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Abstract

THE APPLICATION OF CONSTRAINT RULES TO DATA-DRIVEN

PARSING

Sardar Jaf

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2015

The process of determining the structural relationships between words in both natural

and machine languages is known as parsing. Parsers are used as core components in

a number of Natural Language Processing (NLP) applications such as online tutoring

applications, dialogue-based systems and textual entailment systems. They have been

used widely in the development of machine languages.

In order to understand the way parsers work, we will investigate and describe a

number of widely used parsing algorithms. These algorithms have been utilised in

a range of different contexts such as dependency frameworks and phrase structure

frameworks. We will investigate and describe some of the fundamental aspects of

each of these frameworks, which can function in various ways including grammar-

driven approaches and data-driven approaches. Grammar-driven approaches use a set

of grammatical rules for determining the syntactic structures of sentences during pars-

ing. Data-driven approaches use a set of parsed data to generate a parse model which

is used for guiding the parser during the processing of new sentences. A number of

state-of-the-art parsers have been developed that use such frameworks and approaches.

We will briefly highlight some of these in this thesis. There are three specific important

features that it is important to integrate into the development of parsers. These are effi-

ciency, accuracy, and robustness. Efficiency is concerned with the use of as little time

and computing resources as possible when processing natural language text. Accuracy

involves maximising the correctness of the analyses that a parser produces. Robustness

12



is a measure of a parser’s ability to cope with grammatically complex sentences and

produce analyses of a large proportion of a set of sentences.

In this thesis, we present a parser that can efficiently, accurately, and robustly parse

a set of natural language sentences. Additionally, the implementation of the parser

presented here allows for some trading-off between different levels of parsing perfor-

mance. For example, some NLP applications may emphasise efficiency/robustness

over accuracy while some other NLP systems may require a greater focus on accu-

racy. In dialogue-based systems, it may be preferable to produce a correct grammatical

analysis of a question, rather than incorrectly analysing the grammatical structure of a

question or quickly producing a grammatically incorrect answer for a question. Alter-

natively, it may be desirable that document translation systems translate a document

into a different language quickly but less accurately, rather than slowly but highly

accurately, because users may be able to correct grammatically incorrect sentences

manually if necessary. The parser presented here is based on data-driven approaches

but we will allow for the application of constraint rules to it in order to improve its

performance.
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Chapter 1

Introduction

1.1 Research overview

Parsing is a term used for the processing of human languages to determine the struc-

tural relations of words in sentences according to the grammatical rules of a language

[Aho and Ullman, 1972, p. 63]. It is a core component in many Natural Language Pro-

cessing (NLP) applications [Socher et al., 2013], such as machine translation, online

tutoring applications, dialogue-based systems and textual entailment systems.

In this thesis, we will investigate a number of parsing algorithms, such as top-

down parsing, bottom-up parsing, and chart parsing. We will also investigate different

parsing frameworks, namely dependency framework and phrase structure framework.

Parsers that are based on any of these frameworks process natural language sentences

using one of two approaches:

1. grammar-driven approaches, where a set of grammatical rules is used for deter-

mining the syntactic structures of sentences during parsing.

2. data-driven approaches, where a set of parsed data is used for parser training and

a parse model is generated which is used for processing new sentences.

We will briefly describe grammar-driven and data-driven approaches to parsing and

highlight features of some of the state-of-the-art parsers.

The parser that we present in this thesis can efficiently, accurately, and robustly

parse a set of natural language sentences (see Chapter 5). That is, it consumes as

little time and computing resources as possible when processing natural language text

(efficiency), it maximises the correctness of the analyses it produces (accuracy), and
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it can cope with grammatically complex sentences and produce analyses of a large

proportion of a set of sentences (robustness).

NLP applications that use a parser as a subcomponent for processing text may

trade-off certain aspects of parsing performance. Some NLP applications may re-

quire efficiency/robustness to be emphasised more than accuracy, while other appli-

cations may require more efficiency/robustness. For example, it may be important for

dialogue-based systems to have a correct grammatical analysis of a question or pro-

duce a grammatically correct answer, rather than quickly but incorrectly analysing the

grammatical structure of a question or quickly producing a grammatically incorrect

answer for a question. It may, however, be desirable that document translation sys-

tems translate a document into a different language quickly but less accurately rather

than slowly but highly accurately, because users can correct grammatically incorrect

sentences manually if necessary. In this study, we present a novel methodology for

integrating a set of constraint rules into a data-driven parser and show that we can

trade-off effectively between accuracy and efficiency.

In this chapter, we will provide an overview of our research on processing natural

language syntax. Moreover, we will explain the main challenges for parsing natural

languages, and we will highlight our goals for conducting this research. We will also

shed light on the main contributions of our work. Finally, we will conclude by outlining

the main sections of this thesis.

1.2 An overview of the challenges in parsing natural

languages

Natural languages contain ambiguities that make the task of developing a parser diffi-

cult and challenging [Farghaly and Shaalan, 2009, Holes, 2004, Collins, 2003].

In many natural languages, especially those such as Arabic with morphologically

complex structures, a word may have multiple potential syntactic roles in a sentence.

For example, a word can be a verb or a noun. Additionally, a verb can be intransitive

(requiring no objects), monotransitive (requiring at least one object), or ditransitive

(requiring two objects: a direct object and an indirect object). Parsers need to identify

all possible interpretations for an ambiguous word/sentence so that they can produce

correct analyses for them, which means that parsers must produce multiple analyses

for an ambiguous word/sentence.

Producing multiple analyses for ambiguous words/sentences can have a knock-on
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effect on a parser’s performance (efficiency, accuracy, and robustness). Also, con-

ducting multiple analyses of a single word/sentence requires more time and computing

resources than one analysis. It is more likely that a parser will select an incorrect analy-

sis as its final answer when presented with multiple analyses of a single word/sentence.

Finally, exploring multiple avenues for parsing ambiguous words or sentences can re-

sult in the production of several partial analyses that may exhaust available time and

memory and lead to failure to deliver a final analysis. Example (1) shows that the word

saw could be interpreted as a noun, referring to the name of a tool for cutting a tree,

or as a verb indicating seeing a tree in a park. To produce an accurate interpretation,

parsers have to explore and produce different analyses based on the role of saw in the

sentence.

(1) I saw a tree in the park with a telescope.

Additionally, word order freedom in natural languages, where individual parts of

a sentence need not necessarily be placed in a firmly given sequence, has a significant

effect on parsing performance. Re-ordering words in sentences may not only alter the

original meaning of sentences, but may also make it difficult for a parser to identify

subjects or objects of sentences. For example, it is hard for parsers to determine the

subject or the object of the Arabic sentence in 2(a) and 2(b). In 2(a) it is clear that

ø
 Y
	Jm.Ì'@ aljndy “the soldier” is the subject of the verb and that ú
G. AëPB @ al-’irhAby “the

terrorist” is the object of the verb. However, reordering the words of the same sentence

as in 2(b), makes it hard to determine whether ø
 Y
	Jm.Ì'@ aljndy “the soldier” is the subject

of the verb as in ú
G. AëPB @ ø
 Y
	Jm.Ì'@ É�KA

�̄
qAtl aljndy al-’irhAby “the soldier fought the

terrorist” or ú
G. AëPB @ al-’irhAby “the terrorist” is the subject as in ú
G. AëPB @ ø
 Y
	Jm.Ì'@ É�KA

�̄

qAtl aljndy al-’irhAby “the killer of the soldier is the terrorist”.

(2)

(a) ú
G. AëPB @ É
�KA�̄ ø
 Y

	Jm.Ì'@ aljndy qAtl al-’irhAby “the soldier fought the ter-

rorist”

(b) ú
G. AëPB @ ø
 Y
	Jm.Ì'@ É�KA

�̄
qAtl aljndy al-’irhAby “the killer of the soldier is

the terrorist”

Furthermore, in some morphologically rich languages, verbs can indicate the gen-

der, number and the person of the subject of a sentence. In such languages, it is possible

to completely omit subjects from sentences. For example, the subject in the Arabic sen-

tence in (3) is completely removed because the verb �IÊ¿

@ ’kalat “ate” is rich enough to
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indicate that the subject is feminine, singular, and second person. However, the omis-

sion of sentences’ subjects can make it difficult for parsers to determine whether the

subject is actually being omitted or whether the verb has one object (monotransitive).

There are at least two analyses for the sentence in (3), (i) the sentence has no objects

and the word
�ék. Ag. YË @ AldajAjT “the chicken” is the subject of the verb �IÊ¿


@ ’kalat

“ate”, and (ii) the subject of the sentence is “she” but it is removed from the sentence

because the verb �IÊ¿

@ ’kalat “ate” can recover it, and the object is

�ék. Ag. YË @ AldajAjT

“the chicken”.

In Chapter 4, we will explain in more detail a number of natural language ambigu-

ities that affect parsers.

(3)
�ék. Ag. YË @ �IÊ¿


@ ’kalat Al dajAjT “the chicken ate/She ate the chicken”

1.3 Research goals

Our goal in this study is to implement a parser for processing natural languages, with

a particular focus on Arabic because it is more ambiguous than some other languages

[Farghaly and Shaalan, 2009, Chalabi, 2004a, Holes, 2004, Daimi, 2001, Fehri, 1993],

such as English, and hence can be particularly challenging. The main objectives of this

study are as follows:

• To investigate current parsing algorithms.

• To explore different frameworks and approaches to parsing natural languages.

• To identify different ways of extracting constraint rules from treebanks.

• To integrate a set of constraint rules into a data-driven parser.

• To be able to trade-off between different features of parsing (efficiency, accuracy

and robustness).
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1.4 Research contribution

Parsing is a core component in a number of NLP applications. An efficient, robust,

and accurate parser may greatly contribute to those applications. There are a number

of parsing algorithms, frameworks and approaches to parsing, each one of which has

certain limitations. However, each offers different benefits.

On the one hand, parsers that are trained on a treebank using machine learning

algorithms can be efficient and robust. These parsers are categorised as data-driven

parsers [McDonald et al., 2006, Nivre, 2006]. They generally produce some analyses

for any input sentences, based on what they have learned from the set of data they

were trained on. Data-driven parsers do not implement linguistic grammatical rules

for analysing the grammaticality of the sentences they process. Hence they may pro-

duce analyses that do not correspond to the structures defined by standard linguistic

grammar.

On the other hand, parsers that use grammatical rules for analysing sentences are

categorised as grammar-driven parsers. These parsers often produce highly accurate

results but may have problems with efficiency and robustness for three reasons: (i) the

grammatical rules used in these parsers may not cover the whole language in question,

(ii) some sentences might fall outside norms of the language in question such as incur-

erectly spelled words, and (iii) they have to explore all possible analyses for ambigu-

ous words/sentences, which can make them very slow.

The main contributions of the research are:

C.1 We present an approach for directly integrating a set of constraint rules into a

data-driven parser in order to improve the performance of a data-driven parser

(see Section 5.2.2 for more details).

C.2 We present a technique for easily activating/deactivating the application of con-

straint rules to a data-driven parser, which will allow us to easily trade-off be-

tween accuracy and speed (see Section 6.5 for more details).

C.3 We present a method for extracting different sets of constraint rules from a de-

pendency treebank, which is an easy and quick way for constructing rules that

can be used as linguistic grammatical rules (see Section 6.5.2 for more details).

C.4 We present a new approach to non-projective parsing with a data-driven parser

(see Section 5.2.1 for more details).
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1.5 Research methodology

The methods of parsing human languages examined in this study have three main ele-

ments:

1. Parsing algorithms: A combination of two widely used parsing algorithms will

be used to construct the parser presented in this thesis, which is a shift-reduce

parsing algorithm with dynamic programming.

2. Constraint rules: We will integrate a set of constraint rules extracted from a de-

pendency treebank into a data-driven parser to ensure that the analyses produced

by our parser obey the specified constraints.

3. Machine learning algorithm: This is used for generating a parse model, which

guides the parser to its next parsing action to improve the parser efficiency (i.e.,

to consume as little time and computing resources as possible) and also to assist

the parser in producing analyses based on its learning from a set of data.

1.6 Thesis outline

In this introductory chapter, we have presented an overview of the research problem

and the main challenges involved in parsing natural language texts. We have high-

lighted our aims and our research contributions, and have shed light on the research

methodology that we are using for producing an efficient, robust, and accurate parser.

The remainder of this thesis is organised as follows:

Chapter 2

Investigating Parsing Algorithms

Chapter 2 discusses the different natural language parsing algorithms in order to gain

an understanding and identify the limitations of each of them.

Chapter 3

Natural Language Parsing Frameworks

Chapter 3 identifies and describes different frameworks and approaches to parsing nat-

ural languages and includes a brief description of a number of state-of-the-art parsers.
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Chapter 4

The Challenges of Parsing Arabic

Chapter 4 focuses on highlighting the complexities of natural languages, using Arabic

as an example because it is more ambiguous than other languages such as English. We

will use various examples to demonstrate ways that natural language ambiguities affect

parsing performance.

Chapter 5

Parser Development

Chapter 5 describes various aspects of the development of our parser, which includes

the evaluation of a state-of-the-parser and the way we modify it.

Chapter 6

Parser Evaluation

Chapter 6 describes the evaluation of our data-driven parser. We also show the effect

of applying a set of constraint rules to it.

Chapter 7

Conclusion, Contributions, and Future Work

Chapter 7 concludes with the final remarks of the thesis. The chapter ends by suggest-

ing some directions for future work and research.



Chapter 2

Investigating Parsing Algorithms

Parsing algorithms use different strategies for enumerating the nodes and arcs of parse

trees and they are characterised by the way they use these strategies. For example,

in a top-down strategy, the parsing of each node is enumerated before any of its de-

scendants, while, in a bottom-up parsing strategy, each node is enumerated after all its

descendants.

In this chapter we will describe some of the most widely used parsing algorithms:

top-down parsing, bottom-up parsing, left-corner parsing, chart parsing, and shift-

reduce parsing. We will describe these algorithms in detail in the following sections.

These algorithms can all be run either depth-first or breadth-first search strategy. The

key issue here concerns what the algorithm should do if it hits a dead-end. In depth-

first search, it will return to the most recent choice point and look for an alternative,

whereas in breadth-first search it will return to the oldest choice point.

We will describe each parsing algorithm by using a single example sentence to ex-

plain and describe the way they process sentences to produce parse trees. It is possible

to use any of these algorithms to produce parse trees by adopting two different frame-

works, which are described in the next chapter. These are (i) a dependency framework,

and (ii) a phrase structure framework. These frameworks can be used in different ways,

in grammar-driven approaches where a set of grammatical rules is used for producing

parse trees, and in data-driven approaches where a set of inferred rules extracted from

a set of training data is used to produce parse trees. In this chapter we will follow a

grammar-driven approach by using a set of defined grammatical rules for processing a

natural language sentence1.

1We use grammar-driven approaches with a phrase structure framework in the examples of this

chapter because it is more convenient for describing the parsing algorithms.
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Our goal in this chapter is to describe the parsing process of each algorithm in

order to understand the way natural language ambiguities affect parsing performance.

We will look at the traces of these algorithms in considerable detail to make it clear

where backtracking occurs and what causes it to happen.

2.1 Top-down parsing algorithm

Top-down parsing algorithm break up the largest unit (a sentence) into smaller units

(words and phrases) until a parse tree for a given input string is produced [Chapman,

1987]. In this algorithm, the process begins with the start symbol at the top of a parse

tree and works downwards, applying and expanding rules forward until it reaches the

terminal symbols (which can be either the actual words in the given sentence or their

part-of-speech tags) [Aho and Ullman, 1972, p. 285]. The start symbol, which is the

root of the parse tree, represents the sentence level, and the leaves which are at the

bottom of the parse tree indicate the word level.

Top-down algorithms can process sentences according to a set of defined gram-

matical rules of a natural language [Thant et al., 2011]. Generally, top-down parsers

perform three steps:

1. establishing the root of the parse tree and then expanding toward the leaves.

2. selecting a rule and finding an interpretation of an input string that can match it.

3. if the parser explores a rule and the analysis does not lead to a parse tree then the

parser backtracks to a previous step and attempts an alternative interpretation.

We use the grammar rules in Figure 2.1 to parse the sentence I know that man

is happy in order to illustrate the parsing process in the top-down algorithm, and to

identify some of its limitations. We will be exploring the traces of this algorithm in

considerable detail. The parsing steps in each parse tree are presented using numbers

to indicate the parser’s steps, and alternative analyses for each category are included

below the categories.

The parsing algorithm begins to find the production of S by exploring the elements

of S that are placed at the right-hand-side of the rule, as in the first line in Figure 2.1.

Two non-terminal symbols2, which indicate a noun-phrase (NP) and a verb phrase (VP)

2Non-terminal symbols are those symbols appearing on the left-hand-side of rules which have no

direct links with the input strings, such as S, NP, and VP as shown in Figure 2.1.
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S Ñ NP VP

NP Ñ PRON

NP Ñ DET N

VP Ñ COP ADJ

VP Ñ TV NP

VP Ñ SV S

PRON Ñ I

TV Ñ know

SV Ñ know

PRON Ñ that

DET Ñ that

TV Ñ man

N Ñ man

COP Ñ is

ADJ Ñ happy

Figure 2.1: Context-free grammar rules for parsing.

are used to create a partial parse tree, as shown in Figure 2.2(1). Next, the NP symbol

is processed, because the strategy here is to parse from left to right and from top to

bottom. The grammar rules indicate that an NP may consist of the symbol PRON,

which the parser uses to create a new partial parse tree, as shown in Figure 2.2(2). At

this stage the parser has an alternative option for producing the symbol NP, which is

DET followed by N, as shown in the third rule in Figure 2.1, which is also under the

NP node in the tree created by the parser as shown in Figure 2.2(2). This alternative

analysis can be used by the parser during backtracking, in order to allow the parser to

explore a different path for producing a complete parse tree for the sentence.

S[1]

VPNP

(1)

S[1]

VPNP[2]

alternatives: [DET N]

PRON

(2)

Figure 2.2: Top-down parse trees (1) and (2).

Next, the pre-terminal symbol3 (PRON) is processed by using the terminal sym-

bol4 I, which is the first input string, as its production and a new partial parse tree is

3Pre-terminal symbols are intermediate symbols that appear between non-terminal symbols and ter-

minal symbols, such as N, V, DET etc as in Figure 2.1.
4Terminal symbols are input strings in sentences, such as I, know, man etc. in Figure 2.1.
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generated as in Figure 2.2(3). Here, we have followed the depth-first search strategy

with top-down parsing by finding the daughter of the left branch of the tree before ex-

ploring the right branch. Alternatively, we could have followed the breadth-first search

strategy by moving rightward to process the symbol VP after processing the symbol

NP but before processing the symbol PRON. For example, following the breadth-first

search strategy, the parser would have produced a tree similar to the one in Figure

2.2(4) instead of the one in Figure 2.2(3). Both depth-first or breadth-first strategies

can be used when using a top-down algorithm. However, we will be using a depth-first

search strategy in this algorithm.

S[1]

VPNP[2]

alternatives: [DET N]

PRON[3]

I[4]

(3)

S[1]

VP[3]

ADJCOP

NP[2]

PRON

(4)

Figure 2.2: Top-down parse trees (3) and (4).

Once all of the daughters in the left branch are identified, then the parser moves

rightwards to analyse the non-terminal symbol VP to generate a complete parse tree.

Although the grammar rules indicate that the symbol VP has multiple interpretations,

the pre-terminal symbols COP and ADJ are used as the production of the symbol VP

because they are the first possible interpretation. COP and ADJ symbols are used for

the production of the symbol VP and a new partial parse tree is generated, as shown

in Figure 2.2(5). The parser then finds the next available word know, to be used as

the production for the symbol COP from the grammar rules. However, the input string

know is not defined as COP, so the parser backtracks to try the next interpretation of

the symbol VP, which is TV followed by NP. Since we are following the depth-first

search strategy, the parser backtracks to its last move, which was step 5, as in Figure

2.2(5), and it tries VP as TV followed by NP, as shown in Figure 2.2(6).



32 CHAPTER 2. INVESTIGATING PARSING ALGORITHMS

S[1]

VP[5]

alternatives: [TV NP, SV S]

ADJCOP

NP[2]

alternatives: [DET N]

PRON[3]

I[4]

(5)

S[1]

VP[5]

alternatives: [SV S]

NPTV

NP[2]

alternatives: [DET N]

PRON[3]

I[4]

(6)

S[1]

VP[5]

alternatives: [SV S]

NP[8]

alternatives: [DET N]

PRON[9]

that[10]

TV[6]

know[7]

NP[2]

alternatives: [DET N]

PRON[3]

I[4]

(7)

S[1]

VP[5]

alternatives: [SV S]

NP[8]

NDET

TV[6]

know[7]

NP[2]

alternatives: [DET N]

PRON[3]

I[4]

(8)

Figure 2.2: Top-down parse trees (5) and (8).

The algorithm then performs a number of parse steps and produces numerous in-

termediate parse trees5 before generating a complete parse tree with the symbol S on

the top as shown in Figure 2.2(7).

At this stage, the parser produces a full parse tree with the symbol S on the top.

However, there are three more words (man, is and happy) remaining from the input

strings for processing, which means that the sentence I know that man is happy is not

fully parsed. Thus, the parser backtracks to find an alternative path that can lead to

the production of a complete parse tree for the full sentence. The parser backtracks to

its last step with an alternative analysis, which was step 8 of Figure 2.2(7), where the

alternative analysis is to use DET followed by N as the production of NP, as in Figure

2.2(8).

5The full trace is given in Appendix A.
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Next, the input strings that and man are processed and a full parse tree is again

produced with the symbol S at the top, as in Figure 2.2(9).

Two more words (is and happy) now remain from the input string, indicating that

the sentence (I know that man is happy) is not yet fully parsed. Backtracking occurs

again. Since all of the analyses for the NP have been explored, the parser backtracks

to step 5 from Figure 2.2(9) to try the alternative path for processing the non-terminal

VP by using SV followed by S, as shown in Figure 2.2(10). This means that the parser

goes back to start parsing the sentence from the input string know.

S[1]

VP[5]

alternatives: [SV S]

NP[8]

N[11]

man[12]

DET[9]

that[10]

TV[6]

know[7]

NP[2]

alternatives: [DET N]

PRON[3]

I[4]

(9)

S[1]

VP[5]

SSV

NP[2]

alternatives: [DET N]

PRON[3]

I[4]

(10)

S[1]

VP[5]

S[8]

VP[12]

alternatives: [TV NP, SV S]

ADJCOP

NP[9]

alternatives: [DET N]

PRON[10]

that[11]

SV[6]

know[7]

NP[2]

alternatives: [DET N]

PRON[3]

I[4]

(11)

Figure 2.2: Top-down parse trees, from tree (9) to tree (11).
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The algorithm attempts to analyse the sentence starting from the input word know,

and it produces several parse trees as shown in Appendix A (from trees A.1(14) to tree

A.1(17)), until it attempts to analyse the input word man where it tries to use man as

the production for COP, which is not allowed by the grammatical rules of Figure 2.1.

At this stage, the parser is in a state similar to that shown in Figure 2.2(11).

S[1]

VP[5]

S[8]

VP[12]
alternatives:[SV S]

NPTV

NP[9]
alternatives:[DET N]

PRON[10]

that[11]

SV[6]

know[7]

NP[2]
alternatives:[DET N]

PRON[3]

I[4]

(12)

S[1]

VP[5]

S[8]

VP[12]
alternatives:[SV S]

NPTV[13]

man[14]

NP[9]
alternatives:[DET N]

PRON[10]

that[11]

SV[6]

know[7]

NP[2]
alternatives:[DET N]

PRON[3]

I[4]

(13)

Figure 2.2: Top-down parse trees (12) and (13).

