adapting an appropriate GPU implementa-
tion may lead applications (metaheuristics in our case) to a better performance.
As a conclusion, this survey shows that GPUs can play an important role in the
efficiency of parallel metaheuristics for solving high dimensional problems. On the
one hand, it can lead to high runtime accelerations and, on the other hand, solution
quality is usually preserved and can sometimes be improved.
Although GPU based systems are used to speedup metaheuristics, it is still a bit
early to say that GPU architectures are fully employed for metaheuristics, because
the current strategies are strongly dependent to the algorithm or the addressed
problem. Thus, the focus may be oriented towards new parallelization strategies
that have the possibility to be reused from one problem or one algorithm to an-
other. Besides, the design of new parallel metaheuristics will certainly be of high
interest, especially if applied on hard real-world optimization problems, rather than
on benchmark ones. It will also benefit from the convergence of several technologies
(GPU, distributed algorithms, cloud computing, etc) and it will certainly give rise
to interesting perspectives, in terms of new paradigms and applications.
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