693 research outputs found

    The incremental use of morphological information and lexicalization in data-driven dependency parsing

    Get PDF
    Typological diversity among the natural languages of the world poses interesting challenges for the models and algorithms used in syntactic parsing. In this paper, we apply a data-driven dependency parser to Turkish, a language characterized by rich morphology and flexible constituent order, and study the effect of employing varying amounts of morpholexical information on parsing performance. The investigations show that accuracy can be improved by using representations based on inflectional groups rather than word forms, confirming earlier studies. In addition, lexicalization and the use of rich morphological features are found to have a positive effect. By combining all these techniques, we obtain the highest reported accuracy for parsing the Turkish Treebank

    Apportioning Development Effort in a Probabilistic LR Parsing System through Evaluation

    Get PDF
    We describe an implemented system for robust domain-independent syntactic parsing of English, using a unification-based grammar of part-of-speech and punctuation labels coupled with a probabilistic LR parser. We present evaluations of the system's performance along several different dimensions; these enable us to assess the contribution that each individual part is making to the success of the system as a whole, and thus prioritise the effort to be devoted to its further enhancement. Currently, the system is able to parse around 80% of sentences in a substantial corpus of general text containing a number of distinct genres. On a random sample of 250 such sentences the system has a mean crossing bracket rate of 0.71 and recall and precision of 83% and 84% respectively when evaluated against manually-disambiguated analyses.Comment: 10 pages, 1 Postscript figure. To Appear in Proceedings of the Conference on Empirical Methods in Natural Language Processing, University of Pennsylvania, May 199

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Treebank-based acquisition of Chinese LFG resources for parsing and generation

    Get PDF
    This thesis describes a treebank-based approach to automatically acquire robust,wide-coverage Lexical-Functional Grammar (LFG) resources for Chinese parsing and generation, which is part of a larger project on the rapid construction of deep, large-scale, constraint-based, multilingual grammatical resources. I present an application-oriented LFG analysis for Chinese core linguistic phenomena and (in cooperation with PARC) develop a gold-standard dependency-bank of Chinese f-structures for evaluation. Based on the Penn Chinese Treebank, I design and implement two architectures for inducing Chinese LFG resources, one annotation-based and the other dependency conversion-based. I then apply the f-structure acquisition algorithm together with external, state-of-the-art parsers to parsing new text into "proto" f-structures. In order to convert "proto" f-structures into "proper" f-structures or deep dependencies, I present a novel Non-Local Dependency (NLD) recovery algorithm using subcategorisation frames and f-structure paths linking antecedents and traces in NLDs extracted from the automatically-built LFG f-structure treebank. Based on the grammars extracted from the f-structure annotated treebank, I develop a PCFG-based chart generator and a new n-gram based pure dependency generator to realise Chinese sentences from LFG f-structures. The work reported in this thesis is the first effort to scale treebank-based, probabilistic Chinese LFG resources from proof-of-concept research to unrestricted, real text. Although this thesis concentrates on Chinese and LFG, many of the methodologies, e.g. the acquisition of predicate-argument structures, NLD resolution and the PCFG- and dependency n-gram-based generation models, are largely language and formalism independent and should generalise to diverse languages as well as to labelled bilexical dependency representations other than LFG

    Porting a lexicalized-grammar parser to the biomedical domain

    Get PDF
    AbstractThis paper introduces a state-of-the-art, linguistically motivated statistical parser to the biomedical text mining community, and proposes a method of adapting it to the biomedical domain requiring only limited resources for data annotation. The parser was originally developed using the Penn Treebank and is therefore tuned to newspaper text. Our approach takes advantage of a lexicalized grammar formalism, Combinatory Categorial Grammar (ccg), to train the parser at a lower level of representation than full syntactic derivations. The ccg parser uses three levels of representation: a first level consisting of part-of-speech (pos) tags; a second level consisting of more fine-grained ccg lexical categories; and a third, hierarchical level consisting of ccg derivations. We find that simply retraining the pos tagger on biomedical data leads to a large improvement in parsing performance, and that using annotated data at the intermediate lexical category level of representation improves parsing accuracy further. We describe the procedure involved in evaluating the parser, and obtain accuracies for biomedical data in the same range as those reported for newspaper text, and higher than those previously reported for the biomedical resource on which we evaluate. Our conclusion is that porting newspaper parsers to the biomedical domain, at least for parsers which use lexicalized grammars, may not be as difficult as first thought

    Spanning Tree Methods for Discriminative Training of Dependency Parsers

    Get PDF
    Untyped dependency parsing can be viewed as the problem of finding maximum spanning trees (MSTs) in directed graphs. Using this representation, the Eisner (1996) parsing algorithm is sufficient for searching the space of projective trees. More importantly, the representation is extended naturally to non-projective parsing using Chu-Liu-Edmonds (Chu and Liu, 1965; Edmonds, 1967) MST algorithm. These efficient parse search methods support large-margin discriminative training methods for learning dependency parsers. We evaluate these methods experimentally on the English and Czech treebanks
    corecore