Since the next input string man cannot be used as the production of COP, the parser

backtracks to step 12 of Figure 2.2(11) and uses TV followed by NP for the production

of VP. A new partial parse tree is produced, as shown in Figure 2.2(12).

The algorithm then proceeds to use the input string man for the production of TV

and then creates a new partial parse tree, as in Figure 2.2(13). However, the input string

is, which is following the input string man, cannot be used for the production of NP

so the parser backtracks to step 12 of Figure 2.2(13) and tries a different analysis of

the VP by using SV followed by S for the production of VP. It then produces the new

partial parse tree, as shown in Figure 2.2(14).

At this stage, the parser realises that the word man cannot be used as the production

of SV and that it has exhausted all the possible alternatives for VP. Hence, it backtracks

further to step 9 of Figure 2.2(14) to use the alternative path for the NP, which is using

DET followed by N for the production of NP, and which then produces a new partial

parse tree, as shown in Figure 2.2(15).

The word that is used as the production of DET and the word man is used as the

production of N, which results in the production of a partial parse tree, as shown in

Figure 2.2(16).
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S[1]

VP[5]

S[8]

VP[12]

SSV

NP[9]
alternatives: [DET N]

PRON[10]

that[11]

SV[6]

know[7]

NP[2]
alternatives: [DET N]

PRON[3]

I[4]

(14)

S[1]

VP[5]

S[8]

VPNP[9]

NDET

SV[6]

know[7]

NP[2]
alternatives: [DET N]

PRON[3]

I[4]

(15)

S[1]

VP[5]

S[8]

VPNP[9]

N[12]

man[13]

DET[10]

that[11]

SV[6]

know[7]

NP[2]
alternatives: [DET N]

PRON[3]

I[4]

(16)

S[1]

VP[5]

S[8]

VP[14]
alternatives: [TV NP, SV S]

ADJ[17]

happy[18]

COP[15]

is[16]

NP[9]

N[12]

man[13]

DET[10]

that[11]

SV[6]

know[7]

NP[2]
alternatives: [DET N]

PRON[3]

I[4]

(17)

Figure 2.2: Top-down parse trees, from tree (14) to tree (17).
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The non-terminal VP, where COP and ADJ are used for its production, is then pro-

cessed while the input words is and happy are used for the production of the children

of VP, resulting in the generation of a complete parse tree, as shown in Figure 2.2(17).

We can notice from processing the sentence I know that man is happy that top-down

parsers are sometimes forced to retreat and choose alternative paths to re-analyse the

same sentence. This is called backtracking. If the selected path leads to a dead end,

the parser backtracks to a previous decision point, by moving backward and starting

again using different paths until it either finds an appropriate production or runs out of

choices.

We can conclude that one of the main reasons that backtracking occurs in top-down

parsers is because parsers do not have any knowledge of the terminal symbols (words

or input strings) when processing the pre-terminal symbols. Therefore, when it finds

out that the available terminal symbol cannot be used as the production for the selected

pre-terminal symbol, it backtracks to find alternative analyses that can be used for the

production of the pre-terminal symbols in question, as we saw when the tree in Figure

2.2(11) was created, while the word man could not be used as the production of the

pre-terminal symbol COP.

Backtracking is essential, because it allows the parser to explore alternative solu-

tions when it encounters a failure. However, it may present problems [Chapman, 1987,

p. 22]. It makes parsers inefficient because all the productions prior to the backtrack-

ing stage are lost, which may require the parser to repeat tasks that had already been

carried out before backtracking such as the re-analysis of that and man from Figures

2.2(9) to 2.2(13) and 2.2(14) to 2.2(15), which means that the parser may consume

more time and resources. We may also note that top-down parsers can require an ex-

ponential number of steps (with respect to the length of the sentence) to try all the

alternative analyses of ambiguous sentences for producing a full parse tree for a com-

plete sentence, which eventually requires exponential memory space.

In this section, we have described the traces of top-down parsing in considerable

detail to identify the various situations where backtracking occurs. We will describe

the traces of the other algorithms (bottom-up, left-corner etc.) in the same amount of

detail in the following sections.
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2.2 Bottom-up parsing algorithm

Bottom-up algorithm work the opposite way from top-down parsers. Parsing starts

from the terminal symbols (input strings) which are, progressively, replaced by pre-

terminals. Pre-terminals are then grouped together until they can be packaged into a

single group that matches the root symbol, such as S for a given sentence [Mathews,

1998, p. 169] and [Chapman, 1987, p. 20]. In this algorithm, the goal is to use the

terminal symbols as productions for pre-terminal symbols, then group pre-terminal

symbols under non- terminal symbols in order to produce a single non-terminal symbol

that represents the complete sentence.

In order to understand the process of analysing natural language sentences in bottom-

up parsing, we will again parse the sentence I know that man is happy, which we used

previously in Section 2.1, using the grammar rules in Figure 2.1. We will also follow

a depth-first search strategy with this algorithm.

PRON[2]

I[1]

(1)

NP[3]

PRON[2]

I[1]

(2)

NP[3]

PRON[2]

I[1]

TV[5]
alternatives: [SV]

know[4]

(3)

Figure 2.3: Bottom-up parse trees, from tree (1) to tree (3).

Initially, the algorithm starts processing from the terminal symbols (words or input

strings). It will check for the lexical categories of the input words which are defined in

the grammar rules in Figure 2.1. The parser processes the first word in the sentence,

which is the word I. It replaces it with the pre-terminal symbol PRON and then it

generates a partial tree as shown in Figure 2.3(1). The grammatical rules in Figure 2.1

permit the parser to produce the symbol NP from the symbol PRON. Hence, a new

partial parse tree as in Figure 2.3(2) is produced. Since the symbol NP cannot produce

any new symbols, then the next input string (know) is used for the production of the

pre-terminal symbol TV6 and a new partial parse tree is produced, as shown in Figure

2.3(3).

At this stage, the parser is presented with two partial parse trees, but, it cannot

group them because there are no grammatical rules to permit the parser to group them.

6Parsers initially use the first available analysis for terminals that is produced from a set of grammat-

ical rules. Hence, the parser uses TV for producing know because the first rule from the set of rules, as

shown in Figure 2.1, indicates that know is the first possible production for TV.
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The algorithm then proceeds to process the next input word that by replacing it with

the pre-terminal symbol PRON, as in Figure 2.3(4). Since it is possible to produce the

symbol NP from the symbol PRON using the grammar rules, a new partial parse tree is

generated by the parser, as shown in Figure 2.3(5). Since the grammatical rules permit

the parser to generate the symbol VP by combining the symbol TV with the symbol

NP, a new tree is generated, as shown in Figure 2.3(6). Additionally, the grammatical

rules permit the parser to generate the symbol S by combining the symbol NP with the

symbol VP, as shown in Figure 2.3(7).

NP[3]

PRON[2]

I[1]

TV[5]
alternatives: [SV]

know[4]

PRON[7]
alternatives: [DET]

that[6

(4)

NP[3]

PRON[2]

I[1]

TV[5]
alternatives: [SV]

know[4]

NP[8]

PRON[7]
alternatives: [DET]

that[6]

(5)

NP[3]

PRON[2]

I[1]

VP[9]

NP[8]

PRON[7]
alternatives: [DET]

that[6]

TV[5]
alternatives: [SV]

know[4]

(6)

S[10]

VP[9]

NP[8]

PRON[7]
alternatives: [DET]

that[6]

TV[5]
alternatives: [SV]

know[4]

NP[3]

PRON[2]

I[1]

(7)

Figure 2.3: Bottom-up parse trees, from tree (4) to tree (7).

At this stage, the parser creates a full parse tree with the symbol S on the top. How-

ever, there are still some remaining words in the sentence that need to be processed.

Hence, the parser backtracks to step 7 of Figure 2.3(7) where it has an alternative anal-

ysis of the word that, which processes it as DET and generates a new parse tree, as in

Figure 2.3(8). The alternative analysis of the input word that does not lead to grouping

the available pre-terminal symbols. Hence, the parser performs a number of steps and

produces several trees before it can group some partial parse trees, as shown in Figure

2.3(9) (The generated partial parse trees between the tree in Figure 2.3(8) and Figure
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2.3(9) are shown in Appendix A from tree A.2(9) to tree A.2(12)).

Since there are no more input words left for analysing and the parser cannot group

any of the current non-terminal symbols, it backtracks to the last step where it had an

alternative path to follow, which is step 9 of Figure 2.3(9), where the input word man

is re-analysed as N, as shown in Figure 2.3(10). The parser then groups a number of

partial parse trees (as shown in Appendix A from tree A.2(13) to tree A.2(15)) until it

produces a full parse tree, as shown in Figure 2.3(11)

NP[3]

PRON[2]

I[1]

TV[5]

alternatives: [SV]

know[4]

DET[7]

that[6]

(8)

NP[3]

PRON[2]

I[1]

TV[5]

alternatives: [SV]

know[4]

DET[7]

that[6]

TV[9]

alternatives: [N]

man[8]

VP[14]

ADJ[113

happy[12]

COP[11]

is[10]

(9)

NP[3]

PRON[2]

I[1]

TV[5]

alternatives: [SV]

know[4]

DET[7]

that[6]

N[9]

man[8]

(10)

S[12]

VP[11]

NP[10]

N[9]

man[8]

DET[7]

that[6]

TV[5]

alternatives: [SV]

know[4]

NP[3]

PRON[2]

I[1]

(11)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

(12)

Figure 2.3: Bottom-up parse trees, from tree (8) to tree (12).

The algorithm has now produced a full parse tree but there are two more words

remaining for processing (is and happy). Therefore, the parser backtracks to the last

move where it has an alternative path to take, which is step 5 of Figure 2.3(11), where

it re-analyses the input word know as SV, as shown in Figure 2.3(12).

Since there are no possible groupings of current analyses, the parser processes

the subsequent input words and produces a number of analyses and partial parse trees

(Detailed partial parse trees are included in Appendix A, from Figure A.2(18) to Figure

A.2(22)) until it reaches a state as shown in Figure 2.3(13) where it cannot group any
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of the available partial parse trees and there are no more input words for the parser to

explore. Then it backtracks to where it has an alternative path to explore, which is step

10 of Figure 2.3(13). This new analysis is shown in Figure 2.3(14).

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

NP[8]

PRON[7]

alternatives: [DET]

that[6]

TV[10]

alternatives: [N]

man[9]

VP[15]

ADJ[14]

happy[13]

COP[12]

is[11]

(13)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

NP[8]

PRON[7]

alternatives: [DET]

that[6]

N[10]

man[9]

(14)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

NP[8]

PRON[7]

alternatives: [DET]

that[6]

N[10]

man[9]

VP

ADJ[14]

happy[13]

COP[12]

is[11]

(15)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

DET[7]

that[6]

(16)

Figure 2.3: Bottom-up parse trees, from tree (13) to tree (16).

The algorithm then processes the input words is and happy and groups them to-

gether to make a new parse tree as in Figure 2.3(15). From the current partial parse

trees it is not possible to group any of them. The parser backtracks to its last move

where it has an alternative path to explore. The parser backtracks to step 7 of 2.3(15)

by re-analysing the input word that as DET. This new partial parse tree is shown in

2.3(16).

Again, the algorithm performs several steps and produces a number of trees (These

trees are shown in Appendix A, from Figure A.2(28) to Figure A.2(32))) before it

reaches the state, as shown in the Figure 2.3(17), to group any of the partial parse

trees and there are no more input words for processing. Hence, it backtracks to its last

move where an alternative analysis is available, which is step 9 of Figure 2.3(17). This

involves analysing the input word man as N, as shown in Figure 2.3(18).
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NP[3]

PRON[2]

I[1]

SV[5]

know[4]

DET[7]

that[6]

TV[9]

alternatives: [N]

man[8]

VP[14]

ADJ[13]

happy[12]

COP[11]

is[10]

(17)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

DET[7]

that[6]

N[9]

man[8]

(18)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

NP[10]

N[9]

man[8]

DET[7]

that[6]

(19)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

NP[10]

N[9]

man[8]

DET[7]

that[6]

VP

AJD[14]

happy[13]

COP[12]

is[11]

(20)

S[18]

VP[17]

S[16]

VP[15]

ADJ[14]

happy[13]

COP[12]

is[11]

NP[10]

N[9]

man[8]

DET[7]

that[6]

SV[5]

know[4]

NP[3]

PRON[2]

I[1]

(21)

Figure 2.3: Bottom-up parser trees, from tree (17) to tree (21).

The algorithm then groups the DET and N of Figure 2.3(18) to produce an NP as

in Figure 2.3(19). Then it analyses the input words is and happy for the production of

COP and ADJ respectively, where it groups them for the production of VP, as in Figure

2.3(20).

The remaining partial trees are grouped under various non-terminal symbols (as in

Appendix A, from Figure A.2(37) to Figure A.2(40)) until they are all grouped under

the symbol S resulting in the production of the complete parse tree, as in Figure 2.3(21).
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From the description of the parsing process above, backtracking can also occur in

bottom-up parsing. The main cause of backtracking in bottom-up parsing is the pres-

ence of lexical ambiguities. For example, the word man from the sentence I know that

man is happy has two lexical interpretations: (i) as a transitive verb (TV) and (ii) as a

noun (N). Hence, it is possible that the parser may select the inappropriate interpreta-

tion for an input string, as it did when it produced an inappropriate interpretation of the

word man (interpreted as TV instead of N) as shown in Figures 2.3(13) – which forced

it to backtrack to select a more appropriate interpretation as shown in Figure 2.3(14).

A parsing algorithm that combines top-down and bottom-up parsing is left-corner

parsing. In the next section, we will describe the way left-corner algorithm works.

We will process the sentence I know that man is happy to understand the way this

algorithm combines the two different algorithms, and to investigate whether it offers a

solution to parser backtracking.

2.3 Left-corner parsing algorithm

In the previous two sections (Section 2.1 and 2.2) we have identified the main causes

for backtracking in parsing which affect parsers’ performance. In top-down parsing,

backtracking occurs because parsers have no information about the lexical categories

of input strings, where such information can guide parsers to make correct decisions

when processing non-terminal symbols. In bottom-up parsing, backtracking occurs

because parsers have no knowledge of non-terminal symbols, where such information

can be used for avoiding arriving at dead ends when processing input strings.

Left-corner parsing combines top-down strategy with bottom-up strategy by mix-

ing the steps of bottom-up parsing with those of top-down parsing. Such mixing helps

a parser to make correct parsing decisions as the information becomes available.

The first element a left-corner parser investigates from a set of grammatical rules

is the first symbol from the right-hand-side of a rule. For example, the NP is the left

corner of the rule S Ñ NP VP because it appears as the first symbol from the right-

hand-side of the rule.
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In order to understand the way the left-corner algorithm combines top-down and

bottom-up algorithms, we will parse the sentence I know that man is happy, which we

have used previously, by using this algorithm. Our aim in processing this sentence is

to examine the way that this algorithm switches between steps of bottom-up parsing

and top-down parsing and to find out if backtracking also occurs in this algorithm. We

will use the same set of grammatical rules that we have used in the previous sections.

PRON[2]

I[1]

(1)

NP[3]

PRON[2]

I[1]

(2)

S[4]

VP[5]NP[3]

PRON[2]

I[1]

(3)

S[4]

VP

VP[5]

NPTV[7]

alternatives: [SV]

know[6]

NP[3]

PRON[2]

I[1]

(4)

S[4]

VP

VP[5]

NP

NP[8]

PRON[10]

alternatives: [DET]

that[9]

TV[7]

alternatives: [SV]

know[6]

NP[3]

PRON[2]

I[1]

(5)

Figure 2.4: Left-corner parse trees, from tree (1) to tree (5).

The algorithm processes the first input string I, which is a bottom-up step, by using

it for the production of PRON, as shown in Figure 2.4(1). Since PRON is the left-

corner of the rule NPÑ PRON, the parser has now made a complete subtree of type

NP, as shown in Figure 2.4(2). Moreover, the symbol NP matches the left corner of

the rule SÑ NP VP so that a partial parse tree is produced, as shown in Figure 2.4(3).

The next move the parser takes is a bottom-up move consisting of analysing the

next input string. The word know is analysed as TV, which is the first possible inter-

pretation of it and is the left corner of the rule VPÑ TV NP. A new partial parse tree

is generated by using the symbol TV as the left-corner for the VP, as shown in Figure

2.4(4). Then, the parser takes a top-down strategy to process the NP symbol. The word

(that) is parsed and it is checked whether it can be used for the production of NP. The

symbol PRON, which is the first possible analysis for that, is the left corner of NP and

is used for the production of the symbol NP, as shown in Figure 2.4(5).
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S[4]

VP[5]

NP[8]

PRON[10]

alternatives: [DET]

that[9]

TV[7]

alternatives: [SV]

know[6]

NP[3]

PRON[2]

I[1]

(6)

S[4]

VP

VP[5]

NP

NP[8]

NDET[10]

that[9]

TV[7]

alternatives: [SV]

know[6]

NP[3]

PRON[2]

I[1]

(7)

S[4]

VP[5]

NP[8]

N[12]

man[11]

DET[10]

that[9]

TV[7]

alternatives: [SV]

know[6]

NP[3]

PRON[2]

I[1]

(8)

S[4]

VP

VP[5]

SSV[7]

know[6]

NP[3]

PRON[2]

I[1]

(9)

Figure 2.4: Left-corner parse trees, from tree (6) to tree (9).

Since the symbol NP is successfully produced and can be used for completing the

subtree of VP where the subtree of VP completes the subtree of the symbol S, the parser

can now produce a full parse tree, as shown in Figure 2.4(6).

However, there are three remaining input strings (man, is, and happy) to be pro-

cessed. Thus, the algorithm backtracks to find an alternative analysis for recognising

the symbol VP. So the parser backtracks to step 10 of Figure 2.4(6) and reprocesses

the input string as DET, which is also the left corner of the NP and which generates a

new partial parse tree, as shown in Figure 2.4(7).

The next input string man is processed as N, which completes the NP subtree, as

shown in Figure 2.4(8), which is a complete parse tree. However, there are two re-

maining input strings (is, and happy) to be processed. Therefore, the parser backtracks
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to its most recent move where it had an alternative path to explore, which is step 7 of

Figure 2.4(8) and reprocesses the input string know as SV, which is also the left corner

of the symbol VP and which generates a new partial parse tree, as shown in Figure

2.4(9).

S[4]

VP

VP[5]

S

S[8]

VPNP[11]

PRON[10]
alternatives: [DET]

that[9]

SV[7]

know[6]

NP[3]

PRON[2]

I[1]

(10)

S[4]

VP

VP[5]

S

S[8]

VP

VP[12]

NPTV[14]
alternatives: [N]

man[13]

NP[11]

PRON[10]
alternatives: [DET]

that[9]

SV[7]

know[6]

NP[3]

PRON[2]

I[1]

(11)

Figure 2.4: Left-corner parse trees from tree (10) to tree (11).

The next input string that is reprocessed as a PRON which is the left corner of the

symbol NP, where NP is the left corner of the symbol S, so that a new partial parse tree

is produced which satisfies the left corner of S. This tree is shown in Figure 2.4(10).

The next input string man is used for the production of the symbol TV, which is the

left corner of the symbol VP and the new tree generated is shown in Figure 2.4(11).

The remaining input strings (is and happy) cannot produce any productions that can

be used as the left corner of the NP symbol. Hence, the parser backtracks to its last

move to use an alternative choice, which is interpreting man as N even though N is not

the left corner of VP. The parser backtracks further to step 10 and reinterprets that as

DET. The symbol DET is the left corner of the symbol NP and a new partial parse tree

is generated as in Figure 2.4(12). A possible interpretation of the input string man is

N, which can complete the subtree NP as in Figure 2.4(13). The newly produced NP

is then used as the left corner of the symbol S, as shown in Figure 2.4(14).
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Figure 2.4: Left-corner parse trees, from tree (12) to tree (14).

The symbol VP is then processed. The input string is analysed as COP, which is

the left corner of the symbol VP, as shown in Figure 2.4(15). Next, the input string

happy is used for the production of the symbol ADJ, as shown in Figure 2.4(16).

The algorithm then plugs in the current subtrees. This newly generated tree is

then used to complete the subtree of the VP which is shown in Figure A.3(17) in

Appendix A. The complete subtree for the symbol VP is used to complete the subtree

S, as shown in Figure A.3(18) in Appendix A, where the complete subtree of S is used

for completing the subtree VP as in Figure A.3(19) in Appendix A. Finally, the full

parse tree is then completed by plugging in the complete subtree of VP, as shown in

Figure 2.4(17).

Although left-corner parsing combines top-down and bottom-up parsing strategies,

however, it cannot overcome the problem of backtracking.

People have used various techniques to overcome parser backtracking. Kay [Kay,

1973] followed by Ramsay [Ramsay, 1980] and Norvig [Norvig, 1991] has solved the

problem of exponential time complexity in top-down parsers. They have constructed

sets of mutually recursive functions using chart tables. The basic idea of such ap-

proaches is that when a parser is applied to the input, the result is stored in a chart
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Figure 2.4: Left-corner parse trees, from tree (15) to tree (17).



48 CHAPTER 2. INVESTIGATING PARSING ALGORITHMS

table for subsequent reuse if the same parser is ever reapplied to the same input. These

notions have been unified into an approach known as chart parsing, which is described

in the next section.

2.4 Chart parsing algorithm

The notion of tabular/chart parsing has been introduced independently by different

people, e.g. [Kasami, 1965, Younger, 1967, Cocke and Schwartz, 1970, Earley, 1970,

Kay, 1973]. Chart parsing is often used as a general framework for constructing parsing

algorithms [Pereira and Warren, 1983]. It is described in the literature as a technique

for constructing a full representation of all the possible analyses for an input string

[Kaplan, 1973]. The adaptation of chart parsing from constituent-based algorithms,

which is a modification of phrase-structure chart parsing, to dependency parsing has

been described by Meixun et al., [Meixun et al., 2011].

A chart can be thought of as a network wherein nodes represent the spaces between

different elements of an input string, and labelled arcs represent the lexical categories

of the words which span from one node to another. Chart parsers allow simple repre-

sentations of alternative analyses. Hence, a chart parser produces a number of partial

analyses and uses them in subsequent parsing steps [Yamada and Matsumoto, 2003].

We will demonstrate the theory of chart parsing by analysing the sentence I know

that man is happy using the grammar rules in Figure 2.5. The chart parser introduces

nodes for each word in the given sentence. The nodes are connected by arcs and the

arcs are labelled with the lexical categories for the words. Analyses produced by the

parser are stored in a chart, where the parser may reuse them at later stages during

parsing.

S Ñ NP VP

NP Ñ PRON

NP Ñ DET N

VP Ñ COP ADJ

VP Ñ TV NP

VP Ñ SV S

PRON Ñ I

TV Ñ know

SV Ñ know

PRON Ñ that

DET Ñ that

TV Ñ man

N Ñ man

COP Ñ is

ADJ Ñ happy

Figure 2.5: Context-free grammar rules for parsing.
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In this section, we will process the sentence I know that man is happy in order

to illustrate the operation of chart parsers and identify the way this algorithm avoids

backtracking.

The parser starts by analysing the first word I. It produces an arc spanning from

node 1 to node 2, as shown in Figure 2.6(1) (The arcs coloured in red are the most

recently created ones). Then, where PRON can be used as the production of the symbol

NP, a new arc is generated with the NP as its label, as shown in Figure 2.6(2). Since

there are no more analyses for the input string I and the parser cannot produce new

arcs, it will move to process the next input string (know), where a new arc is generated,

spanning the distance from the second node and the third node in the chart graph, as

shown in Figure 2.6(3). Since there is a different lexical interpretation for the word

know, which is SV, the parser creates a new arc from node 3 to node 4 for the word

with the SV label, as shown in Figure 2.6(4)7.

1 I 2

PRON

(1)

1 I 2
PRON

NP Ñ PRON

(2)

1 I 2 know 3
PRON

NP Ñ PRON
TV

(3)

1 I 2 know 3
PRON

NP Ñ PRON
TV

SV

(4)

1 I 2 know 3 that 4
PRON

NP Ñ PRON
TV

SV

PRON

(5)

1 I 2 know 3 that 4
PRON

NP Ñ PRON
TV

SV

PRON

DET

(6)

Figure 2.6: Chart parsing graphs, from graph (1) to graph (6).

Moreover, the word that is analysed and given two interpretations since it can be

PRON or DET, according to the grammatical rules in Figure 2.5. The newly created

arcs from node 3 to 4 are then added to the chart, as in 2.6(5) and 2.6(6).

7The presentation of the arcs either below or above the words does not have any significance. They

are presented in this way for the clarity of the graphs only.
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Furthermore, the word man is analysed and given two interpretations since it can

be TV or N. The newly created arcs from node 4 to 5 are added to the chart, as in 2.6(7)

and 2.6(8).

1 I 2 know 3 that 4 man 5
PRON

NP Ñ PRON
TV

SV

PRON

DET

TV

(7)

1 I 2 know 3 that 4 man 5
PRON

NP Ñ PRON
TV

SV

PRON

DET

TV

N

(8)

Figure 2.6: Chart parsing graphs (7) and (8).

Newly labelled arcs are built over the nodes progressively and the process of adding

new arcs to the chart is repeated until there are no more labelled arcs to be added. The

parser attempts to create new arcs from the arcs that already exist in the chart, so that

the parser can create a new arc spanning from node 3 to node 5 and label it with NP,

because the combination of symbols DET (from node 3 to node 4) and N (from node

4 to node 5) can be achieved. The new arc is then added to the chart, as in Figure

2.6(9). Additionally, the parser generates a new arc spanning from node 2 to node 5

with a label VP because combining a TV with an NP can produce a VP. This new chart

is shown in Figure 2.6(10).

1 I 2 know 3 that 4 man 5

PRON

NP Ñ PRON
TV

SV

PRON

DET

TV

N

NP Ñ DET N

(9)

1 I 2 know 3 that 4 man 5

PRON

NP Ñ PRON
TV

SV

PRON

DET

TV

N

NP Ñ DET N

VP Ñ TV NP

(10)

Figure 2.6: Chart parsing graphs (9) and (10).
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Finally, the algorithm creates a new arc labelled S spanning from node 1 to node 5

as in Figure 2.6(11).

1 I 2 know 3 that 4 man 5

PRON

NP Ñ PRON
TV

SV

PRON

DET

TV

N

NP Ñ DET N

VP Ñ TV NP

S Ñ NP VP

(11)

Figure 2.6: Chart parsing graph (11).

The algorithm can then declare the sentence I know that man as a well-formed

sentence because according to the grammatical rules in Figure 2.5, all the analyses of

the words lead to the production of a labelled arc with S. However, the arc with the

label S does not span over the entire length of the sentence because there are still more

words to be processed. The parser then processes the next available input string, which

is is and generates a new arc for it with label COP, as shown in Figure 2.6(12), where

it spans from node 5 to node 6.

1 I 2 know 3 that 4 man 5 is 6

PRON

NP Ñ PRON
TV

SV

PRON

DET

TV

N

NP Ñ DET N

VP Ñ TV NP

S Ñ NP VP

COP

(12)

Figure 2.6: Chart parsing graph (12).

Next, the final word happy is processed and a new arc is generated for it, which

spans the distance from node 6 to node 7, as shown in Figure 2.6(13).

From the newly created arcs it is also possible to produce a new arc with the symbol

VP, where the symbol VP is made by using the symbols COP and ADJ, by spanning it

from node 5 to node 7, as shown in Figure 2.6(14).



52 CHAPTER 2. INVESTIGATING PARSING ALGORITHMS

1 I 2 know 3 that 4 man 5 is 6 happy 7

PRON

NP Ñ PRON
TV

SV

PRON

DET

TV

N

NP Ñ DET N

VP Ñ TV NP

S Ñ NP VP

COP
ADJ

(13)

1 I 2 know 3 that 4 man 5 is 6 happy 7

PRON

NP Ñ PRON
TV

SV

PRON

DET

TV

N

NP Ñ DET N

VP Ñ TV NP

S Ñ NP VP

COP
ADJ

VP Ñ COP ADJ

(14)

Figure 2.6: Chart parsing graphs, from graph (13) to graph (14).

Furthermore, from the available arcs (the arc spanning from node 3 to 5 with label

NP and the arc spanning from node 5 to 7 with label VP) in the chart, the parser

generates a new arc with the label S spanning from node 3 to node 7, as shown in

Figure 2.6(15). Next, using the arc with the label SV, which spans the distance from

node 2 to node 3, and using the newly created arc with label S that spans node 3 to

node 7, a new arc is generated with the label VP spanning from node 2 to node 7, as in

Figure 2.6(16).

Finally, by using the arc labelled NP that was generated initially for the word I, and

the arc labelled VP spanning from node 2 to node 7, a new and final arc is created with

the label S, which covers the entire length of the sentence, as shown in Figure 2.6(17).

A number of the partial analyses that are produced may not contribute to the final

parsing solution. However, they will be available throughout the parsing process and

can be used later if they are required for the final parsing solution. The advantage

of using chart parsing is that parsers do not rediscover paths that have already been

explored.
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1 I 2 know 3 that 4 man 5 is 6 happy 7

PRON

NP Ñ PRON
TV

SV
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DET

TV
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VP Ñ TV NP

S Ñ NP VP
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ADJ
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S Ñ NP VP
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Figure 2.6: Chart parsing graphs, from graph (15) to graph (17).
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2.5 Shift-reduce parsing algorithm

A shift-reduce algorithm consists of two data structures: (i) a queue which consists of

items that have not yet been inspected, and (ii) a stack which consists of items that

have been looked at but have not been used as part of a larger structure. Shift-reduce

parsers can perform one of two actions at any time, which are known as shifting or

reducing.

SHIFT: This action moves the head of the queue onto the top of the stack. This

action is taken in one of two situations: (i) if the head of the queue does not match the

right-hand-side of a rule and the stack is empty, and (ii) if the head of the queue and

the items on the top of the stack do not match the right-hand-side of a rule.

REDUCE: If the head of the queue, or the head of the queue and the item on the

top of the stack match the right-hand-side of a rule then the head of the queue or the

head of the queue and the item on the top of the stack are removed and the left-hand-

side element of the rule is placed at the head of the queue.

The parsing process is successful if the queue is empty and the stack contains one

symbol which satisfies the sentential condition 8. However, the parsing process fails if

the queue is empty and the last item on the stack does not satisfy the sentential condi-

tion and the parser has exhausted all possible analyses for all of the input strings.

In this section, we will use the grammatical rules shown in Figure 2.7 to parse the

sentence I know that man is happy by using the shift-reduce parsing strategy. Some

of the steps that the parser takes are included in Figure 2.8. The full parsing steps are

included in Appendix B.

8Sentential conditions are considered satisfactory if they conform to a given grammar rule that de-

fines the structure of a sentence, such as S Ñ NP VP, which means that a valid sentence may consist of

an NP followed by a VP.
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S Ñ NP VP

NP Ñ PRON

NP Ñ DET N

VP Ñ COP ADJ

VP Ñ TV NP

VP Ñ SV S

PRON Ñ I

TV Ñ know

SV Ñ know

PRON Ñ that

DET Ñ that

TV Ñ man

N Ñ man

COP Ñ is

ADJ Ñ happy

Figure 2.7: Context-free grammar rules for parsing.

The algorithm first places the sentence I know that man is happy in a queue and

creates a stack of empty categories as in step 1 in Figure 2.8.

After this, the head of the queue, which is I, matches the right-hand-side of the

rule PRON Ñ I so it is replaced with the symbol PRON, as shown in step 2 in Figure

2.8. The symbol PRON at the head of the queue which matches the right-hand-side of

the rule NP Ñ PRON is replaced with the symbol NP and the new symbol is placed

at the head of the queue. Since the head of the queue does not match the right-hand-

side of any rules and the stack is empty, the only action the parser can take is to do a

SHIFT. This results in shrinking the queue by placing the head of the queue, which is

the symbol NP, on the top of the stack as shown in step 4 of Figure 2.8.

From step 4, one of the interpretations for the input string know is TV so it is

reduced to TV while the second interpretation of it, which is SV, is used to create a

backtracking point in order to explore it at later stages if necessary. After step 6, a

number of SHIFT and REDUCE actions are performed and new backtracking points

are created along the way, as shown in steps 5 to 18, until the parser is in a situation

where it has an empty queue and a non-empty stack and a sentential condition is not

being met, as in step 18. In step 18, the parser backtracks to its last move where it had

an alternative path to explore, which is step 11 where it can re-analyse the input string

man as N.

The subsequent steps from step 19 involve a number of SHIFT and reduce actions.
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Steps Queue Stack Action Alternatives

-------------------------------------------------------------------------------------------------

1 I know that man is happy [] REDUCE: PRON Ñ I -

2 PRON know that man is happy [] REDUCE: NP Ñ PRON -

3 NP know that man is happy [] SHIFT -

4 know that man is happy NP REDUCE: TV Ñ know SV Ñ know

5 TV that man is happy NP SHIFT -

6 that man is happy TV NP REDUCE: PRON Ñ that DET Ñ that

...

10 S man is happy [] SHIFT -

11 man is happy S REDUCE: TV Ñ man N Ñ man

...

18 [] VP TV S Backtrack to step 11 -

19 man is happy S REDUCE: N Ñ man -

20 N is happy S SHIFT -

...

26 [] VP N S Backtrack to step 6 -

27 that man is happy TV NP REDUCE: DET Ñ that -

28 DET man is happy TV NP SHIFT -

29 man is happy DET TV NP REDUCE: TV Ñ man N Ñ man

...

36 [] VP TV DET TV NP Backtrack to step 29 -

37 man is happy DET TV NP REDUCE: N Ñ man -

...

47 [] VP S Backtrack to step 4 -

48 know that man is happy NP REDUCE: SV Ñ know -

49 SV that man is happy NP SHIFT -

50 that man is happy SV NP REDUCE: PRON Ñ that DET Ñ that

51 PRON man is happy SV NP REDUCE: NP Ñ PRON -

52 NP man is happy SV NP SHIFT -

53 man is happy NP SV NP REDUCE: TV Ñ man N - man

...

60 [] VP TV NP SV NP Backtrack to step 53 -

61 man is happy NP SV NP REDUCE N Ñ man -

62 N is happy NP SV NP SHIFT -

...

68 [] VP N NP SV NP Backtrack to step 50 -

69 that man is happy SV NP REDUCE: DET Ñ that -

70 DET man is happy SV NP SHIFT -

71 man is happy DET SV NP REDUCE: TV - man N Ñ man

72 TV is happy DET SV NP SHIFT -

...

78 [] VP TV DET TV NP Backtrack to step 71 -

79 man is happy DET SV NP REDUCE: N Ñ man -

80 N is happy DET SV NP REDUCE: NP Ñ DET N -

...

86 VP NP SV NP REDUCE: S Ñ NP VP -

87 S SV NP REDUCE: VP Ñ SV S -

88 VP NP REDUCE: S Ñ NP VP -

89 S [] SHIFT -

90 [] S - -

Figure 2.8: Shift-reduce parsing steps.
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But, the parser has to backtrack to step 6 because in step 26 it is in a situation where

it has an empty queue and a stack of items that do not satisfy the sentential condition.

In step 27, the input string that is re-analysed as DET and then is shifted onto the top

of the stack because no reduce action is possible. The word man is then re-analysed

as TV and its alternative analysis, which is N, is marked as a backtracking point, as

shown in step 29 where the parser backtracks to it after several parsing processes, as

shown in step 36. This recent backtracking also leads to a dead end path at step 47,

where the parser backtracks further to step 4 because this was its last move where it can

reinterpret the input string know as SV. Parsing from step 48 continues, but this time

the alternative analysis (SV) is used for the head of the queue (know). Several SHIFT

and REDUCE actions are performed between steps 48 and 60 and new backtracking

points, such as those in step 50 and 53, are created. In step 60, the parser is forced to

backtrack to step 53 to re-analyse the input string man as N and then it continues until

it gets to step 68, where it backtracks again to step 50 to re-analyses the input string

that as DET as shown in step 70.

From step 71, the input string man is interpreted as TV and a backtracking point is

created for its alternative interpretation if it fails again. At step 78, the parser fails and

it then explores the alternative interpretation for the input string man, which is N, as

shown in step 79. From step 80, the head of the queue and the top of the stack matches

the right-hand-side of the rule NP Ñ DET N, where they are reduced and the symbol

NP is placed at the head of the queue and the symbols DET and N are removed from

the stack and the queue. Between steps 80 and 86 a number of SHIFT and REDUCE

actions are performed. In step 86, the head of the queue (VP) and the top of the stack

(NP) matches the right-had-side of the rule S Ñ NP VP. They are then reduced to S

and the symbol S is placed at the head of the queue, as shown in step 87. At this stage,

the parser has an S as the head of the queue and an SV on the top of the stack, which

can create a symbol VP by combining the SV with the S, which then places the new

symbol (VP) in the queue as in step 88.

The last remaining symbols VP from the queue and NP on the stack are then com-

bined to produce the symbol S, where the symbol S is then shifted on to the stack, as

shown in steps 89 and 90 respectively. Finally, there are no items in the queue, and

only one item on the stack which is S, which indicates that the sentence I know that

man is happy is a valid sentence according to the grammatical rules in Figure 2.7.
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Shift-reduce algorithm also use backtracking as long as alternative paths are avail-

able to choose from at any point during the parsing process. Backtracking occurs in

shift-reduce parsing for the same reason as in the other parsing algorithms that we have

described above, namely the presence of different lexical interpretation of words which

create ambiguities in sentences. However, shift-reduce parsing algorithms play an im-

portant role in dependency parsers such as MaltParser [Kuhlmann and Nivre, 2010],

which is similar to the type of the parser we are trying to develop in this project.

The above procedure of the shift-reduce parsing is one way of using it. Other pars-

ing systems may perform SHIFT and REDUCE in different ways, for example, where

dealing with long distance dependency between words in natural language sentences,

one might attempt to combine the head of the queue with an item buried inside the

stack to maximise the possibility of performing a reduce operation.

2.6 Summary

In this chapter we have described a number of different algorithms. These algorithms

can be applied in various ways to parsing natural languages.

We have identified that one of the major issues with parsing, which may affect

parsing speed at least, is the backtracking of parsers, which is often caused by lo-

cal ambiguities in natural language sentences. As we have already mentioned, during

backtracking, parsers lose all previously successful analyses of input strings and they

will re-analyse them. This affects parsing performance in terms of speed, and poten-

tially failing parsers to produce correct results after all. However, we have also identi-

fied that one way of overcoming the problem of backtracking is by using chart parsing,

as described in Section 2.4, where the parser produces multiple analyses for ambigu-

ous input strings and then attempts to produce new analyses from the partial analyses

in order to generate one final analysis that can represent the complete sentence.

From the above investigation of parsing algorithms, we would like to be able to

merge features of chart parsing with shift-reduce parsing9so that we can benefit from

them by producing a fast, robust and accurate parser. We base our implementation

of our parser on the arc-standard algorithm10 of MaltParser [Kuhlmann and Nivre,

9Since shift-reduce parsing deals with lexical items it is effectively a bottom-up process.
10This is a variation of MaltParser, which is based on shift-reduce algorithm. SHIFT corresponds to

the SHIFT action in shift-reduce algorithm. LEFT-ARC and RIGHT-ARC correspond to the REDUCE

action. LEFT-ARC makes the head of the queue the parent of the topmost item on the stack. RIGHT-

ARC makes the topmost item on the stack the parent of the head of the queue.
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2010] which is based on a shift-reduce algorithm. Shift-reduce algorithms have con-

tributed to the development of a number of fast, accurate, and robust parsers [Zhu et al.,

2013, Kuhlmann and Nivre, 2010, Attardi, 2006, Ratnaparkhi, 1999]. We apply some

extensions to the arc-standard algorithm by using features of chart parsing, where we

store parse analyses in a chart table in order to reuse them when necessary.

In this chapter, we have focused on investigating the general application of different

parsing algorithms to natural language texts. Historically, these algorithms have used

grammatical rules for determining the relationships between lexical categories of a set

of input strings. As we have shown in the examples, these kinds of approaches can be

referred to as grammar-driven approaches.

However, in recent years, there has been an increasing interest in using machine

learning algorithms for parser training and identifying relationships between lexical

categories of a set of input string. Parsers using this kind of approach are called data-

driven approaches.

Furthermore, both dependency frameworks and phrase structure frameworks can be

used in this context. In the following chapter, we will investigate how these two widely

different frameworks can be used with any of the above algorithms for the parsing of

natural language texts.



Chapter 3

Natural Language Parsing

Frameworks

There are two widely used different frameworks that we can use for the application of

the parsing algorithms that we discussed in Chapter 2 for processing natural language

sentences. These are: (i) a dependency framework (DF), and (ii) a phrase structure

framework (PSF). In a DF, syntactic relations between words in sentences are based

on the notion of dependencies, where a word depends on a different word that may

or may not be adjacent to it. In PSF, the notion of constituency is used for expressing

relationships between words in sentences, where one or more lexical category of words

is grouped under one category to form a phrase.

Melc̆uk [Melc̆uk, 1988, Melc̆uk, 1979], points out that DF differs from PSF in the

way that non-terminal symbols, which are heavily used in phrase structure analyses,

are not present in DF because a dependency structure is built from binary relations

between words.

The use of syntactic categorisation is an integral part of syntactic representation

in PSF but relationships among units (words) are not stated explicitly. In a DF rep-

resentation, the types of syntactic relationships can easily be specified, but syntactic

categorisation of units is not stated directly within the syntactic representation itself,

and thus dependency frameworks do not use non-terminal symbols in dependency rep-

resentations. Instead, items are related to each other by syntactic relationships (e.g.

subjective, determinative, prepositional, etc.) The sentence the cat sat on the mat can

have the phrase structure as shown in Figure 3.1(1) and the dependency structure as

shown in Figure 3.1(2).

60
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Figure 3.1: Phrase structure and dependency trees for the sentence the cat sat on the

mat.

Despite the differences between these two frameworks in terms of syntactic rep-

resentation they share some similarities. For example, both frameworks can use the

notion of head. In dependency frameworks, a word is the head of another word. And

in many phrase structure frameworks, each phrase has a head that determines the main

properties of the phrase.

In this chapter, we will briefly highlight some of the main features of these two

frameworks. We will also provide an overview of some of the state-of-the-art parsers

that are based on these frameworks.

Our goal in this chapter is to study these two different frameworks and identify

their features so that we can use them for constraining a data-driven parser to follow the

parsing routes that are more likely to produce a correct analysis for a given sentence.

3.1 Dependency framework

Recent trends in using dependency framework for parsing natural language syntax

have led to the development of a number of state-of-the-art parsers. It has been noted

by McDonald et al., [McDonald et al., 2006], Nivre [Nivre, 2005] and Debusmann

[Debusmann, 2000] that the starting point of modern linguistic theories in dependency

framework goes back to the work of Tesnière [Tesnière, 1959].

Generally, in dependency based formalisms, the syntactic structure of a sentence

consists of binary asymmetrical relations between the words in a sentence [Tesnière,

1959]. The notion is that in a sentence, all words depend on other words except one
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word, which is called the root word; i.e., the root word does not depend on any other

words (sometimes people use an artificial word called root and assign it as the head

of the main word in a sentence for convenience). The syntactic structure with binary

asymmetrical relations for the sentence the cat sat on the mat is demonstrated in Figure

3.2.

DET N V PREP DET N
the cat sat on the mat

MOD SBJ OBJ

MOD

MOD

root

Figure 3.2: Dependency graph for the sentence the cat sat on the mat.

Another aspect of dependency graphs is that dependency relations between words

are based on grammatical functions, for example, a word depends on another word

either if it is a complement or a modifier of the latter. For instance, a transitive verb,

such as love, requires two arguments where one argument has a grammatical function

of being the subject and the second one has a grammatical function object, as in 4,

John, which as a noun has the grammatical function of being a subject, while Mary

has the grammatical function of being an object.

(4) John loves Mary

A number of studies in the theoretical linguistics community on dependency repre-

sentations have followed on from the work of Tesnière. These studies resulted in a large

and diverse set of grammatical theories and formalisms of dependency representations.

These include Functional Generative Description [Sgall et al., 1986] and Dependency

Unification Grammar [Hellwig, 2003, Hellwig, 1986]. Additionally, some of the other

variations of dependency grammar include Constraint Dependency Grammar [Harper

and Helzerman, 1995], Weighted Constraint Dependency Grammar [Schröder, 2002],

and Functional Dependency Grammar [Tapanainen and Järvinen, 1997]. Furthermore,

in Dependency Grammar Logic [Kruijff, 2001] a combination of dependency grammar

and categorial grammar can be found. Nivre [Nivre, 2006] provides a detailed discus-

sion of the history of dependency grammar, on which we have based this section.

Popular theories of dependency grammar include Melc̆uk’s Meaning Text Theory

(MTT) [Melc̆uk, 1988] and Hudson’s Word Grammar (WG) [Hudson, 1984]. It is not
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possible to cover all of these theories in any detail here. However, we will attempt to

draw on some of the theoretical background of this framework and explicitly mention

certain dependency based formalisms when possible.

3.1.1 Theoretical background

3.1.1.1 Acyclic and labelling

Since the syntactic relations between words in sentences are based on binary relations,

some restrictions are imposed on them as stated by Melc̆uk [Melc̆uk, 1979]:

1. Antisymmetric: The syntactic relationships between items are directed (i.e., two

items cannot be the dependents of each other), e.g., if X depends on Y , then Y

cannot depend on X . Formally, if XÑ Y then  Y Ñ X.

2. Acyclic: An item cannot relate to itself, i.e., an item cannot depend on itself, it

must depend on a different item. Formally,  X Ñ X or  X ý.

3. Labelled relations: Syntactic dependency relations between items must be dis-

tinguished by using labels, as we have shown in Figure 3.2.

4. Head: Each word has at most one head.

5. Root: One word (the main word in the sentence) has no head.

3.1.1.2 The notion of head

Whenever a dependency relation is established between words, one word becomes the

head of another word and the word receiving the head becomes the dependent word. It

is possible, and it is allowed in dependency frameworks, that a word may become the

head of a number of other words in a sentences, as we have shown in Figure 3.2 where

the word sat is the head of cat and is also the head of on.

However, as noted above in most variations of dependency framework, a word

cannot have more than one head; i.e., a word may have multiple dependents but a de-

pendent cannot have multiple heads. However, in word grammar (WG), as developed

by Hudson [Hudson, 1984], the concept of modifier sharing is introduced, where a

dependent may be eligible for multiple heads or modifiers. Hudson [Hudson, 1984,

p. 83] argues that the subject (Mary) of verb seem in Figure 3.3 can also be used (syn-

tactically) as the subject of the infinitive although semantically it could be argued that
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the subject (Mary) is related only to the infinitive and not at all to seem1. There are

other situations introducing multiple heads such as embedded interrogative clauses.

For more discussion and examples of these situations, see Hudson [Hudson, 1984,

p. 82–85].

Mary seems to cook brown pasta

Figure 3.3: WG dependency structure.

3.1.1.3 The notion of single root item

In a dependency structure, every word should have a head. This means that the main

word in a sentence must also have a head on its own. But, in any given sentence, there

may not be a word to be the head of the main word. For example in the sentence John

ate pasta, the word ate is the main word in the sentence because it is the head of John

and pasta. And the dependents (John and pasta) cannot act as the head of ate because

a dependent cannot be the head of its own head (antisymmetric). Since no words in

the sentence can be the head of the main word, a dummy word (root) is assigned to the

main word, as shown in Figure 3.4.

John ate brown pasta

root

Figure 3.4: A dependency graph for the sentence John ate brown pasta.

1It is a common practice to treat to as a subject-raising auxiliary verb which may also share its subject

with its infinitive. See [Hudson, 1976] for more discussion about this analysis.
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3.1.1.4 Projectivity

The notion of projectivity is a controversial one. It is used as a common constraint

on dependency representation of natural language sentences. Projective dependency

trees are restricted to having direct and non-overlapping arcs between nodes, and thus

parsers are restricted to output trees similar to the one shown in Figure 3.5 for the

sentence John ate brown pasta which was uncooked.

John ate brown pasta which was uncooked

root

Figure 3.5: Projective dependency tree for the sentence John ate brown pasta which

was uncooked.

However, in certain situations – especially in languages with more word order flex-

ibility such as Arabic, German, and Russian, it may not be possible to draw projective

trees for sentences without overlapping arcs in the same tree, Hence, most dependency

variants allow non-projective representation of sentences in order to be able to capture

non-local dependencies. For example, if an adverb is included in the sentence John ate

brown pasta yesterday which was uncooked, the adverb yesterday separates the relative

clause which was uncooked with the verb’s object brown pasta that it modifies, which

results in an overlapping arc in the tree representation as shown in Figure 3.6.

John ate brown pasta yesterday which was uncooked

root

Figure 3.6: Non-projective dependency graph for the sentence John ate brown pasta

yesterday which was uncooked.
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3.1.2 Dependency parsers

In this section, we will give an overview of two state-of-art parsers that are based on

dependency framework: (i) MSTParser [MacDonald, 2006], which is a graph-based

parser using a bottom- up chart-based parsing strategy, and (ii) MaltParser [Nivre,

2006], which is a transition-based parser using shift-reduce parsing algorithm.

3.1.2.1 Maximum spanning trees parser (MSTParser)

MSTParser is a graph-based parsing system used for identifying maximum spanning

trees from a dense graph-based representation of a given sentence [Kübler et al., 2009].

This system uses a machine learning algorithm and parsing algorithms. The machine

learning algorithm is used during parser training in order to assign different weights to

correct and incorrect trees for a given sentence, whereby higher weights are assigned

to correct trees than to incorrect trees. The parsing algorithm is based on a bottom-up

chart parsing strategy, where trees are generated and used for searching and finding the

highest weighted dependency tree for a given sentence.

During training, the learning algorithm is used for generating a margin between the

correct and the incorrect dependency graphs. The more errors a graph has the further

away its score will be from the score of the correct graph. During parsing, the parsing

algorithm is used for generating dependency graphs [MacDonald, 2006, p. 20], while

the generated graph that matches the graphs with the highest weight is selected as the

correct analyses.

MSTParser processes projective dependency graphs using a form of projective de-

pendency parsing which is based on Eisner’s bottom-up dynamic programming pars-

ing algorithm [MacDonald, 2006]. Eisner’s algorithm processes substrings as non-

constituent spans (where spans are two or more adjacent words) which are combined

to produce larger spans [Eisner, 1996]. A bottom-up dynamic programming algorithm

is used to create a dynamic programming table that stores the score of the best subtree,

which is the score of two complete subtrees. For example, C[s][t][d][c] represents a dy-

namic programming table in MSTParser, and stores the score of the best subtree from

position s to position t where s ď t, d specifies the direction in which the parser may

gather left or right dependents, and c determines the completeness of subtrees which

takes one of two values for each subtree; 0 for incomplete subtrees and 1 for complete

subtrees. For instance, C[s][t][Ð][1] would be the score of a complete subtree where
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all dependents are gathered in rightward fashion, while C[s][t][Ð][0] indicates an in-

complete subtree.

Some natural languages, such as Arabic, German or Czech, have a more flexible

word order than English and require some arcs to overlap with other arcs; i.e., non-

projective parsing. Thus, MSTParser uses Chu-Lui-Edmond algorithm [Edmonds,

1967] for generating non-projective graphs by allowing arc crossings [MacDonald,

2006, p. 37]. MSTParser implements non-projectivity by searching the entire space

of spanning trees with no restrictions in order to identify the highest scoring graph

[MacDonald, 2006, p. 37].

Since this parser is trained on annotated data that is designed for specific languages,

it is a language independent parser. It has been applied to 14 diverse languages: Arabic,

Bulgarian, Chinese, Czech, Danish, Dutch, English, German, Japanese, Portuguese,

Slovene, Spanish, Swedish and Turkish. Additionally, MSTParser is claimed to pro-

vide a state-of-the-art accuracy and to be efficient [McDonald et al., 2005].

3.1.2.2 MaltParser

MaltParser is a transition-based parser using a shift-reduce parsing strategy. MaltParser

is a data-driven parser trained on annotated treebank that is specifically created to pro-

cess the syntax of the language in question [Han et al., 2009, Nivre et al., 2006]. This

parser is language-independent [Nivre et al., 2006]. It has been successfully applied

to a number of different languages such as English, Swedish, Bulgarian, and Arabic

[Bengoetxea and Gojenola, 2010]. MaltParser contains a family of algorithms, which

are all based on shift-reduce parsing, such as arc-standard, arc-eager, list-based etc.,

we discuss some of these algorithms in more details in Section 5.2.1. We have based

our parser implementation on the arc-standard algorithm of this parser.

There are three main components in MaltParser, these are:

1. Parser: The parser uses a shift-reduce strategy to build a labelled dependency

graph in one left-to-right pass over the input. Two main data-structures are ma-

nipulated by MaltParser: (i) a stack of partially processed words from a given

sentence, and (ii) a queue to store the remaining unprocessed words from the

input sentence. Generally, the parser performs one of three basic elementary

actions during parsing [Nivre et al., 2006], these actions are:

SHIFT: Push the first item from the queue onto the stack.
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LEFT-ARC(r): Add an arc labelled r from the first item on the queue to the item

on the top of the stack; pop the stack.

RIGHT-ARC(r): Add an arc labelled r from the item on the top of stack to the

first item on the queue; pop the queue.

MaltParser depends on the recommendation of an oracle, which learns different

parse actions from a set of annotated data by using a machine learning classifier,

to perform SHIFT, LEFT-ARC(r) or RIGHT-ARC(r). Since our parser is largely

based on MaltParser and we have described this parser in some detail, we present

the pseudo-code of it in Figure 3.7.

1. Given an oracle and a string of input text, set the queue

to the input text and the stack to be empty.

2. Until the queue is empty and the stack has exactly one entry,

ask the oracle for an action.

2.a). If the oracle suggests LEFT-ARC(r) then make the head of

the queue a parent of the topmost item on the stack and

pop the stack.

2.b). If the oracle suggests RIGHT-ARC(r) then make the topmost

item on the stack the parent of the head of the queue and

pop the queue.

2.c). If the oracle suggests a SHIFT then move the head of the

queue to the top of the stack.

Figure 3.7: Pseudo-code for MaltParser.

2. Guide: MaltParser uses history-based parsing models for predicting the next

parser action. It uses features of the partially built dependency structure together

with features of the (tagged) input string. The parser uses history-based parsing

models and discriminative machine learning for determining the best action at

each parsing step [Bengoetxea and Gojenola, 2010].

3. Learner: A machine learning algorithm is used in MaltParser to induce a map-

ping from parser histories, relative to a given feature model, to parser actions,

relative to a given parsing algorithm. One of two machine learning algorithms

could be used in MaltParser:

(a) Memory-based learning and classification: MaltParser stores all training

instances at learning time and uses some classifications to predict the next

action at parsing time. MaltParser uses the software package TiMBL to

implement this learning algorithm [Daelemans et al., 2003].
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(b) Support vector machines rely on kernel functions to induce a classifier at

learning time, which can be used to predict the next action at parsing time.

MaltParser uses the library LiBSVM to implement this algorithm with all

the options provided by this library [Chang and Lin, 2011].

MaltParser is characterized as a deterministic transition-based parser [Øvrelid et al.,

2009, Nivre et al., 2006]. The parser produces dependency trees by transitioning

through abstract state machines. It learns models that predict the next state given the

current state of the parser, a history of parsing decisions and the input sentence [Kübler

et al., 2009]. The parser starts in an initial state, then moves on to subsequent states –

based on the prediction of the history-based feature models - until a termination state

is reached. Transition based parsing is considered highly efficient, with run-time often

linear with the input string length. Furthermore, transition-based parsers can easily

incorporate arbitrary non-local features because the current parse structure is fixed by

the state. However, errors may propagate in this parser if early incorrect predictions

are made [Nivre et al., 2010].

MaltParser has two different modes of operations:

Learning mode: This uses a (training) set of sentences with dependency graph

annotations such as input, derives training data by reconstructing the correct transition

sequences, and trains a classifier on this data set, according to the specifications of the

user.

Parsing mode: In this mode, the parser uses a (test) set of sentences and a pre-

viously trained classifier as input and parses the sentences, using the classifier as a

guide.

MaltParser relies completely on induction learning from a treebank for the analysis

of new sentences and on deterministic parsing for disambiguation. This combination

of methods guarantees that the parser is both robust, producing an analysis for every

input sentence, and efficient by deriving analyses in time that is linear in the length of

the sentence (depending on the particular algorithm used).
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3.2 Phrase structure framework

Another significant framework for representing natural language syntax is the Phrase

Structure framework (PSF), which was initially formulated by Bloomfield [Bloom-

field, 1933] for modelling English syntax. Chomsky popularised this method in the

late 1950s. In PSF, natural languages are described by breaking a sentence down into

its constituent parts. There are a number of variations that have been derived from

this type of framework. In this section, we will describe some of the theoretical no-

tions behind this framework which are implemented in some of the variations of the

framework.

3.2.1 Theoretical background

3.2.1.1 Derivational versus transformational rules

Rewrite rules are used for deriving sentence structures from rules by using atomic

labels for nodes [Chomsky, 1959], e.g., X Ñ Y rule means rewrite X as Y. A set of

rewrite rules can be used for describing various types of sentences in a given language.

The rules in Figure 3.8 show that a sentence S can be derived from a Noun Phrase

(NP) followed by a Verb Phrase (VP), and an NP is derived from a Determiner (DET)

followed by a Noun (N), and the actual words a can be related with DET, boy with N,

runs with V and so on. Thus, according to these rules, sentences such as the boy runs

and the dog walks are well-formed and correct sentences.

1. S Ñ NP VP

2. NP Ñ Det N

3. VP Ñ V

4. DET Ñ the

5. DET Ñ a

6. N Ñ boy

7. N Ñ dog

8. V Ñ walks

9. V Ñ runs

Figure 3.8: Context-free phrase structure grammar rules.
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However, Chomsky [Chomsky, 1957, p. 57] claims that applying derivational rules,

as in Figure 3.8, for defining the relationships between elements of non-simple sen-

tences is complicated and difficult to achieve. Alternatively, transformational rules are

used for describing sentences.

By using transformational rules, we can analyse a sentence that is a derivation

from the structure of some other structurally related sentences [Liles, 1971, p. 43]. For

example, the sentence in 5(b) is the passive form of the sentence in 5(a).

(5)

(a) The judge dismissed the case

(b) The case was dismissed by the judge

The passive transformational rule, as shown below, involves switching and insert-

ing items. The subject (the judge) and the object (the case) of the noun-phrases are

switched. Then, by is inserted infront of the original subject noun-phrase which now

follows the main verb (dismiss), and be+tense (was) is added to the auxiliary.

NP1 + tense + Aux + V + NP2 + X Ñ NP2 + tense + Aux + V + by + NP1 +

X

Since the passive transformational rule ought to only be applied to sentences con-

taining ‘action’ verbs2, it cannot be applied to sentences with ‘description’ verbs3.

Thus, passive transformation rules can produce ungrammatical sentences in the fol-

lowing way:

John is a fool Ñ a fool is been by John

This limitation exists because the passive focus is shifted from the active elements

to those being acted upon. Since the actor/acted upon relationship does not exist in

sentences with description verbs, the passive relation does not exist either [Lester,

1971, p. 131].

Moreover, it is difficult to deal with linguistic phenomena, such as agreements, in a

completely satisfactory way using transformational rules [Pareschi and Miller, 1990].

The notion of feature structures for describing linguistic objects is treated in some other

variations of phrase structure framework, such as feature based informational elements

[Vijay-Shanker and Joshi, 1988].

2verbs that take object noun-phrases.
3verbs that take predicate nominal noun-phrase.
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3.2.1.2 Features

The organisation of features within a syntactic analysis varies between different feature-

based formalisms but, in most of them feature sets are represented as attribute-value

matrices (AVMs). For example, Lexical Functional Grammar formalism (LFG) [Bres-

nan and Kaplan, 1982], includes elements of both constituent structure (c-structure),

and functional structure (f-structure).

C-structures are organised using X-bar theory [Bauer, 2001, Kornai and Pullum,

1990]. For instance, the basic functional category I is the head of I’. As such, an NP is

headed by an N, and an IP is headed by an I in Figure 3.9.

IP

DP

DET’

DET

the

NP

N

cat

I’

I

will

VP

V

drink

DP

DET’

DET

the

NP

N

milk

Figure 3.9: LFG c´structure for the sentence the cat will drink the milk.

The f-structures represent grammatical functions such as subject and object, and

which take the form of sets of paired attributes and values represented in an AVMs

[Dalrymple et al., 1995, p. 84] such as TENSE or NUMBER, or grammatical functions

such as SUBJECT and OBJECT. An f-structure for the sentence the cat will drink the

milk is shown in Figure 3.10.

From Figure 3.10, we can recognise three layers of f-structures: the outer f-structure

(which corresponds to the whole sentence) has four attributed names: SBJ, TENSE,

PRED and OBJ. The TENSE and PRED attributes have simple values (FUT and ‘drink

<SUBJ, OBJ>’ respectively), while SUBJ and OBJ attributes are functions that contain

subordinate f-structures as their values. The inner f-structures also have attributes and

values, the SBJ takes DEF and PRED attributes and it assigns ` and ‘cat’ as their val-

ues respectively, while the OBJ function takes three attributes (DEF, PRED, and NUM)

with values such as `, ‘milk’ and SG respectively; the third layer of the f-structure is

the values of the attributes such as DEF, PRED and NUM. In this way, LFG represents
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Figure 3.10: LFG f´structure for the sentence the cat will drink the milk.

all the functional information of the whole sentence.

Another significant feature-based formalism is Head-driven Phrase Structure Gram-

mar (HPSG), which is a heavily lexicalised formalism, which relocates linguistic in-

formation from phrase structure rules into the lexicons [Flickinger et al., 1985].

One of the main features of HPSG is that it contains a set of universal and language

specific principles [Kepser, 2000]. For instance, the lexical head is the most important

element of a phrase because it incorporates the syntactic information (such as part-of-

speech and dependency relations with their constituents) and the semantic information

[Pollard and Sag, 1994]. Flickinger et al., [Flickinger et al., 1985, p. 168] state that

heads in HPSG refer to linguistic forms (words and phrases). These forms exert syn-

tactic and semantic restrictions on the phrases to form larger phrases. Therefore, verbs

are regarded as the heads of verb phrases, nouns as the heads of noun-phrases, and

so forth. Additionally, signs are used as a formal representation of combinations of

phonological forms and syntactic/semantic structures which can be used for express-

ing which phonological form signifies a particular syntactic/semantic structure [Sag

and Wasow, 1999, p. 356]. These are used for denoting heads and representing the

typed feature structures [Miyao and Tsujii, 2008]. They are then used for generating

strings, which are defined by their location within a type hierarchy and by their internal

feature structure represented by AVMs [Sag and Wasow, 1999, Pollard and Sag, 1994]

as shown in Figure 3.11 for the word walks 4

4A sign of the type word with a head of the type verb walks has no complement but requires a subject

that is a third person singular noun.
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Figure 3.11: HPSG structure for the word walks.

3.2.2 Phrase structure based parser

3.2.2.1 Stanford parser

A Stanford parser is a statistical parser, which can be trained on annotated data, and

applied to a number of languages such as English, Chinese and Arabic.

There are different model implementations of the Stanford parser, as stated by

Klein and Manning [Klein and Manning, 2003].

Socher et al., [Socher et al., 2013] describe the most recent model of this parser5.

They introduce a Compositional Vector Grammar (CVG), which combines Probabilis-

tic Context-free Grammar (PCFG) with a Recursive Neural Network (RNN) that learns

syntactico-semantic, and compositional vector representations.

The CVG helps in capturing the discrete categorisation of phrases into NP or PP

while the RNN helps in capturing fine-grained syntactic and compositional-semantic

information about phrases and words. The combination of the two helps finding the

syntactic structure as well as capturing compositional semantic information, which

gives the parser access to rich syntactico-semantic information in the form of distribu-

tional word vectors and computes compositional semantic vector representations for

longer phrases.

3.2.3 Probabilistic grammars

The frameworks described in the previous sections (phrase structure and dependency

based frameworks) can have probabilities assigned to their elements. In this section,

5The new model is based on the model described by Klein and Manning [Klein and Manning, 2003].
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we will attempt to briefly describe the way probabilities are assigned to grammatical

rules.

The focus on data-oriented and corpus-based methods have led to the development

of probabilistic grammars. These are considered to be one of the core modelling tech-

niques for processing syntactic structures [Charniak, 1996]. Moreover, probabilistic

grammar is considered attractive for different reasons [Corazza and Satta, 2006]. It

is amenable to inspection by humans. Thus, it is relatively easy to understand which

tendencies the model has captured if the underlying rules are understandable [Collins,

1999]. The frequencies of various structures in the training data are collected in or-

der to analyse the characteristics of the parsing model, which is used for providing a

reasoning mechanism in the face of ambiguity that often exists in natural languages

[Collins, 2003].

3.2.3.1 Probabilistic context-free grammar (PCFG)

A basic CFG rule consists of 4-tuple G = (N,Σ,P,S): N is a finite set of non-terminal

symbols, Σ is a finite set of terminal symbols, P is a finite set of productions or rewrite

rules e.g., a P rule takes the form αÑ β where α P N and β P tNYΣu, and S P N is the

starting symbol.

By associating probabilities with the productions of context-free grammar rules,

we can obtain a probabilistic context-free grammar (PCFG). Thus, a PCFG is a simple

modification of a context-free grammar [Collins, 1999]. For example, we can asso-

ciate a probability with the rule αÑ β as PpαÑ β | αq. We can then use this as the

conditional probability of choosing the rule αÑ β where α is a non-terminal that is

rewritten in a derivation D. Using D as a function for associating a probability to each

member of P then the PCFG would be a 5-tuple as G“ pN,Σ,P,S,Dq.

Corazza and Satta [Corazza and Satta, 2006] state that PCFGs can be used for

describing tree-shaped structures of underlying sentences, which may tackle ambiguity

problems by assigning a probability to each parse tree, thereby ranking competing trees

in order of plausibility. PCFG contributes to some of the state-of-the-art statistical

parsers. Charniak et al., [Charniak et al., 1998] propose a method for counting the

number of times that a context-free rule is used in a corpus containing parsed sentences,

so that the probability of a particular production rule being used is equal to the number

of times that a particular rule is used during training, divided by the total number of

times that all rules with the same non-terminals on the left hand side are used during

training. We will use similar technique to assign probabilities to constraint rules in
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Section 6.5.4

3.2.4 Statistical parsers

3.2.4.1 Robust accurate statistical parser (RASP)

RASP [Briscoe et al., 2006] is a statistical parser that uses raw texts as inputs and

outputs different parse analyses, such as parse trees, grammatical relations between

lexical heads, or minimal recursion semantic analyses. Unlike the previously described

parsers, this parser has a modular pipeline architecture whereby one module feeds

the next one. These modules are tokenisation, parts-of-speech (POS) and punctuation

tagging, morphological analyser, parser, and a statistical disambiguator. A graphical

representation of RASP architecture is shown in Figure 3.12:

Raw Text

Tokenisation

POS and Punc-

tuation Tagging

Lemmatisation

Parsing

Output

Figure 3.12: RASP pipeline.

Annotation: This parser performs the following annotation tasks on its input:

• Tokenisation: Unlike many other statistical parsers that use annotated data as

input, RASP takes a set of raw text or transcribed speech as input. This module

tokenises the input by using spaces for separating words and punctuation and

marking the boundary of sentences. The system uses a set of deterministic finite-

state rules for tokenising the input. The tokenised items are then supplied to the

POS and Punctuation tagging module for further processing.
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• POS and Punctuation tagging: A first-order (‘bigram’) Hidden Markov Model

(HMM) based tagger is trained on a manually-corrected tagged version of three

corpora: the Susanne corpus [Sampson, 2015], the Lancaster/Oslo-Bergen Cor-

pus (LOB) [Johnasson et al., 1978], and a subset of the British National Corpus

(BNC) [Burnard, 2000]. POS and punctuation labels are then assigned to the to-

kenised items. The tagged tokens are then processed to retrieve a token’s lemma

with any inflectional affixes using the morphological analyser module.

• Lemmatisation: For this module, 1400 finite-state rules are compiled into an ef-

ficient C program. This finite-state transducer is applied to the threshold output

from the POS and punctuation tagging module (token-tag pair) to deterministi-

cally retrieve a lemma with any inflectional affixes.

POS and punctuation sequence parsing: The lemmas plus the affixes are sup-

plied to a modified version of a probabilistic generalised LR parser. This parser utilises

689 manually-developed and wide-coverage unification-based phrase structure rules

[Briscoe et al., 2006]. These rules are automatically converted into an atomic cate-

gorised context-free grammar which is used to construct a non-deterministic LALR

table. The parser is then guided by this table to perform parse actions which result in

the building of a packed parse forest. The associated probabilities that are associated

with specific parse actions in the probabilistic LR table are assigned to sub-analyses in

the forest. The most probable parses are then extracted from the forest by unpacking

sub-analyses, following pointers to contained sub-analyses and choosing alternatives

in order of probabilistic ranking.

Parser outputs: The parser can produce three types of output: it can output syntax-

tic trees, and/or (weighted) grammatical relations between lexical heads, or produce

a minimal recursive semantic representation consisting of a sequence of elementary

predictions and possibly underspecified equational constraints.

Briscoe and Carroll [Briscoe and Carroll, 2006] report on the accuracy of RASP

using three figures for precision, recall, and F1 score with relation to the grammatical

relations in the testing data, which are taken from the PARC DepBank [King et al.,

2003], of 81.5%, 78.1%, and 79.7% respectively, according to Briscoe and Carroll

[Briscoe and Carroll, 2002]. The other published scores vary between 80-84%.
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3.2.4.2 Maximum entropy inspired parser (MaxEnt)

MaxEnt is a statistical parser trained on annotated data, using a machine learning tech-

nique, which constructs parse trees by following a sequence of actions similar to stan-

dard shift-reduce parse actions [Ratnaparkhi, 1999]. The parser uses different proce-

dures to produce parse actions. These procedures are: TAG, CHUNK, BUILD, and

CHECK. They are applied in three left-to-right passes over the input string.

Each action that is produced by the above procedures takes a derivation d “ a1...an

and predicts a new parse action an`1 that will result in a new derivation di“ a1...an`1.

A maximum entropy probability model is used to assign a score to each action that is

produced by the procedures.

A complete derivation tree T is obtained by following a sequence of parse actions,

a1...an. The parser only follows permitted actions when constructing or comparing

parse trees, where the actions are scored using a maximum entropy probability model.

The maximum entropy models are initially trained on a set of annotated data (Wall

Street Journal Treebank [Marcus et al., 1993]) in order to learn derivations of parse

trees from it. The score of the complete tree is computed from the score of each action

in all the derivation trees that lead to the complete parse tree.

A TAG procedure is used in the first pass for assigning a part-of-speech (POS)

tag to each word in the sentence producing a (word, POS tag) pair. In the second

pass, the output of the first pass is used for determining the “flat”6 phrase chunks of

the sentence using the CHUNK procedure and assign a “chunk" tag to each (word,

POS tag) pair. The chunk tags are then used for chunk detection where the result is a

tree forest. Finally, in the third pass, BUILD or CHECK procedures are alternated. A

BUILD procedure used to decide whether a tree should be the start of a new constituent

or should be merged with an incomplete constituent that is immediately to its left.

The most recently produced constituent is then identified by CHECK, which decides

whether it is complete. If a constituent is complete then CHECK answers yes and

adds this to the forest where BUILD processes it, otherwise it answers no and BUILD

processes the next tree in the forest. This final pass terminates if CHECK identifies

a constituent that spans the entire sentence. The yes action of CHECK corresponds

to the reduce action of standard shift-reduce parsers while no corresponds to the shift

action. However, the difference between shift and reduce action in shift-reduce parsers

and BUILD and CHECK is that the former produces a constituent over several small

incremental steps while the latter creates a constituent in one step (reduce a).

6A phrase that is a constituent but its children are not constituents is considered “flat".
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A set of weighted features is implemented in the maximum entropy framework for

modelling training data. These features are based on four intuitions relating to the use-

fulness of using head words, a combination of head words, less-specific information

and the allowance of a limited lookahead [Ratnaparkhi, 1999]. A useful subset of fea-

tures is extracted from the set of all possible features for use in the maximum entropy

model corresponding to a procedure X .

An experiment on training the parser on the Wall Street Journal Treebank, sections

2 to 21, (about 40,000 sentences), show that it can achieve 87.5% precision and 86.3%

recall when tested on section 23 of the treebank (about 2,416 sentences) [Ratnaparkhi,

1999, p. 30].

3.2.4.3 The Charniak parser

There are different models of the Charniak parser. However, the basic implementation

of all of the models is based on chart parsing. The chart parser processes an agenda of

items during each parse iteration. Items are taken from the agenda and processed one

by one and then added to the chart. If an item is already in the chart then it is discarded.

Otherwise it is used for extending and creating additional items. A PCFG is used as a

starting point for associating a Figure of Merit (FOM7) to each edge in the chart, while

the FOMs are used for judging the edges as to which edge is processed first [Charniak

et al., 1998].

The most recent model of the parser implements a maximum-entropy inspired

model which is a probabilistic generative8 model, whereby a probability pps, tq “ pptq

is assigned to every sentence s and every parse tree t. This probability equality holds

only for any s when the parser returns t, which maximises this probability [Charniak,

2000]. This parser has been tested on the Wall Street Journal, Section 23. It is reported

by Charniak [Charniak, 2000] that this parser achieves a labelled precision and labelled

accuracy for sentences ď 40 word of 90.1% while the labelled precision and labelled

accuracy for sentences with ď 100 words are 89.6% and 89.5% respectively.

7Charniak uses the term FOM because the scores he is using are not strictly probabilities and hence

to label them as such would be misleading.
8Syntactic trees are ‘generated’ by applying grammatical rules in a top-down manner.
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3.2.4.4 The Collins parser

Another popular statistical parser is the Collins parser. Like the Charniak parser, this

also has a probabilistic generative model. The first probability model to be imple-

mented was a top-down derivation probability model whereby the model assigns a

probability pps|tq to each parse tree t to a sentence, and then the parser searches for the

tree Tbest that maximises ppt|sq [Collins, 1996].

The second model of the parser extends the first model but it emphasises on the

distinction between complements and adjuncts. Complements are identified by attach-

ing “-C” suffix to all non-terminals in the training data that satisfy certain conditions

and all modifiers are treated as adjuncts.

In order to solve the problem with regard to wh-movement, a third model is imple-

mented by extending the second model by adding a factor for the probability of gaps

and filler creation and transmission. The probability of a rule’s gap requirement is cal-

culated so that if a gap requirement is in the subcategorisation frame then the probabil-

ity of a (gap) TRACE constituent being generated is higher, and if a gap requirement

is in the subcategorisation frame, then the probability of a (filler) extra constituent is

also higher.

Extending the first model has improved the parser’s labelled precision and labelled

recall by 0.7% and 0.5% respectively (see Collins [Collins, 1997] for a more detailed

description of the parser and the result).

3.3 Summary

In this chapter we have described two substantially different frameworks for parsing

natural languages: dependency framework and phrase structure frameworks. We have

briefly highlighted the theoretical background of both of these frameworks. Also, some

of the state-of-the-art parsers that are based on these frameworks are briefly described.

Additionally, the application of probabilistic models to natural language parsing is

outlined.

In Table 3.1 we present different features of the parsers that we have described in

this chapter. Also, we present our parser where we show the features of other parsers

that are present in our parser.

Our parser is largely based on MaltParser, which is a dependency data-driven parser

(see Section 5.2 for our parser implementation), but we use features from some other

parsers presented in Table 3.1. We are using features of chart parsing which is used in
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Parsers Dependency/PST Grammar-driven/Data-driven Statistical Chart

MaltParser Dependency Data-driven No No

MSTParser Dependency Data-driven No Yes

Stanford both Data-driven Yes No

RASP Dependency Grammar-driven Yes No

MaxEnt Dependency Data-driven Yes No

The Charniak parser PST Data-driven No Yes

The Collins parser PST Data-driven Yes No

Our Parser Dependency Both No Yes

Table 3.1: A comparison of features of different parsers.

MSTParser (see Section 5.2.3 for the way we used chart parsing). We also integrate

different types of constraint rules, such as probabilistic lexicalised local subtrees and

probabilistic unlexicalised local subtrees, that are described in Section 6.5.4, where

we assign conditional probabilities in the same way as in the Charniak parser. Our

parser could be considered as a partially grammar-driven parser because we integrate

constraint-rules in it, where these rules influence the decision of our parser in certain

situations (see Section 6.5.1 for more details).

Since the experiments conducted in this study are on Arabic, we will describe the

structural complexities of this language in the following section, but, firstly, in order to

have an idea about the performance of other parsers which have been tested on Arabic;

we will present the published parse results for the CoNLL Arabic shared task [Nivre

et al., 2007] in Table 3.29.

# Parsers LAS Accuracy (%)

1 Alabbas 80.40

2 Stanford 77.72

3 MaltParser 76.52

4 Nakagawa 75.08

5 Hall, J. 74.75

6 Sagae 74.71

7 Chen 74.65

8 Titov 74.12

9 Hall, K. 73.40

10 our parser 72.7

11 Attardi 72.66

Table 3.2: Published parse accuracy for Arabic [Nivre et al., 2007].

9The names of the parsers in this table are as given by Nivre et al., [Nivre et al., 2007]
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We present the accuracy measure of the parsers in terms of labelled attachment

scores (which is based on correct dependency relations between two tokens with cor-

rect grammatical functions (labels)). It is worth noting the results of these parsers can-

not be compared to the results we obtain in Chapter 6 because most of these parsers

are trained and tested on a different treebank (Prague Arabic dependency treebank

(PADT) [Smrž et al., 2008] while our parser is tested on the Penn Arabic treebank

(PATB) [Maamouri and Bies, 2004]. However, the result published by Alabbas and

Ramsay [Alabbas and Ramsay, 2011]10, which is the highest of all previously pub-

lished results, is based on using a combination of the output of MaltParser [Nivre,

2008] and MSTParser [MacDonald, 2006].

10The result for this parser is based on the PATB rather than PADT which was used for testing the

parser in the CoNLL shared task.



Chapter 4

The Challenges of Parsing Arabic

The complex structure of Arabic creates a large number of ambiguities in the language.

Farghaly and Shaalan [Farghaly and Shaalan, 2009] state that the average number of

ambiguities per token in Arabic is 19.2 while in most other languages it is 2.3 per

token. This high level of ambiguity in Arabic makes parsing it a challenging task

[Attia, 2008]. Ambiguity, particularly local ambiguity, is a central problem in natu-

ral language parsing. In this chapter, we will briefly highlight some of the structural

complexities of Arabic which may make sentences ambiguous.

Since we have conducted all of the experiments in this study on Arabic, and be-

cause Arabic is more complex than most other languages such as English, we devote

this chapter to briefly describing some of the structural complexities of Arabic, which

may affect parsing performance. Chalabi [Chalabi, 2004a], Daimi [Daimi, 2001] and

Fehri [Fehri, 1993] all argue that there are many complexities and subtleties in Arabic

while Holes [Holes, 2004] states that Arabic has a complex syntactic structure.

Tayli and Al-Salamah [Tayli and Al-Salamah, 1990] state that Arabic alphabet con-

sists of 28 letters that can be extended to a set of 90 by using additional shapes, marks

and vowels. As with other natural languages, there are consonants and vowels in Ara-

bic. From the 28 Arabic letters there are three vowels, which are
�
@ (pronounced as /a:/),

@� (pronounced as /i:/), and
�
@ (pronounced as /u:/). Some long vowels are constructed in

Arabic by combining
�
@, @� and

�
@ with short vowels. According to Tayli and Al-Salamah

[Tayli and Al-Salamah, 1990] and Ramsay and Mansour [Ramsay and Mansour, 2006],

short vowels and certain other examples of phonetic information such as the double

consonant (shadda) are not represented by letters but by diacritics, which are largely

missing in Modern Standard Arabic (MSA).

83
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4.1 Lack of diacritics in MSA

A diacritic symbol in Arabic is a short stroke placed above or below the consonant.

Arabic diacritics are divided into three sets: short vowels, doubled case endings, and

syllabification marks.

Short vowels: These are written as symbols, either above or below the letter in the

text with diacritics. These are:

• fatha: represents the /a/ sound and uses an oblique dash over a letter as in
�
@.

• damma: represents the /u/ sound and uses a loop over a letter that resembles the

shape of a comma as in
�
@.

• kasra: represents the /i/ sound and uses an oblique dash under a letter as in @�.

Doubled case ending: This is when vowels are used at the end of the words; the

term tanween is used to express this phenomenon. Tanween suggests indefiniteness

and is manifested in the form of case marking or in conjunction with case marking as

the bearer of tanween. Similarly to short vowels, three different diacritics are used for

tanween: (i) tanween al-fatha as in
�
@ /aN/, (ii) tanween al-damma as is

�
@ /uN/, and (iii)

tanween al-kasra as in @� /iN/. They are placed on the last letter of the word and have

the phonetic effect of placing an ‘N’ at the end of the word.

Arabic diacritised text also contains two syllabification marks:

• shadda: a gemination mark placed above Arabic letters. It denotes the doubling

of the consonant. The shadda is usually combined with a short vowel, as in
��Q.

• sukuun: written as a small circle as in
�
A. It marks the boundaries between syl-

lables or ends of verbs in cases using the jussive moods. This indicates that the

word does not contain vowels.

Syllabification marks: Arabic texts without diacritics have considerable ambigu-

ities, which may be problematic for NLP applications because many words with dif-

ferent diacritic patterns appear to be identical in a diacriticless setting [Zitouni et al.,

2006]. Moreover, diacritising Arabic texts will give clear indication of the meaning of

words and their syntactic roles in sentences. For instance, the word ÕÎ« alam can have

many meanings and roles when diacritised. It can be a noun, as in �Õ
�
Î«� ‘ilmuN “knowl-

edge”. In other cases such as �Õ
�
Î �« ‘alamuN “flag”, it can act as a passive transitive verb
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as in �Õ
��
Î �« ‘u-llima “is taught” or as active transitive verb as in �Õ

��
Î �« ‘a-llim “teach” and

�Õ
��
Î �« ‘a-llama “taught”. Also, It can act as passive intransitive verb as in �ÕÎ�

�« ‘ulima “is

known” or it can act as active intransitive verb as in �ÕÎ�
�« ‘alima “knew”. These exam-

ples indicate that single words may have many roles when diacritised, and that they

can be correctly recognised in diacritised settings. Parsing MSA text is challenging

because it is written without diacritics, and as we have discussed in this section the

lack of diacritics in MSA text makes parsing a challenging task.

4.2 Free word order

It is pointed out in the related literature that Arabic has a high syntactic flexibility

[Daimi, 2001]. One of the sources of ambiguities in Arabic is its relatively free word

order [Attia, 2008, p. 179]. The canonical order of an Arabic sentence is verb-subject-

object (VSO). However, a range of other word orders such as verb-object-subject

(VOS) order, subject-verb-object (SVO) order and object-verb-subject order (OVS)

are also possible [Ramsay and Mansour, 2006]. This leads to considerable ambiguities.

Arabic allows the construction of sentences in various orders in which the functions of

some words change according to their positions within the sentence.

If the subject and the object(s) follow a verb and there is no visible case marking

then it is difficult to decide which order it is (VSO or VOS) i.e., it is difficult to identify

the subject and the object. For example, in a sentence such as ú
G. AëPB @ ø
 Y
	Jm.Ì'@ É�KA

�̄
qAtl

aljndy al-’irhAby “” it is unclear whether ø
 Y
	Jm.Ì'@ aljndy “the soldier” is the subject or

ú
G. AëPB @ al-’irhAby “the terrorist” is the subject. The identification of the subject and

object of the sentence is based on the pronunciation of the sentence which gives it

two different meanings: (i) “The soldier fought the terrorist” where “the soldier” is the

subject, and (ii) “The killer of the soldier is the terrorist” where ú
G. AëPB @ al-’irhAby “the

terrorist” is the subject.

However, in the SVO order as in the sentence ú
G. AëPB @ É
�KA�̄ ø
 Y

	Jm.Ì'@ aljndy qAtl al-

’irhAby “The soldier fought the terrorist” it is clear that ø
 Y
	Jm.Ì'@ aljndy “the soldier” is

the subject in the sentence and ú
G. AëPB @ al-’irhAby “the terrorist” is the object.
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4.3 Zero copula

The zero copula is where there is a relationship between the subject of a sentence and

a predicate without an overt marking of this relationship. This phenomenon exists in

Arabic and in many other languages. A nominal sentence in Arabic could be formed

with a subject noun-phrase (NP) and a predicate [Ramsay and Mansour, 2006], such

as I.�
�ªÊ�ÜÏ @ ú


	̄ ��è �Q
�
» kuraTuN fy Almal‘abi “a ball on the pitch”. However, because there

is a degree of word order freedom in Arabic, if the subjects in Arabic sentences are

indefinite and the predicates are a preposition or an existential adverb, then the order

of the subjects and the predicates is inverted, which allows the predicate to precede the

subject, as in
��è �Q
�
» I.�

�ªÊ�ÜÏ @ ú

	̄
fy Almal‘abi kuraTuN “on the pitch is a ball”.

4.4 Arabic clitics

Clitics are defined as morphemes that possess the syntactic characteristics of a word.

However, they are morphologically bound to other words [Crystal, 1980]. It is possible

to attach clitics to the beginning or to the end of Arabic words and this almost always

alters their formation and meaning. Clitics can often alter word types from nouns to

verbs, or even change the verb type from transitive to intransitive [Nelken and Shieber,

2005]. Hence, clitics can be considered as another source of ambiguity in Arabic.

Conjunctions in Arabic can often appear as clitics and modify Arabic verb, which

can cause ambiguities in Arabic sentences, hence imposes challenges to parsers. For

example, the sentence in (6) indicates that the noun ÑîD
Ëð walyahum “their leader”

is ambiguous because the first two letters ð /w/ and Ë / l/ could be clitics attached to

the word ÑîE
 yahum “take charge”. If they are clitics then the word ÑîE
 yahum “take

charge” is a verb, as in (7).

(6)
�éË

A�ÖÏ @ ú


	̄ YÔg

@ ÑîD
Ëð

wliyahum ’.hmdu fy Almasa’lT

their leader Ahmed in the situation (Noun. singular. masculine)

“Ahmed is their leader in the situation”

(7)
�éË

A�ÖÏ @ ú


	̄ YÔg

@ ÑîD
Ëð

w li yahum ’.hmdu fy Almasa’lT

and for to take charge Ahmed of the situation (Verb. singular. third person)

“and for Ahmed to take charge of the situation”
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The examples in (6) and (7) indicate that attaching clitics to words makes it difficult

to identify not only their meanings but also their syntactic roles in a sentence; i.e., the

words become ambiguous and parsers may have to search for all the possible analyses

of the same word, which is likely to affect their efficiency.

4.5 Noun multi-functionality

As Arabic nouns encompass a wide range of categories, they are difficult to define in

comparison to verbs. One of the reasons that nouns create ambiguities is that some

Arabic nouns are derived from verbs, and they can function as verbs in some sentences

[Attia, 2008]. For example, �IjJ. Ë @ Alba.h_t “the search/the research” is a noun but it

can have two functions: (i) as a noun, as in (8) or (ii) as if it is a verb, as in (9):

(8)
�éªÓAj. ÊË �IjJ. Ë @ ú


	̄ �IkAJ. Ë @ �QÒ�J�@
istama-rra AlbA.h_tu fy Alba.h_ti liljAmi‘aT

continued the researcher in the research for the university

“the researcher continued in the research for the university”

(9)
�éªÓAm.Ì'@ 	á« �IjJ. Ë @ ú


	̄ �IkAJ. Ë @ �QÒ�J�@
istama-rra AlbA.h_tu fy Alba.h_ti ‘an AljAmi‘aT

continued the researcher to look for the university

“the researcher continued to look for the university”

4.6 Arabic pro-drop

Baptista [Baptista, 1995] and Chomsky [Chomsky, 1981] both state that in pro-drop

theory, the subject of a sentence can be omitted if the agreement features of the verb

are rich enough to recover its content. Attia [Attia, 2008] states that Arabic verbs can

recover missing subjects by conjugating themselves to indicate the gender, number and

person of the dropped pronominal subject. Thus, in some Arabic sentences, the sub-

ject pronoun becomes redundant when the verb can recover it [Farghaly and Shaalan,

2009]. As in the sentence in (10), the verb �IÊ¿

@ ’kalat “ate” indicates that the missing

subject is a singular, feminine and third person pronoun, hence it is omitted.

(10)
�ék. Ag. YË @ �IÊ¿


@ ’kalat Al dajAjT “ate the chicken”
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Pro-drops pose two challenges to parsers: (i) to identify whether there is an omitted

pronoun or not, and (ii) to identify the antecedent of an omitted pronoun [Chalabi,

2004b].

The challenge of identifying a pro-drop is further increased when dealing with

Arabic verbs because they can often be both transitive and intransitive. For example,

it is not clear in (10) whether the NP
�ék. Ag. YË @ Al dajAjT “the chicken” following the

verb �IÊ¿

@ ’kalat “ate” is the subject or not. If the NP is the subject of the verb V,

then the sentence would mean the chicken ate, which makes the verb �IÊ¿

@ ’kalat “ate”

intransitive, as in Figure 4.1(1). However, if the NP is the object of the verb V and

the subject is an omitted pronoun (as “she") then the sentence would mean she ate the

chicken, which makes the verb �IÊ¿

@ ’kalat “ate” a transitive verb as in Figure 4.1(2).

Or, it could mean the chicken was eaten, which makes the verb �IÊ¿

@ ’kalat “ate” a

passive transitive verb, as in Figure 4.1(3). The ambiguities caused by pro-dropping

can lead to three different types of structural analysis of the sentence in (10), as shown

in Figure 4.1
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Ë @
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Figure 4.1: Ambiguity caused by pro-drop.
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4.7 Summary

The focus of this chapter has been to identify and highlight some of the structural

complexities of Arabic which may affect parsing performance. The level of ambiguity

in Arabic is the major factor that affects parsers. Here we have focused on highlighting

the features of the language that make a sentence ambiguous.

The individual source of structural ambiguities, which often exist in other lan-

guages, may not affect parsing performance in isolation. However, when they are

combined they can be problematic. For example, English text in a diacriticless setting

may not be very problematic but because of the high degree of Arabic word order free-

dom, a lack of diacritics in Arabic text may create problems for parsing, as we have

shown in Section 4.2. Moreover, the zero-copula in Arabic may not be problematic on

its own but when it is aggravated with word order freedom, as explained in Section 4.3

the position of subjects and predicates in sentences are inverted (allowing the predicate

to precede the subject) when there is a zero-copula.



Chapter 5

Parser Development

Dependency parsing has achieved an impressive level of efficiency and robustness in

recent years. This improved performance has contributed to a number of NLP applica-

tions such as Machine Translation, Question Answering, Information Extraction and

many more [Kübler et al., 2009]. There are two main possible factors that contribute

to such improved performance of dependency parsing, which are:

1. The possibility of implementing an efficient and robust parser with a high level

of accuracy.

2. The possibility of concealing the differences in surface word order between lan-

guages by concentrating on the functional relations between words in depen-

dency parsing, where these relations are largely similar across all languages.

Thus, dependency parsers can be used for uniformly treating a number of typo-

logically different languages.

We are, therefore, motivated to base our parser implementation on the dependency

framework. In this framework, there are two different approaches to dependency

parsing. One approach is data-driven, while the other is grammar-driven. In data-

driven parsing, parsers are trained on a set of annotated data, such as treebanks, and a

parse model is generated which is used for guidance in parsing unseen sentences. In

grammar-driven parsing, parsers are guided by a set of specifically defined grammati-

cal rules for a given language which are used for parsing unseen sentences.

Since a large number of treebanks are available for many natural languages, and

they can be seen to have contributed to the development of a number of state-of-the-art

data-driven parsers (such as MaltParser and MSTParser), one can develop a language

90
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independent data-driven parser without the need for linguistic expertise, or specifically

defined grammatical rules for a given natural language. Moreover, since all treebanks

have an underlying grammar that has been used by annotators during treebank building,

it should be possible to extract constraint rules or patterns from them. In Section 6.5.2

we present different ways of extracting constraint rules from a treebank and integrating

them into a data-driven parser.

The focus of this chapter is on describing the implementation of a data-driven

parser, which is largely based on the arc-standard algorithm of MaltParser [Nivre,

2008] but with some modifications. The parser implementation is based on a super-

vised approach, where the input sentences to a machine learning classifier are anno-

tated with correct dependency representations. There are two tasks in supervised data-

driven parsing: (i) a learning task, where a set of annotated input sentences S is used

for generating a parsing model M, and (ii) a parsing task, where for a set of sentences

Si “ S1,S2, . . . ,Sn, the parser derives a dependency graph Gi for Si by using M.

After implementing the data-driven parser, different types of constraint rules are

extracted from a set of dependency trees that we obtain by converting the Penn Arabic

Treebank (PATB) [Maamouri and Bies, 2004] to the dependency format. The effects of

constraint rules on parsing performance are demonstrated during the evaluation of the

parser in Section 6.5. Our aim in integrating constraint rules into a data-driven parser

is to improve parsing accuracy while retaining the benefits of data-driven parsing (in

terms of speed and robustness). In order to control the effect of constraint rules on the

parser, a scoring technique is implemented whereby the score given to constraint rules

determines whether to apply them to the parser or not. In this way we can trade-off

between the speed and accuracy of the parser.

In the sections which follow, we describe the data that we are using for training

and testing a state-of-the-art parser (MaltParser) and also for training and testing our

parser. We then describe an approach for developing a non-deterministic data-driven

parsing algorithm which we evaluate by examining Arabic sentences. Additionally,

we present an approach for generating a parse model M in Section 5.2.4 from a set

of training data for testing on new sentences. The final sections of this chapter are

devoted to describing an approach for extracting different types of constraint rules

from a treebank and integrating them into the non-deterministic data-driven parser.
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5.1 Data for inducing a dependency parser

The kind of data that is suitable for developing a data-driven parser is an annotated

treebank. There are a number of treebanks available for inducing a dependency parser

for a number of natural languages. Some of the most popular treebanks for Arabic are:

Penn Arabic Treebank (PATB) [Maamouri and Bies, 2004], Prague Arabic dependency

treebank (PADT) [Smrž et al., 2008, Smrž and Hajic, 2006], and Columbia Arabic

treebank (CATiB) [Habash and Roth, 2009a].

Each one of these treebanks is different, particularly in terms of their format and

their level of linguistic information. The trees in PATB have phrase structure tree

format while the trees in PADT and CATiB have dependency tree format. Moreover,

the level of linguistic information in PATB and PADT is complex and very rich (each

containing several hundreds of part-of-speech (POS) tags) whereas CATiB encodes

less linguistic information and uses a small set of POS tags (six tags only).

All of these Arabic treebanks, in particular PATB and PADT, have been used in a

variety of natural language applications, such as semantic role labelling, morphological

disambiguation, POS tagging, and parsing. However, these treebanks are not without

limitations when they are used for inducing a parse model. The following list is a

succinct description of limitations of each treebank for parsing.

• PATB employs rich linguistic information such as morphological information,

semantic role information and a set of 420 fine grained POS tags. The POS tags

specify almost every aspect of Arabic word morphology, including definiteness,

gender, number, person, mood, voice and case. There are different versions

of PATB (such as PATB part 1 version 2 containing 168,123 tokens after clitic

segmentation1 and PATB part 2 version 2 containing 125,698 tokens2) where

each version contains various amount of data collected from different Arabic

news wires.

The linguistic information in PATB is sufficient for inducing a parser. However,

the limitation for using this treebank directly for generating a parse model is

that its annotation schemata is based on a phrase structure format, which cannot

be used for dependency parsing. It is, however, fairly easy to convert the tree

structures of PATB to dependency structures (see Section 5.1.2).

1Available at: https://catalog.ldc.upenn.edu/LDC2003T06.
2Available at: https://catalog.ldc.upenn.edu/LDC2004T02.
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• PADT consists of morphologically and analytically annotated data derived from

the Arabic Gigaword3. In total, it contains 148,000 tokens4. It employs more

complex morphological information than PATB. For instance, there is a more

sophisticated distinction between nominal and adjectival definiteness, number,

and gender in this treebank [Habash and Roth, 2009c]. It also employs a very

fine-grained set of POS tags. It is possible to convert the fine-grained POS tags

to a coarse-grained tags for parser training, and to assign coarse-grained POS

tags to unseen data, using currently available Arabic POS taggers, but we do not

have the license for using this treebank, therefore we cannot use it in this study.

• CATiB consists of 31,319 sorties (trees) collected from a wide range of Ara-

bic news wires such as: Agence France Presse, Xinhua, AlHayat, Al-Asharq

Al-Awsat, Al-Quds Al-Arabi, An-Nahar, Al-Ahram and As-Sabah. The total

number of tokens in this treebank is over one million [Habash and Roth, 2009a].

This treebank employs a much smaller linguistic information than the previous

two treebanks (PATB and PADT). It uses only six different POS tags, specifi-

cally:

– NOM (for nominals including nouns, pronouns, adjectives and adverbs).

– PROP (for proper nouns).

– VRB (for verbs).

– VRB-PASS (for passive-voice verbs).

– PRT (for particles such as prepositions or conjunctions).

– PNX (for punctuation).

Although it is possible to generate a parse model from CATiB trees, we do not have

access to one and therefore we cannot use it in this study.

Since we have unrestricted access to the PATB and it is possible to convert phrase

structure trees to dependency trees fairly easily, we will use it for parser training and

testing. The conversion strategy that we have used is based on the standard phrase

structure for dependency transformation algorithms, as described in Section 5.1.2. Be-

fore we describe the approach used for converting phrase structure trees to dependency

3Available at: https://catalog.ldc.upenn.edu/LDC2003T12.
4PADT is available at: http://ufal.mff.cuni.cz/padt/PADT_1.0/index.html.
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trees, it is worth addressing two questions in order to lay the ground for converting

PATB tree to dependency trees: (i) what is the common element among phrase struc-

ture trees and dependency trees? and (ii) how can we use the common elements in the

two different types of trees for converting phrase structure trees to dependency trees?

We will answer these questions in the following section.

5.1.1 Relationships between phrase structure and dependency trees

In most linguistic theories, such as X-bar theory, the notion of head plays an important

role in determining the main properties of a phrase. A head determines the main prop-

erties of a phrase. For example, Figure 5.1(1) shows the phrase structure tree for the

sentence in (11) where the noun N projects a noun-phrase NP and makes the phrase

an NP while the PREP projects a prepositional phrase PP and makes the phrase a PP,

and the same applies to the second NP in the tree. This shows that heads in phrases

determine the phrases’ type.

Heads also have an important role in dependency structures. A common way of

representing dependency structures for the sentence in (11) is shown in Figure 5.1(2),

where the head is a direct parent of its daughter(s) and the head information is explicitly

marked in the dependency structures. From these examples, we conclude that heads

are a common element in phrase structures and dependency structures.

(11) H. QmÌ'@ ú

	̄ Xñ	Jm.Ì'@ É�KA

�̄
qAtl aljnwd fy al.hrb “The soldiers fought in

the war”

S

V

É�KA�̄

qAtl

‘fought’

NP

N

Xñ 	Jm.Ì '@
aljnwd

‘the soldiers’

PP

PREP

ú

	̄

fy

‘in’

NP

N

H. QmÌ'@
al.hrb

‘the war’

(1) Phrase structure tree

É�KA�̄

qAtl

‘fought’

Xñ 	Jm.Ì'@
aljnwd

‘the soldiers’

ú

	̄

fy

‘in’

H. QmÌ'@
al.hrb

‘the war’

(2) Dependency tree

Figure 5.1: Phrase structure and dependency trees for the sentence in (11).
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The most widely used method for finding the head of phrase structure trees in-

volves using a head percolation table [Collins, 1997, Magerman, 1995]. Once the head

of a phrase structure tree is identified, it is fairly easy to convert the trees in PATB

to dependency trees by using the transformation algorithm shown in Figure 5.2, as

discussed in detail by Xia and Palmer [Xia and Palmer, 2001]. We will outline the pro-

cess of converting phrase structure trees to dependency structure trees in the following

section.

5.1.2 Conversion of PATB to dependency structures

We use the PATB5 part 1 version 3 using a ‘without-vowel’ set of trees for generating

a parse model and testing and evaluating our parser. This treebank contains 734 arti-

cles written in Modern Standard Arabic (MSA), which were published by the Agence

France Presse (AFP) news wire between July and November 2000. The data amounted

to 166,068 tokens after clitic segmentation, of which 123,796 tokens were Arabic.

There were approximately 5,000 sentences (i.e., 5,000 phrase structure trees) most of

which were fairly long. Some of them consisted of more than one hundred words and

the average sentence was approximately 29 words. There were some partial sentences

in this treebank. The total number of complete sentences with a head category S (in-

dicating that the tree is a complete sentence rather than a phrase) as the initial node in

the tree was 4,835 while the remainder of the treebank consisted of partial sentences

of two or three words length. We ignored these kinds of sentences because they do not

contribute positively to parser learning.

The standard conversion algorithm for transforming phrase structure trees into de-

pendency trees is shown in Figure 5.2, this is explained in detail by Xia and Palmer

[Xia and Palmer, 2001]. Using the conversion algorithm is a straightforward process.

However, the main challenge is to find the subtrees which contain the head in a phrase

structure tree.

We can identify the heads of phrase structures by surveying all the phrase structure

trees headed by a given label, then we compile a list of labels consisting of the potential

labels of the head daughters of the subtrees. This process automatically generates a

‘head percolation table (HPT)’ [Collins, 1997]. It is called this because lexical items

are percolated from their heads to their various projections in a tree. We can see from

Figure 5.1(1) that N projects to NP, which makes the N the head-child of the NP.

5Catalogue number LDC2005T02 from the Linguistic Data Consortium (LDC). Available at:

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2005T02.
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1. If the current node is a leaf node then produce a tree with

no daughter.

2. a). Otherwise, first find the subtree which contains the head

and convert it into a dependency tree called DEPTREE.

b). Then, process all other subtrees and convert them into

dependency trees and add them as daughters of DEPTREE.

Figure 5.2: Phrase structure to dependency tree algorithm.

Entries in HPT take the form (x direction y1{y2{ . . .{yn) where x and yi are POS

tags, direction is either left or right (indicating that inspection for the head-child of x

should start from left or from right of the set of children of x), and yi is a set of pos-

sible children of x. So, for example, the entry for S in the HPT takes the form (S left

V/IV/PV/VERB/VP/NP). This indicates that the head-child of S in the HPT is the first

item of the set of head-children of S from the left-hand-side of the set V/IV/PV/VER-

B/VP/NP, which in this case is V. This interpretation applies to other entries in the HPT

such as NP, VP etc.

In the phrase structure tree in Figure 5.1(1), for example, the root node (S) has

three children, V, NP, and PP. The conversion algorithm in Figure 5.2 selects the node

V as the head-child of S, because it is the first item from the left-hand-side of the set of

children of S, and treats the NP and the PP as the non-head-child. Thus, the head É�KA�̄

qAtl “fought”, which is the head-child of the node V, is made the dependency parent of

the head Xñ	Jm.Ì'@ aljnwd “the soldiers” and ú

	̄

fy “in” of the non-head-child NP and PP

respectively in the dependency structure in Figure 5.1(2).

The items (labels) in the HPT can be ordered in terms of preferences as to which

item should be the head-child of a node; i.e., in terms of what we believe to generate

a reasonable organisation of dependency trees. Reordering the head-child in the HPT

makes the HPT generation process a semi-automatic one6 and we can then use the al-

gorithm in Figure 5.2 to generate dependency trees by recursively traversing through

all the phrase structure trees in the PATB.

It is important to note that the ordering of labels in the HPT table influences the

organisation of dependency trees. For example, if the entry in the HPT for the S is (S

left NP/V/IV/PV/VERB/VP) instead of (S left V/IV/PV/VERB/VP/NP), then we will get

6We automatically collect a set of children for a head but then we manually reorder the set of children

of a head, which we consider a semi-automatic process of creating HPT.
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a different dependency tree for the sentence in (11), as shown in Figure 5.3, from that

shown in Figure 5.1(2).

Xñ	Jm.Ì'@
aljnwd

‘the soldiers’

É�KA�̄
qAtl

‘fought’

ú

	̄

fy

‘in’

H. QmÌ'@
al.hrb

‘the war’

Figure 5.3: A different dependency tree for the sentence in (11) with NPs as the head-

child of S.

Since different organisation of labels in HPT entries produce different dependency

trees, it is acceptable to believe that training a parser on trees that are structured in

different ways may affect parsing performance. Hence, we experimented with different

versions of HPT for converting the PATB trees to dependency trees in order to assess

the effectiveness of each version (as shown in Section 5.1.3).

It is important to note that the effectiveness of a particular HPT version on parsing

performance does not directly reflect the plausibility of the grammatical structure of

the dependency tree produced by that HPT version. In Section 5.1.3.1 we present an

approach to transforming a dependency tree produced by a particular version of HPT

to a tree that would have been produced by a different version of HPT.

The problems that may arise during the conversion process, which are caused by

the nature of the PATB, may include the following:

• word order freedom and traces: In order to accommodate the word order free-

dom in Arabic, traces and indexes are used in PATB for representing subjects

and objects of sentences. The function of an item, which indicates whether it is

a subject or an object, is used for co-indexing an extraposed item with it. We

perform a pre-processing step before converting the PATB from phrase structure

format to dependency format by removing traces and replacing them with their

co-indexed items. For example, the pronoun ñë hw “he (3rd.mas.sing.)” in Fig-

ure 5.4 in the NP-TPC-1 phrase where the numeric value 1 is used as its index
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is co-indexed with a trace in the NP-SBJ-1 phrase, so that the numeric value of

the former phrase matches the index of the latter phrase, which is taken to be the

subject of I. »QK
 yrkb “gets on (3rd.masc.sing)”. So, the tree in Figure 5.4 will

become identical to the tree in Figure 5.5 when we treat the traces.

(...

(S

(NP-TPC-1

(PRON_3MS ñë hw “he”))

(VP

(IV3MS+IV+IVSUFF_MOOD:I I. »QK
 yrkb “gets on”)

(NP-SBJ-1 (-NONE- *T*))

(NP-OBJ (DET+NOUN+CASE_DEF_ACC �AJ.Ë @ AlbA.s “the bus”)))) ...)

Figure 5.4: An example of a trace in PATB.

(...

(S

(VP

(IV3MS+IV+IVSUFF_MOOD:I I. »QK
 yrkb “gets on”)

(NP-SBJ-1

(PRON_3MS ñë hw “he”))

(NP-OBJ (DET+NOUN+CASE_DEF_ACC �AJ.Ë @ AlbA.s “the bus”)))) ...)

Figure 5.5: A transformed version of the tree of Figure 5.4.

Since relations between words are important when representing the dependency

structure of a sentence and the fact that traces are not words, any attempt to

use them will violate the basic concept of a dependency framework. There-

fore, when converting PATB trees to dependency trees, we systematically replace

traces with their co-indexed NPs.

• fine-grained POS tags: PATB employs a rich set of POS tags (420 tags). Some

of the linguistic information included in the POS tags consists of inflectional fea-

tures, such as number and gender agreement, person, and case-marking. Since it

is difficult to accurately assign fine-grained POS tags to Arabic using POS tag-

gers (such as MADA [Habash and Roth, 2009b] and AMIRA [Diab, 2009]), it

is difficult to accurately parse newly seen data when training data, which is used

for parser training, is annotated with fine-grained POS tags.

Previous experiments conducted by Marton et al., [Marton et al., 2013, Marton

et al., 2010] showed that attempting to recognise case-marking hurts parsing ac-

curacy. The negative impact of incorrect case-marking on parsing accuracy with

Modern Standard Arabic (MSA) is related to the fact that case-marking agree-

ments do not occur explicitly in undiacritised written MSA thus, parsers cannot
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adequately learn from them during the training phase, which can subsequently

have a negative impact on parsing accuracy.

Since it is difficult to assign fine-grained tags to newly seen data, we reduce the

PATB tags to a set of coarse-grained POS tags for parsing Arabic. Thus, when

converting the PATB to dependency format we collapse the tag set to a set of

coarse-grained POS tags. The simplest way to obtain a set of coarse-grained

POS tags from a set of fine-grained POS tags is to remove information from the

latter. In Table 5.1 we present an example of a couple of coarse-grained POS

tags that we have obtained from a set of fine-grained POS tags. In Table 5.2 we

show the set of coarse-grained tags we have extracted from PATB.

Coarse-grained tag Fine-grained tags

IV IV1P+IV+IVSUFF_MOOD:I

IV1P+IV+IVSUFF_MOOD:S

IV1P+IV_PASS+IVSUFF_MOOD:S

IV1S+IV+IVSUFF_MOOD:J

IV1S+IV_PASS+IVSUFF_MOOD:S

IV2MP+IV+IVSUFF_SUBJ:MP_MOOD:I

IV2MS+IV+IVSUFF_MOOD:I

...

NOUN NOUN+CASE_DEF_GEN

NOUN+CASE_INDEF_ACC

NOUN+CASE_INDEF_GEN

NOUN+NSUFF_FEM_DU_ACC

NOUN+NSUFF_FEM_DU_ACC_POSS

NOUN+NSUFF_FEM_DU_NOM

NOUN+NSUFF_FEM_DU_NOM_POSS

NOUN+NSUFF_FEM_PL+CASE_DEF_GEN

...

Table 5.1: Example of fine-grained and coarse-grained POS tags.

Since it is possible to indicate the functional relations between parents and daugh-

ters by using labels, such as subject or object, in dependency structures, we ex-

tract the functional relations from the phrase structure trees that are attached to

some of the head phrases in PATB. We use several labels in our dependency

trees, which are: COORD (coordinate), DEP (dependent), OBJ (object), PNX

(punctuation), ROOT (root), and SBJ (subject).

• Initial ð w “and” conjunction: The conjunction ð w “and” marks the start of
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ABBREV DET+NOUN INTERROG_PART NOUN_NUM PUNC

ADJ DET+NUM IVSUFF_DO NUM PV

ADV DEM_PRON LATIN NUMERIC_COMMA PVSUFF_DO

CONJ EXCEPT_PART NEG_PART PART RC_PART

CV FOCUS_PART NO_FUNC POSS_PRON REL_PRON

DET IV NOUN PREP SUB_CONJ

DET+ADJ INTERJ NOUN_PROP PRON SUB

VERB VERB_PART

Table 5.2: Coarse-grained POS tags extracted from PATB.

large numbers of sentences in PATB. Intuitively, we may think that this conjunc-

tion is implicitly conjoining the first clause of the current sentence to a previous

sentence, which may encourage us to treat it as its head. However, doing so may

conflict with the way in that PATB treats it. In PATB, if ð w “and” appears at

the beginning of a sentence, it is treated as the head of the whole sentence rather

than as an item relating the first clause of the current sentence to a previous sen-

tence. For instance, a sentence with a general form such as CONJ S1, CONJ

S2 . . . CONJ Sn we may bracket it as CONJ (S1 CONJ S2 . . . CONJ Sn) but the

PATB brackets it as (CONJ S1) CONJ S2 CONJ . . . CONJ Sn. In order to make a

distinction between the sentence-initial conjunction that is treated as the head of

the whole sentence with similar conjunctions that conjoin sentence clauses, we

will mark the sentence-initial conjunctions as ICONJ. This technique has been

used previously by Alabbas [Alabbas, 2013] and has improved parsing accuracy.

• verbless or equational sentences: Verbless or equational sentences in Ara-

bic consist of a noun-phrase (subject) and another noun-phrase, a prepositional

phrase or an adjectival phrase where they are treated as the predication of sen-

tences. Semantically, we could use the predication as the head of the sentence for

treating Arabic verbless sentences, which is arguably the right thing to do [Al-

abbas, 2013]. However, because our parser uses local contexts as clues to guide

its decisions and because previous experiments by Alabbas [Alabbas, 2013] on

MaltParser showed that treating the subject as the head yielded more accurate

result, we will use the subject of a verbless sentence as the head.
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5.1.3 The evaluation of PATB conversion

We have mentioned previously that the ordering of a head-child in terms of preferences

in the HPT affects the organisation of dependency trees, where we use these trees for

parser training and testing. In order to check the effectiveness of different HPTs, we

have compiled different versions of them for obtaining dependency trees where parsers

can perform best with them.

We will evaluate the dependency trees obtained by using different versions of

HPTs using a state-of-the-art parser (MaltParser7), which our parser implementation is

largely based on8. Once we identify the best HPT version, then we will use the same

trees for evaluating our parser in the following chapter.

5.1.3.1 The transformation of HPT outputs

It is important to note that the variation in parsing accuracy using any version of the

HPT does not reflect the linguistic significance of ordering the items in the HPT. Al-

though we prefer to use a version that helps to achieve the highest degree of parsing

accuracy, it is fairly easy to change the organisation of the dependency trees produced

by a version of HPT to a format that would be produced by a different HPT version.

If we are using HPT V.3, which gives coordinated conjunction a higher priority than

nouns, the result will be identical to the tree in Figure 5.6(1). If we are using HPT V.4,

which gives coordinated conjunction a lower priority than nouns, then the result will

be the same as the tree in Figure 5.6(2).

ð
w

‘and’

	àA 	JJ. Ë
lbnAn

‘Lebanon’

�éK
Pñ�
swryT

‘Syria’

(1) High priority for

CONJ

	àA 	JJ. Ë
lbnAn

‘Lebanon’

ð
w

‘and’

�éK
Pñ�
swryT

‘Syria’

(2) Low priority

for CONJ

Figure 5.6: Different treatment of sentence-initial conjuction.

Here we will show an approach for transforming differently organised dependency

7We have tested MaltParser with the default settings of the Nivre arc-standard algorithm [Nivre,

2008] because we are implementing our parser based on this algorithm.
8The modifications made to the arc-standard algorithm of MaltParser are explained in Section 5.2.
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trees that are produced by different versions of HPT, moving from one representation

to another by using a simple algorithm that uses a rewrite rule. We demonstrate the

way we can reorganise tree structures produced by HPT V.3 (which gives ‘CONJ’

and ‘ICONJ’ the highest priority) to tree structures that would have been produced

by HPT V.4 (which gives ‘CONJ’ and ‘ICONJ’ the lowest priority). For example,

the rewrite rule in (12) can be used for transforming the tree in Figure 5.7(1) to the

tree in Figure 5.7(2). A tree is traversed and checked if there is a rewrite rule that

matches it, and the rewrite rule is then applied to it. This subsequently reorganises its

structure accordingly. The structure of the tree in Figure 5.7(1) matches the left-hand-

side of a rule in 12, and thus we can reorder the tree element to match the other side

of the rewrite rule. The same process but with different rewrite rules can be used for

transforming trees produced by HPT V.5 to trees with determiners heading nouns and

other variations induced by changes to the HPT.

(12) CONJ(X (XD), Y (YD))Ñ X (XD, CONJ, Y (YD))

andCONJ

playedX

JohnXD

watchedY

MaryYD

(1) Tree one

playedX

JohnXD
andCONJ watchedY

MaryYD

(2) Tree two

Figure 5.7: Different forms of dependency tree organisation for the sentence John

played and Mary watched.

5.1.3.2 The production of different HPT versions

From our previous observations of converting PATB trees to dependency structures in

Section 5.1.2 we will produce the following versions of HPT (see Appendix D for the

organisation of heads in each HPT version):

1. HPT V.1: The ordering of the elements inside the HPT is performed randomly

during the conversion procedure.

2. HPT V.2: This is the same as HPT V.1 but splits coordinate conjunctions (CONJ)

into CONJ and ICONJ where ICONJ is used for sentence-initial coordinates and

CONJ is used for non-sentence-initial coordinates.
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3. HPT V.3: This is the same as HPT V.2 but items in the entries are ordered accord-

ing to their phrase category. For example, adjectives in adjectival phrases are put

before nouns or prepositions. Additionally, coordinating conjunctions (CONJ

and ICONJ) have the highest priority inside all the entries and determiners are

given higher priority than nouns. It could be argued that coordinating conjunc-

tions should be treated either as heads or as modifiers in conjunction phrases.

Moreover, we can see that coordinated conjunctions are treated differently in

PADT and CATiB treebanks, as shown in Figures 5.8(2) and 5.8(3) respectively

for the sentence in (13). In PADT the coordinating conjunction is treated as the

head of the conjunction, whereas in CATiB the first conjunct is treated as the

head of the coordinated conjunction where the coordinated conjunction heads

the second conjunct. If we give coordinated conjunctions a high priority then we

get the tree in Figure 5.8(4), where the coordinated conjunction is the head of

the first conjunct in the conjunction.

(13) An Arabic sentence ([Habash and Roth, 2009c])9

ú
æ
	�AÖÏ @ ÈñÊK



@ ú


	̄ �éK
Pñ� ð 	àA 	JJ. Ë @ðP@ 	P l�' A� 	Ë@ 	àñ�Ô 	g
“xmswn ’lf sA’i.h zArwA lbnAn w swry’ fy ’ylwl almaDy”

Fifty thousand tourists visited Lebanon and Syria last September

4. HPT V.4: Same as HPT V.3 but coordinating conjunctions (CONJ and ICONJ)

have the lowest possible priority inside all the entries. If we give CONJ and

ICONJ a low priority in the HPT then we get a tree like that in Figure 5.8(5),

where the noun heads the conjunction phrase.

5. HPT V.5: Some theories, such as categorial grammar, treat the determiner as the

head of the noun in NPs while others, such as GPSG [Gazdar et al., 1985] and

HPSG [Pollard and Sag, 1994], treat the noun as the head of determiners. In Ara-

bic, there are no indefinite articles to be treated as determiners and the definite

articles, which are determiners, are attached to nouns. Thus most of the deter-

miners (definite articles) in PATB are treated as a part of the noun. For example,

Ë @ the in the word �AJ. Ë @ AlbA.s ’the bus’ is a definite article attached to the noun

’bus’. However, there are some numbers and demonstrative determiners in the

9We use this example to show the difference between our dependency tree and those in PADT and

CATiB.
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Figure 5.8: A comparison of a PATB tree with trees in PADT, CATiB, and ours (without

POS tags and functional labels) for the sentence in example (13).



5.1. DATA FOR INDUCING A DEPENDENCY PARSER 105

PATB and giving them priorities to be the heads of nouns could affect parsing

accuracy. In this version we give nouns a higher priority than determiners and

everything else is the same as HPT V.3.

5.1.3.3 5-fold cross validation

We split the dependency treebank, which we have obtained by converting PATB (for

convenience, we will call the converted PATB ‘DATB’ from now on), into training data

and testing data.

In order to perform a 5-fold cross validation, we can systematically generate five

sets of testing data and five sets of training data from the dependency treebank. For

example, the first set of testing data contains the first 20% of the DATB sentences and

the remaining 80% of the sentences are used as training data, the second set of testing

data consists of the second 20% of the DATB sentences and the remaining 80% of the

sentences are used for training data, and so on. The training data for each fold contains

about 112,800 tokens while the testing data for each fold contains about 28,000 tokens.

The average length of the sentences is 29 words. The total number of testing sentences

in each fold is about 970 and the total number of training sentences in each fold is

about 3870.

We will use the dependency trees generated by using different HPT versions for

evaluating the arc-standard algorithm of MaltParser because this is one of the state-

of-the-art parsers and our parser is largely based on this algorithm. We compare the

output of MaltParser against a gold-standard POS tagged data set, which we obtain

from DATB, to measure the accuracy of the parser. The term accuracy is used as a

measure for indicating the correctness of parser output by comparing it against a gold-

standard data. We present three accuracy measures: (i) labelled attachment score

(LAS), which is the percentage of the correct dependency relations with the correct

labels of the dependency relations (DEPREL) between tokens as shown in Table C.1

in Appendix C, (ii) unlabelled attachment score (UAS), which is the percentage of

the correct dependency relation (i.e., the percentage of tokens with the correct head)

regardless of the DEPREL, and (iii) label accuracy (LA), which is the percentage of

tokens with the correct dependency label.

We obtain the accuracy scores by using the scoring of the CoNLL evaluation soft-

ware from the CoNLL-X shared task, eval.pl10, with the default settings which exclude

the punctuation tokens in computing the scores for LAS, UAS, and LA. Additionally,

10Available at: http://ilk.uvt.nl/conll/software.html#eval.
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we evaluate the parsing efficiency by measuring the parsing time in seconds per de-

pendency relations between two tokens.

We obtain the LAS, UAS, and LA results for all the folds and then we divide the

total for each of the LAS, UAS, and LA by the number of folds to get the average

accuracy rate of each one of them.

The results for testing MaltParser on different versions of the HPT are shown in

Table 5.3. We have conducted all of the testing on the MaltParser at this stage because

we would like to find out which version of the HPT leads to the best parse results.

Then, we will use the DATB produced by that version of the HPT for performing

a number of evaluations on our parser in Chapter 6, which we will compare against

the results we have obtained for MaltParser. From Table 5.3 we can identify that the

parser performs best when using HPT V.5 for converting PATB data to the dependency

format. This version of HPT is presented in Figure 5.9

HPT MaltParser Speed

UAS (%) LAS (%) LA (%) Second/Relation

V.1 56.7 52.5 86.96 0.171

V.2 57.8 53.1 87.12 0.2

V.3 74.9 69.8 92.17 0.146

V.4 74.8 69.6 91.98 0.163

V.5 75.2 70.0 92.2 0.144

Table 5.3: MaltParser performance when trained and tested on different versions of

HPT.

• V.1 Random head-child ordering.

• V.2 Same as (V.1) but sentence-initial CONJ is marked as ICONJ.

• V.3 Same as (V.2) but items are ordered based on their phrase category and coor-

dinated items are given the highest priority in every HPT entry, and determiners

are given higher priority than nouns.

• V.4 Same as (V.3) but coordinated items are given the lowest priority in every

entry.

• V.5 Same as (V.3) but nouns have higher priority than determiners. This version

leads to more accurate parsing and is much faster than the other versions.
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POS tag Possible head-child(s)

---------------------------------------------------------------------------------------------------

ADJP CONJ, CONJP, ADJ, DET+ADJ, ADJP, NOUN, DET+NOUN, DET, NP

ADJP-OBJ ADJ

ADJP-PRD CONJ, ADJ, ADJP, NOUN, NP

ADV CONJ, ADV, VP, PV, VERB, S, NOUN, DET+NOUN, NP, NP-SBJ, REL_PRON, PRON, NOUN_NUM, PART,

ADJ, DET+ADJ, PP, NUM, PART, SUB_CONJ, SBAR

CONJP ICONJ, CONJ, NOUN, ADJ, PART, PREP

FRAG CONJ, SBAR, NOUN, NP, PRT, ADV, PP, FRAG

NAC CONJ, NOUN, NP, ADV, SUB_CONJ

NP ICONJ, CONJ, NOUN, NOUN_PROP, DET+NOUN, DET, NP, POSS_PRON, DEM_PRON, PRON, PV, SBAR,

PART, PRN, ADV, ADJ, DET+ADJ, PREP, PP, QP, NOUN_NUM, NUM, ABBREV, VP, S, FOREIGN

NP-OBJ CONJ, NOUN, NOUN_PROP, DET+NOUN, DET, NP, PRON, VP, S, ADJ, DET+ADJ, QP, NOUN_NUM, NUM,

ABBREV

NP-PRD CONJ, NOUN, NOUN_PROP, NP, PRON, PART, ADJ, QP, NOUN_NUM, NUM, ABBREV

NP-SBJ CONJ, NOUN, NOUN_PROP, DET+NOUN, DET, NP, PRON, SBAR, PRT, PV, ADJ, DET+ADJ, QP, ABBREV

NP-TPC CONJ, NOUN, NOUN_PROP, NP, PRON, ADV, ADJ, NUM, PUNC

PP ICONJ, CONJ, PREP, PP, NOUN, DET+NOUN, NOUN_PROP, SBAR, PV, VP, X, NP, S, NEG_PART

PP-OBJ PREP, PP, NOUN

PP-PRD CONJ, PREP, PP, NOUN, NP, S, PART, SBAR

PP-SBJ PREP

PRN CONJ, S, NP, ADV, PP, NOUN, NOUN_PROP, DET+NOUN, NUM, SBAR, ADJ, ADJP

PRT ICONJ, VERB, PART, PRT

QP CONJ, NOUN, NOUN_NUM, NUM, ADJ

S ICONJ, S, VERB, PV, IV, VP, CONJP, CONJ, NP, NP-TPC, NP-SBJ, NP-PRD, PRT, SBAR, ADV,

ADJP, ADJP-PRD, PP, PP-PRD, PART, FRAG, FRAG-PRD, X

S-PRD VP

S-SBJ VP

SBAR ICONJ, CONJ, VERB, PV, INTERJ, NOUN, S, PART, PRON, SBAR, UCP, SUB_CONJ, WHNP

SBAR-SBJ SBAR, S, SUB_CONJ

SBARQ SQ, S

SBARQ-PRD S

SQ NP-SBJ

UCP CONJ, S, NP, SBAR, VP, ADV, ADJP

UCP-OBJ CONJ, NP

UCP-PRD CONJ, NP

UCP-SBJ CONJ, NP

VP ICONJ, CONJ, PRT, VERB, PV, IV, CV, VP, PART, X, S, SBAR, NOUN, NOUN_PROP, NP, NP-SBJ,

NP-PRD, NP-OBJ, NP-TPC, ADJ , ADV, PREP, PP, NEG_PART, NAC

WHNP CONJ, NOUN, NP, PRON, PREP, PP, WHNP

X ICONJ, CONJ, PV, IV, PART, NOUN, NP, NOUN_PROP, PRON, PREP, NEG_PART, NUM, ABBREV,

NO_FUNC, PUNC

Figure 5.9: HPT V.5, similar to V.3 but nouns have higher priority than determiners.
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5.1.3.4 A brief error analysis

The different treatments of CONJ and NP items in the HPT affect the performance of

MaltParser. We analyse the errors made by MaltParser by looking at the number of

words and the types of words for which the parser failed to assign the correct head

or the correct dependent. The CoNLL evaluation output contains precisely the num-

ber of incorrectly assigned heads, dependents, and head and dependent for specific

words. In Table 5.3 we can observe that when marking the sentence-initial conjunc-

tions as ’ICONJ’, the parsing accuracy improves by 0.54% for LAS, 1.17% for UAS,

and 0.16% for LA. There may be a number of reasons for this improvement in accu-

racy. Firstly, it is likely that the parser does not assign incorrect items to sentence-initial

conjunctions when they are marked as ICONJ. Thus the CoNLL evaluation software

did not include the ICONJ in the errors in Figure 5.10 since not many items are as-

signed to ICONJ incorrectly, which confirms this analysis. We may also notice that the

number of errors regarding ’CONJ’ is significantly reduced. The parser assigned in-

correct dependents, and incorrect head and dependent to w/CONJ twice only compared

with twenty one times when the sentence-initial CONJ was not marked as ICONJ. Other

items that the parser made slightly less mistakes with are fy/PREP and b/PREP.

Moreover, an interesting effect on the parsing accuracy when marking sentence-

initial conjunctions as ’ICONJ’ is that the parser may assign incorrect head or de-

pendent to different types of words. For example, as can be seen from Figure 5.10,

the parser assigns incorrect heads or dependents to An/SUB_CONJ instead of mn/PREP

when sentence-initial CONJ is marked as ICONJ. It is also worth noting that the num-

ber of incorrect heads, dependents, or both assigned to An/SUB_CONJ is less than those

assigned to mn/PREP, which could be another factor in terms of improved accuracy.

A persistent pattern when sentence-initial conjunction is marked as ‘ICONJ’ is that

the assignments of incorrect dependents to heads are reduced for all words in Figure

5.10(2), while other relations (head, any, and both) have also been reduced for most

of the words.

In the following sections, we will describe our implementation of MaltPaser and

will give a detailed description of how to apply various constraints to improve its per-

formance.
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| any | head | dep | both

--------+-----+------+-----+-------------

w/CONJ | 864 | 864 | 21 | 21

fy/PREP | 837 | 674 | 554 | 391

b/PREP | 397 | 391 | 54 | 48

l/PREP | 396 | 379 | 65 | 48

mn/PREP | 327 | 295 | 114 | 82

(1) Top 5 word errors when MaltParser used HPT V.1

| any | head | dep | both

------------+-----+------+-----+-----------

w/CONJ | 851 | 851 | 2 | 2

fy/PREP | 825 | 672 | 534 | 381

b/PREP | 407 | 402 | 52 | 47

l/PREP | 390 | 376 | 64 | 50

An/SUB_CONJ | 331 | 330 | 11 | 10

(2) Top 5 word errors when MaltParser used HPT V.2

Figure 5.10: Parse errors when using different HPT versions.

5.2 A basic shift-reduce parser

We base our parser implementation on the arc-standard algorithm of MaltParser. The

arc-standard algorithm is the closest correspondent to the shift-reduce parsing algo-

rithm, which we have explained in Section 2.5. There are three parse operations in the

arc-standard algorithm, LEFT-ARC, RIGHT-ARC, and SHIFT. These operations are

applied to a queue of words which have not yet been looked at and a stack of words

which have been inspected but have not yet been assigned a syntactic role.

The LEFT-ARC and the RIGHT-ARC operations correspond to the reduce action

of the shift-reduce algorithm. These two operations establish head-dependent relations

between the head item of the queue and the top item on the stack. The SHIFT operation

is exactly the same as the shift action in the shift-reduce algorithm. The LEFT-ARC

and the RIGHT-ARC operations are applied to one node in a queue of input strings and

one node on the stack. The LEFT-ARC operation makes the first node in the queue the

parent of the top node on the stack and pop the stack while the RIGHT-ARC operation

makes the top node on the stack the parent of the first node in the queue, pop the queue

and returns the item on the top of the stack to the queue.

The original implementation of the arc-standard algorithm uses a deterministic ap-

proach for parsing natural language text, where a support vector machine (SVM) clas-

sifier [Chang and Lin, 2011] is used for learning parse operations from a dependency

treebank. The classifier helps the parser to predict the most likely correct parse op-

eration when it is presented with a non-deterministic choice between multiple parse

operations. As Nivre [Nivre, 2008] states, in this kind of implementation the parser

derives a single parse analysis by incrementally selecting a parse operation, which

makes the parsing process very simple and efficient. Moreover, by using an appropri-

ate classifier, a good parsing accuracy is achievable [Nivre, 2008, p. 514] and he shows

that the arc-standard algorithm produces better accuracy than other algorithms of Malt-

Parser (such as the arc-eager algorithm) for Arabic, where for unlabelled attachment

score with arc-standard the parser achieves 77.76% while with arc-eager it achieves
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76.31%, and for labelled attachment score it achieves 65.79% with arc-standard and

64.93% with arc-eager.

The main difference between the arc-standard algorithm and the arc-eager algo-

rithm is that the former has an extra parse operation (the REDUCE operation) in ad-

dition to the LEFT-ARC, RIGHT-ARC, and SHIFT operations. In the arc-eager algo-

rithm, the RIGHT-ARC operation attaches the right dependents to a head before the

right dependents find all of their own right dependents. The parent and the dependent

are stored on the stack for further processing by the RIGHT-ARC operation and they

are removed from the stack by the REDUCE operation at a later time.

The original arc-standard algorithm uses a deterministic approach to parsing natu-

ral language texts. The parser follows suggestions made by a parse model to perform

a specific parse action (LEFT-ARC, RIGHT-ARC, or SHIFT) at each parse step. Per-

forming the wrong parse action at a particular step during parsing will have a knock

on effect on subsequent parsing steps. Hence, the error propagation could be substan-

tial. Using a non-deterministic approach, where the parser is presented with multiple

actions to take, allows the parser to recover from a previous mistake if this is subse-

quently identified.

We re-implement the arc-standard algorithm in a way that lets us run it both de-

terministically and non-deterministically. We will call our parser DNDParser, which

is short for deterministic and non-deterministic data-driven parser. At each parse step,

we generate a state for LEFT-ARC, RIGHT-ARC, and SHIFT, and we will assign dif-

ferent scores to each state. Each score is computed according to the recommendations

made by the parsing model. For example, if the parse model recommends a SHIFT

action when the parser is generating a SHIFT state then we can give the state a score of

a positive number. Otherwise we give a score of 0, and the same computation is used

for scoring LEFT-ARC and RIGHT-ARC states.

5.2.1 Non-projective parsing

With the original implementation of the arc-standard algorithm it is not possible to

produce non-projective parse trees. Using the parse transitions in Figure 5.12, we

show that using the standard LEFT-ARC, RIGHT-ARC and SHIFT operations it is not

possible to parse the non-projective Czech sentence in Figure 5.11.

In Figure 5.12 we demonstrate the transitions of the original algorithm for parsing

the non-projective Czech sentence in 5.11 in an attempt to reproduce the dependency

graph in Figure 5.11 using the dependency relations that exist between the words in the
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sentence. These dependency relations, which we extract from the dependency graph

in Figure 5.11, are displayed above the parse transitions in Figure 5.1211.

ROOT0 Z1 nich2 je3 jen4 jedna5 na6 kvalit7 .8
(Out-of them is only one-FEM-SG to quality .)

(“Only one of them concerns quality.”)

AuxK

AuxP

AuxPPred

Sb

Atr AuxZ Adv

Figure 5.11: Non-projective dependency graph for a Czech sentence from the Prague

Dependency Treebank. [Nivre et al., 2010].

Dependency relations: (0 > 3) (0 > 8) (1 > 2) (3 > 5) (3 > 6) (5 > 1) (5 > 4) (6 > 7)

-------------------------------------------------------------------------------------------------

Steps Action Queue Stack Arcs

-------------------------------------------------------------------------------------------------

1 θ [0,1,2,3,4,5,6,7,8] [] θ
2 SHIFT [1,2,3,4,5,6,7,8] [0] θ
3 SHIFT [2,3,4,5,6,7,8] [1,0] θ
4 RIGHT-ARC [1,3,4,5,6,7,8] [0] A1=(1 > 2)

5 SHIFT [3,4,5,6,7,8] [1,0] A1

6 SHIFT [4,5,6,7,8] [3,1,0] A1

7 LEFT-ARC [5,6,7,8] [4,3,1,0] A2=A1Y(5 > 4)

8 _ [5,6,7,8] [3,1,0] A2

-------------------------------------------------------------------------------------------------

Figure 5.12: Parse transitions for processing the sentence in Figure 5.11 using the

original arc-standard algorithm of MaltParser.

In step 8 as shown in Figure 5.12, the parser may perform LEFT-ARC, RIGHT-

ARC, or SHIFT operations, but none of these operations leads to producing a tree

matching the original non-projective tree. According to the set of dependency relations

(as shown at the top of Figure 5.12), a LEFT-ARC operation is not allowed. If the

parser performs a LEFT-ARC operation, it will lead to producing a tree that will not

match the original tree because that will make 5 the head of 3, which does not match

any relations in the original tree. If the parser performs RIGHT-ARC operation is

allowed which will make 3 the head of 5 but at this stage this is not an ideal operation

because 5 will not be available in subsequent stages when it is required to become the

11Although we show that the parser fails in Figure 5.12, the algorithm will not fail in reality because

it will assign the head of the queue as the parent or as the daughter of an item on the top of the stack and

it will produce a graph. However, the graph will not be the actual graph that we attempt to reproduce.
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head of 1, which remains on the queue12. This means that 1 will subsequently receive

the wrong head, which leads to producing a tree that does not match the original tree.

SHIFT operation will produce a state where 5 is at the top of the stack, which means

that both 5 and 3 are placed on the stack. This means that they will never be in a state

where 3 can be assigned as the head of 5 and thus the parser will not produce a tree

that matches the original tree.

We extend the original algorithm to allow for this limitation. Our extension allows

the LEFT-ARC and the RIGHT-ARC operations to combine the head of the queue

with an item that may or may not be at the top of the stack, and thus we have more

complex ARC operations, which are LEFT-ARC(N) and RIGHT-ARC(N) where N is

the position of the item on the stack which is combined with the head of the queue.

Moreover, post LEFT-ARC(N) or RIGHT-ARC(N) operations, the extended algorithm

will move N items back to the queue from the stack. For example, if the head of the

queue is combined with the third item on the stack (i.e., after LEFT-ARC(3)), then the

top two items on the stack are moved back into the queue.

Dependency relations: (0 > 3) (0 > 8) (1 > 2) (3 > 5) (3 > 6) (5 > 1) (5 > 4) (6 > 7)

-----------------------------------------------------------------------------------------

Steps Action Queue Stack Arcs

-----------------------------------------------------------------------------------------

1 θ [0,1,2,3,4,5,6,7,8] [] θ
2 SHIFT [1,2,3,4,5,6,7,8] [0] θ
3 SHIFT [2,3,4,5,6,7,8] [1,0] θ
4 RIGHT-ARC(0) [1,3,4,5,6,7,8] [0] A1=(1 > 2)

5 SHIFT [3,4,5,6,7,8] [1,0] A1

6 SHIFT [4,5,6,7,8] [3,1,0] A1

7 SHIFT [5,6,7,8] [4,3,1,0] A1

8 LEFT-ARC(0) [5,6,7,8] [3,1,0] A2=A1Y(5 > 4)

9 LEFT-ARC(1) [5,6,7,8] [3,0] A3=A2Y(5 > 1)

10 RIGHT-ARC(0) [3,6,7,8] [0] A4=A3Y(3 > 5)

11 SHIFT [6,7,8] [3,0] A4

12 SHIFT [7,8] [6,3,0] A4

13 RIGHT-ARC(0) [6,8] [3,0] A5=A4Y(6 > 7)

14 RIGHT-ARC(0) [3,8] [0] A6=A5Y(3 > 6)

15 RIGHT-ARC(0) [0,8] [] A7=A6Y(0 > 3)

16 SHIFT [8] [0] A7

17 RIGHT-ARC(0) [0] [] A8=A7Y(0 > 8)

18 SHIFT [] [0] A8

19 θ [] [0] A8

-----------------------------------------------------------------------------------------

Figure 5.13: Parse transitions for processing the sentence in Figure 5.11 using a mod-

ified arc-standard algorithm of MaltParser.

By extending the algorithm to allow for combining the head of the queue with an

appropriate item that may be buried in the stack, we can reproduce the non-projective

12The LEFT-ARC and the RIGHT-ARC operation will remove the dependent item from the queue or

the stack and hence the dependent item will not be available in subsequent parsing steps.
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graph shown in Figure 5.11, given the set of dependency relations extracted from the

graph. This is our contribution C.4 of this study. The parse transitions of the extended

algorithm, as shown in Figure 5.13, reproduce the non-projective graph shown in Fig-

ure 5.11. The line in bold in step 9 of Figure 5.13 shows the parse transitions that the

original algorithm would not have performed. In step 8, the extended algorithm com-

bines the head of the queue with the second item on the stack using the LEFT-ARC(1)

operation13.

Our approach contrasts with the treatment of non-projective dependencies in the

standard non-projective MaltParser algorithm, which is a list-based algorithm.

The list-based algorithm uses two lists, a queue of input strings, and a set of depen-

dency arcs. The queue stores the tokens from the input buffer β, the two lists (λ1 and

λ2) store partially processed tokens; i.e., tokens that have been removed from β where

they may be potential daughters of the head of the buffer β, and the set of dependency

arcs store the dependency links between two tokens (heads and dependents).

There are four parse operations in the list-based algorithm:

• LEFT-ARC produces an arc A( j, l, i), and adds it to graph G, where j is the

first node in the β, i is the head of the list λ1, and l is the dependency label. This

assigns j as the head of i and it moves i from the list λ1 to the list λ2 if three

conditions hold: (i) i is not the artificial root node, (ii) i does not already have a

parent, and (iii) a path from i to j does not exist in the graph G where G is a set

of Arcs;

• RIGHT-ARC produces an arc A(i,l, j) by assigning i as the head of j, and adds

it to graph G, where l is the dependency label. j is first node in the β and i is the

head of the list λ1, which is moved from the list λ1 to the list λ2 if two conditions

hold: (i) j does not already have a head, and (ii) there does not exist a path from

j to i in the graph G;

• NO-ARC in this operation, the first item of the list λ1 is popped and pushed at

the start of the list λ2.

• SHIFT This operation performs three tasks: (i) it generates a new list λ1 by

concatenating list λ1 and list λ2 , (ii) it empties list λ2, and (iii) it removes the

first node from the β and puts it on the head of the newly generated list λ1.

13The head of the queue was not combined with the top item on the stack in step 9 because that would

have removed 5 from the queue which is needed later to be used as the head of 1.
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The algorithm considers every pair of nodes for generating arcs whenever possible

by storing the parent and the daughter of a dependency relation in either list λ2 or queue

β. The NO-ARC operation, which moves a node from list λ1 to list λ2 even if the node

does not yet have a parent, allows for the production of non-projective parse tree but

the conditions for generating an arc are: (i) the daughter is not the artificial root node,

(ii) the daughter does not already have a head, and (iii) there is no path connecting the

daughter to the parent. In Figure 5.14 we reproduce the non-projective graph shown in

Figure 5.11 using this algorithm.

Dependency relations: (0 > 3) (0 > 8) (1 > 2) (3 > 5) (3 > 6) (5 > 1) (5 > 4) (6 > 7)

----------------------------------------------------------------------------------------------------

Steps Action List1 List2 Queue Arcs

----------------------------------------------------------------------------------------------------

1 θ [0] [] [0,1,2,3,4,5,6,7,8] θ
2 SHIFT [0,1] [] [2,3,4,5,6,7,8] θ
3 RIGHT-ARC [0] [1] [2,3,4,5,6,7,8] A1=(1 > 2)

4 SHIFT [0,1,2] [] [3,4,5,6,7,8] A1

5 NO-ARC [0,1] [2] [3,4,5,6,7,8] A1

6 NO-ARC [0] [1,2] [3,4,5,6,7,8] A1

7 RIGHT-ARC [] [0,1,2] [3,4,5,6,7,8] A2=A1Y(0 > 3)

8 SHIFT [0,1,2,3] [] [4,5,6,7,8] A2

9 SHIFT [0,1,2,3,4] [] [5,6,7,8] A2

10 LEFT-ARC [0,1,2,3] [4] [5,6,7,8] A3=A2Y(5 > 4)

11 RIGHT-ARC [0,1,2] [3,4] [5,6,7,8] A4=A3Y(3 > 5)

12 NO-ARC [0,1] [2,3,4] [5,6,7,8] A4

13 LEFT-ARC [0] [1,2,3,4] [5,6,7,8] A5=A4Y(5 > 1)

14 SHIFT [0,1,2,3,4,5] [] [6,7,8] A5

15 NP-ARC [0,1,2,3,4] [5] [6,7,8] A5

16 NO-ARC [0,1,2,3] [4,5] [6,7,8] A5

17 RIGHT-ARC [0,1,2] [3,4,5] [6,7,8] A6=A5Y(3 > 6)

18 SHIFT [0,1,2,3,4,5,6] [] [7,8] A6

19 RIGHT-ARC [0,1,2,3,4,5] [6] [7,8] A7=A6Y(6 > 7)

20 SHIFT [0,1,2,3,4,5,6,7] [] [8] A7

21 NO-ARC [0,1,2,3,4,5,6] [7] [8] A7

22 NO-ARC [0,1,2,3,4,5,6] [6,7] [8] A7

23 NO-ARC [0,1,2,3,4,5] [5,6,7] [8] A7

24 NO-ARC [0,1,2,3] [4,5,6,7] [8] A7

25 No-ARC [0,1,2] [3,4,5,6,7] [8] A7

26 No-ARC [0,1] [2,3,4,5,6,7] [8] A7

27 No-ARC [0] [1,2,3,4,5,6,7] [8] A7

28 RIGHT-ARC [] [0,1,2,3,4,5,6,7] [8] A8=A7Y(0 > 8)

29 SHIFT [0,1,2,3,4,5,6,7,8] [] [] A8

30 θ [0,1,2,3,4,5,6,7,8] [] [] A8

----------------------------------------------------------------------------------------------------

Figure 5.14: Parse transitions for processing the sentence in Figure 5.11 using the

list-based non-projective MaltParser algorithm.

Our extended algorithm is different from the list-based algorithm in a number of

ways: (i) the list-based algorithm uses three data-structures (queue, list one λ1 and list

two λ2) whereas our algorithm uses two data structures (queue and stack), (ii) the list-

based algorithm uses an extra operation, which is NO-ARC operation, that operates on

both λ1 and λ2, (iii) the SHIFT operation in the list-based algorithm performs more
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complex operations than the SHIFT operation in our algorithm. It concatenates the

data stored in λ1 and λ2 and produces a new λ1; it empties λ2; and then it moves the

head of the queue to the front of the newly generated λ1.

The operations in our algorithm are computationally less expensive than the op-

erations in the list-based algorithm. Our SHIFT operation is much simpler than the

one in the list-based algorithm. The SHIFT operation in the list-based algorithm in-

volves three actions: concatenating λ1 and λ2, emptying λ2, then moves the head of

the queue to the front of the newly generated λ1. The SHIFT operation in our algo-

rithm involves one action only, moving the head of the queue onto the top of the stack.

Additionally, the list-based algorithm uses one extra arc operation (NO-ARC) which

moves the head of λ1 to the front of λ2. This operation is performed until it is possible

to do either a LEFT-ARC or a RIGHT-ARC, or until there are no items left on λ1. As

we can see from Figure 5.14, in the steps from 21 to step 27 marked in bold, there

are seven NO-ARC transitions before the RIGHT-ARC operation is performed. In our

algorithm, there is no requirement for performing this extra arc operation since the

LEFT-ARC and the RIGHT-ARC operations perform one left-to-right pass over the

stack operation, which results in fewer parse transitions than the number of parse tran-

sitions performed by the list-based algorithm for parsing the non-projective sentence

in Figure 5.11.

Other non-projective dependency parsing techniques proposed by Kuhlmann and

Nivre [Kuhlmann and Nivre, 2010] include the following:

• Pseudo-projective parsing: The approach of converting a projective dependency

parser to a non-projective parser involves two main steps: (i) a pre-processing

step, which involves transforming the original non-projective trees into projec-

tive trees. In this step each non-projective arc is replaced with a projective arc.

For example, a non-projective arc (i,l,j) is replaced with a projective arc (k,l,j)

where the closest transitive head of i is the head k. The training data is encoded

with rich information to allow the parser to undo these changes, so that the pro-

jective parser is trained on it as usual. (ii) a post-processing step, where the

encoded information in the training data, is used for deprojectivising the projec-

tive trees produced by the projective parser to non-projective trees.

• Non-adjacent arc transitions: In this approach the parser is allowed to create arcs

between non-neighbouring arcs. This is achieved by extending the arc-standard

to do the LEFT-ARC-2l and the RIGHT-ARC-2l operations, which are:
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LEFT-ARC-2l : This operation creates an arc by making the top item on the

stack the head of the third topmost item on the stack, and removes the third

topmost item from the stack.

RIGHT-ARC-2l: This operation creates an arc by making the third topmost

item on the stack the head of the topmost item on the stack, and removes the

topmost item from the stack.

Although Attardi [Attardi, 2006] claims that LEFT-ARC-2l and RIGHT-ARC-

2l are sufficient for producing every non-projective tree Kuhlmann and Nivre

[Kuhlmann and Nivre, 2010, p. 6] argues to the contrary.

• Online reordering: This approach is similar to the projective arc-standard pars-

ing, where arcs are only added between two neighbouring items using a projec-

tive parser, but the difference is that the parser is allowed to reorder the items

during parsing. The projective parser is extended with a SWAP operation, which

basically reorders the position of the two topmost items on the stack. During

the SWAP operation, the second topmost item from the stack is returned to the

queue.

5.2.2 Assigning scores to parse states

Our parsing algorithm generates different parse states using SHIFT, LEFT-ARC, and

RIGHT-ARC operations for each given parse state. A score is computed for each newly

generated parse state by computing two different scores: (i) a score that is based on the

recommendation made by a parse model. For example, for a SHIFT state the parser

gives a score of 1 if a SHIFT operation is recommended by the model. Otherwise a

score of 0 is given (and the same applies to LEFT-ARC and RIGHT-ARC operations).

(ii) the score of the given state (which is the state that the new parse state is generated

from). The sum of these two scores is assigned to the newly generated parser state.

Using only recommendations from a parse model to assign scores to newly gen-

erated states makes the parser operate exactly as the standard deterministic algorithm

because the state with the highest score is obtained by following the parsing model.

The advantage of assigning a score to each parse state is that: (i) we can manipulate

the assignment of various other scores for applying different constraint rules to parse

states. This way we can apply different constraint rules to the data-driven parser, which

correspond to our contribution C.1, and (ii) we can rank a collection of parse states by
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using their scores and then process the state with the highest score, which we consider

to be the most plausible state.

5.2.3 Parsing with dynamic programming and chart tables

Since the reimplementation of the arc-standard algorithm may produce a large set of

parse states from a given state, whereby each state generates a parse analysis, we will

have to efficiently process a potentially large set of states. The most popular algorithm

that can efficiently process a potentially large set of parse states is dynamic program-

ming and a chart table. This has been used in MSTParser (see Section 3.1.2.1 for a

description of MSTParser).

We use a treebank-induced classifier as a statistical model for recommending a

parse action at each parse step, which results in generating a new parse state. For each

parse state we assign a score (see Section 5.2.2). Dynamic programming is used for

ranking competing states with respect to their plausibility (the plausibility of a state

is based on its score.) The ranked states are then stored in an agenda14 and the most

plausible state (i.e., the state with the highest score) is explored by the parser. The

scores that are given to each state are determined by suggestions made by a parse

model. If a parse model suggests an action then a positive score is given to the state

otherwise a score of 0 is given to the state, and the states are then ranked in the agenda.

The following section describes an approach for generating a parse model.

5.2.4 The generation of a parse model

As mentioned in the introductory section of this chapter, one of the fundamental ele-

ments of a data-driven parser is a ‘parse model’, which is used for guiding the parser

when it processes new sentences. The most popular approach used in generating a

parse model involves inducing a machine learning classifier on a treebank. The output

of the classifier induction can then be used to generate a model that a parser can use

as a guide for processing new sentences. The effectiveness of a parse model largely

depends on the classifier’s ability to correctly classify a given set of data. In order

to find out the most effective machine learning classifier, we have experimented with

a number of classification algorithms that are available in the ‘WEKA’ toolkit15 for

14An agenda is a list containing parse states ranked by their scores, where a state with the highest

score is placed on the top of the agenda.
15WEKA is a publicly available toolkit containing a large number of machine learning algorithms. It

is available at: http://www.cs.waikato.ac.nz/ml/weka/downloading.html.



118 CHAPTER 5. PARSER DEVELOPMENT

classifying a set of training data16.

The following steps explain an approach for generating a parse model from a de-

pendency treebank:

1. Collecting parse states: We use a collection of parsed trees to obtain a set of

parse states, i.e., condition:action pairs where the condition is the state of the

queue and stack (i.e., the items in the queue and the stack) and the action is

the parse operation that the parser took (which is either SHIFT, LEFT-ARC,

or RIGHT-ARC), by using the relations that make up the trees to specify an

appropriate sequence of actions. Consider, for instance, the tree in Figure 5.15

for the sentence ‘The cat sat on the mat’.
sat

cat

the

on

mat

the

Figure 5.15: Dependency tree for ’The cat sat on the mat’.

Figure 5.16 shows the transitions that the parser uses for producing the tree for

the sentence ‘The cat sat on the mat’. Note that whilst constructing the train-

ing data we will not perform any LEFT-ARC or RIGHT-ARC operations if a

dependency daughter is the head of an item that is not inspected yet; as can be

seen from step 6 of Figure 5.16 where we perform SHIFT instead of RIGHT-

ARC, since performing RIGHT-ARC at this point would make it impossible to

later make on the head of mat because RIGHT-ARC would remove on from the

Queue, which must not be removed because it is the head of mat which is still in

the Queue.

We can treat the sequences shown in Figure 5.16 as a set of data-points which

indicate what the parser should do in a given situation – for instance, in a situa-

tion like in step 6 (marked in bold in Figure 5.16) the parser should use SHIFT

instead of RIGHT-ARC for the reason explained above. Given a set of such data-

points, it is possible to extract and record the parse states and train a classifier for

building a parse model, which can be used for predicting what kind of action the

16The training data for the classifier is obtained by parsing 4000 sentences where we have used the

dependency tree of each sentence as the grammar for parsing the target sentence. This way we have

obtained the exact parse states the parser had for each sentence, where they are used as training data.
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Dependency relations: (sat > cat) (sat > on) (cat > the) (on > mat) (mat > the)

------------------------------------------------------------------------------------------

Steps Action Queue Stack Arcs

------------------------------------------------------------------------------------------

1 θ [the,cat,sat,on,the,mat] [] θ
2 SHIFT [cat,sat,on,the,mat] [the] θ
3 LEFT-ARC [cat,sat,on,the,mat] [] A1=(cat > the)

4 SHIFT [sat,on,the,mat] [cat] A1

5 LEFT-ARC [sat,on,the,mat] [] A2=A1Y(sat > cat)

6 SHIFT [on,the,mat] [sat] A2

7 SHIFT [the,mat] [on,sat] A2

8 SHIFT [mat] [the,on,sat] A2

9 LEFT-ARC [mat] [on,sat] A3=A2Y(mat > the)

10 RIGHT-ARC [on] [sat] A4=A3Y(on > mat)

11 RIGHT-ARC [sat] [] A5=A4Y(sat > on)

12 SHIFT [] [sat] A5

13 θ [] [sat] A5

------------------------------------------------------------------------------------------

Figure 5.16: Action sequence for analysing the sentence ‘The cat sat on the mat’.

parser can carry out when parsing new sentences; i.e., it can be used for guiding

the parser.

2. Preparing recorded parse states for classification: From the set of parse states

that we obtain in step 1, we populate an .arff file with the correct data format,

i.e., the format that is accepted by WEKA. An example of a set of WEKA-

style data format is shown in Figure 5.17, which is based on the parse states

shown in Figure 5.16. Here we have extracted the word forms as a feature for

learning but it is possible to use a number of different features (such as POS tags,

word position etc.) as values for the queue and the stack attribute parameters.

Additionally, one can use different window sizes for the queue and the stack

in the data selection as instances for the classification algorithms to learn from

them. In Table 5.17, we use the window sizes of two items for the queue and two

items for the stack, while the dash mark (‘-’) represents an empty item where

the queue or the stack did not contain an item in the given position.

3. Training a classifier using the .arff file: We supply WEKA with the data pre-

pared in step 2 (i.e., the .arff file) and then we select a classification algorithm

for learning. In Section 6.1 we have experimented with a large number of clas-

sification algorithms, where the J48 classifier produced the highest classification

accuracy. Figure 5.18 is a screenshot of the J48 classification algorithm output

from WEKA. The classification rules inferred by a decision tree classifier take

the form of questions, such as Is the POS tag on the top of the stack (ABBREV)?,

and a possible answer where the possible answer is a further question such as (Is

POS tag in the head of queue (ABBREV)?) or a classification such as (This is the
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@relation states

@attribute queue_word_pos_1{‘the’,‘cat’,‘sat’,‘on’,‘mat’,‘-’}

@attribute queue_word_pos_2{‘cat’,‘sat’,‘on’,‘the’,‘mat’, ‘-’}

@attribute stack_word_pos_1{‘-’, ‘the’,‘cat’,‘sat’,‘on’}

@attribute stack_word_pos_2{‘-’,‘sat’,‘on’}

@attribute parse_action{‘SHIFT’, ‘LEFT-ARC’, ‘RIGHT-ARC’}

@data

‘the’, ‘cat’, ‘-’, ‘-’, ‘SHIFT’

‘cat’, ‘sat’, ‘the’, ’-’, ‘LEFT-ARC’

‘cat’, ‘sat’, ‘-’, ‘-’, ‘SHIFT’

‘sat’, ‘on’, ‘cat’, ‘-’, ‘LEFT-ARC’

‘sat’, ‘on’, ‘-’, ‘-’, ‘SHIFT’

‘on’, ‘the’, ‘sat’, ‘-’, ‘SHIFT’

‘the’, ‘mat’, ‘on’, ‘sat’, ‘SHIFT’

‘mat’, ‘-’, ‘the’, ‘on’, ‘LEFT-ARC’

‘mat’, ‘-’, ‘on’, ‘sat’, ‘RIGHT-ARC’

‘on’, ‘-’, ‘sat’, ‘-’, ‘RIGHT-ARC’

‘sat’, ‘-’, ‘-’, ‘-’, ‘SHIFT’

Figure 5.17: An example of data for a .arff file.

kind of situation where you should carry out a RIGHT-ARC.)

Figure 5.18: A screenshot of the J48 classifier output using WEKA.

4. Generating a parse model from the classification output: Finally, we convert the

output produced by the classification algorithm (such as the one shown in Figure

5.18) to an appropriate question-answer model that we can use for guiding the

parser to parse new sentences. Figure 5.19 is a sample of some questions and

answers we have extracted from the classification output from Figure 5.18.



5.3. CLASSIFICATION-DRIVEN DETERMINISTIC PARSING 121

question(

QUEUE,

STACK,

[

word_pos(STACK, 1, ‘-’), ‘SHIFT’,

word_pos(STACK, 1, ‘ABBREV’),

[

word_pos(QUEUE, 1, ‘ABBREV’),

[

word_pos(QUEUE, 2, ‘-’), ‘RIGHT-ARC’,

word_pos(QUEUE, 2, ‘ABBREV’),

[

word_pos(QUEUE, 3, ‘-’), ‘RIGHT-ARC’,

word_pos(QUEUE, 3, ‘ABBREV’), ‘RIGHT-ARC’,

word_pos(QUEUE, 3, ‘ADJ’), ‘RIGHT-ARC’,

...

word_pos(QUEUE, 3, ‘NOUN_PROP’),

[

word_pos(STACK, 2, ‘-’), ‘SHIFT’,

word_pos(STACK, 2, ‘ABBREV’), ‘SHIFT’,

...

]

]

]

]

]

).

Figure 5.19: An example of a question-answer model.

5.3 Classification-driven deterministic parsing

It is possible to run DNDParser deterministically in different ways. If the parser is

presented with a state that has one or more items on the queue but an empty stack

then it will produce one state by performing SHIFT. For example, having a queue with

[1,2,3,4] and an empty stack [] then the parser cannot recommend a RIGHT-ARC

or a LEFT-ARC operation because either of these two operations requires an item from

the stack to be made the parent or the daughter of the head of the queue respectively.

Having one or more items on the queue and one item on the stack the parser pro-

duces three states, namely: SHIFT, RIGHT-ARC, and LEFT-ARC. In this kind of

situation, the parsing rules recommend only one operation where we give it a positive

score so that the parser can then explore the recommended operation. However, it is

possible that the classification rules may not recommend any operations if they are

presented with a situation that has never been seen during training. This is possible

because the classifier may not learn what action to take in every situation the parser

encounters during the testing phase. For example, in Figure 5.20 we assume that the

classification rules did not recommend any operation, where all three operations re-

ceive a score of 0, and thus they will all have equal scores (which will be the score
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States | Action Queue Stack Score

---------------|-------------------------------------------

Current state | θ [2,3,4] [1] 0

New states | SHIFT [3,4] [2, 1] 0

| RIGHT-ARC [1,3,4] [] 0

| LEFT-ARC [2,3,4] [] 0

Figure 5.20: Generating three parse states from one state.

inherited from the original state). In this kind of situation, it is not clear which opera-

tion the parser should explore first, LEFT-ARC, RIGHT-ARC or SHIFT. There are six

different orders-of-preference we can give to the parser as to which operation it should

explore first. These are:

1. SHIFT, LEFT-ARC, RIGHT-ARC (SHIFT-LA-RA)

2. SHIFT, RIGHT-ARC, LEFT-ARC (SHIFT-RA-LA)

3. LEFT-ARC, SHIFT, RIGHT-ARC (LA-SHIFT-RA)

4. LEFT-ARC, RIGHT-ARC, SHIFT (LA-RA-SHIFT)

5. RIGHT-ARC, SHIFT, LEFT-ARC (RA-SHIFT-LA)

6. RIGHT-ARC, LEFT-ARC, SHIFT (RA-LA-SHIFT)

Furthermore, in situations where the parser is presented with a state that has one

or more items on the queue and more than one item on the stack, the parser can then

generate more than three states because it checks for relations between the head of the

queue and any items on the stack; i.e., states that are generated by LEFT-ARC(N+1)

and RIGHT-ARC(N+1). In this kind of situation, it is possible that two or more states

may be recommended by the parsing rules, where two or more states receive positive

scores. For example, in Figure 5.21 where the parsing rules suggested LEFT-ARC(1)

(making 3 from the queue the parent of 2 on the stack) and also LEFT-ARC(2) (making

3 the head of the queue the parent of 1 from the stack) they are both given a score of 1.

In this kind of exemplified situation we may deterministically choose to perform LEFT-

ARC(1) instead of LEFT-ARC(2), by giving more priority to reduce operations that

involve two items that are closer to each other. Alternatively, we may deterministically

choose LEFT-ARC(2), by giving priority to reduce operations that involve two items

that are further away from each other. This leads to another two different parsing

variations, which are:
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1. furthest-item-first: This operation involves making relations between the head

of the queue with an item that is furthest away from it on the stack.

2. closest-item-first: This operation involves making relations between the head of

the queue with an item on the stack that is closest to it.

States | Action Queue Stack Tree Parsing rules score

---------------|------------------------------------------------------------------------

Current state | θ [3,4] [2,1] θ 0

New states | SHIFT [4] [3,2,1] θ 0

| RIGHT-ARC(1) [2,4] [1] (2>3) 0

| RIGHT-ARC(2) [1,2,4] [] (1>3) 0

| LEFT-ARC(1) [3,4] [1] (3>2) 1

| LEFT-ARC(2) [2,3,4] [] (3>1) 1

Figure 5.21: Generating more than three parse states from one state.

Deterministic parsers accept the final parse state by assuming that the parser gen-

erated the required parse analysis. The DNDParser assumes that the final state is gen-

erated if the queue is empty, which indicates that the sentence is processed because

all the words would have been inspected by the parser. The deterministic version of

DNDParser accepts the final parse state when it is presented with it the first time, even

if a complete analysis for a given sentence is not produced (i.e., there may be several

items with no head).

5.4 Classification-driven non-deterministic parsing

In deterministic parsing, DNDParser accepts the final state as soon as it is produced;

i.e., when the queue becomes empty because processing of all the words in it is per-

formed by removing queue items on to the stack. The parser then assumes that parsing

has completed. However, if we run the parser non-deterministically, we can allow it to

explore the alternative states that will remain on the agenda if the final state does not

contain a complete parse tree; i.e., where the stack has more than one item on it, which

means that some words did not receive a parent and hence a complete parse tree is not

produced. This means that the parser rolls back to the previous highest scored state on

the agenda and explores it until a state is generated whereby the queue is empty and

the stack contains one item whose span covers the entire length of the sentence.

Additionally, the original algorithm (the arc-standard of MaltParser) deterministi-

cally follows the reduce operations that involve the head of the queue with the top item

on the stack. However, DNDParser allows the reduce operations to combine the head
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of the queue with any item on the stack but when the parser is presented with multi-

ple equally scored states then it deterministically chooses a state, as described in the

previous section.

5.4.1 Labelled attachment score

In this section we briefly explain how we obtain labelled attachment scores. For each

dependency relation between two words, a syntactic label is attached to indicate the

syntactic role of the dependent item with its head. In order to assign the correct labels

to parse trees during parsing, we have extracted different patterns from the training

data during parser training.

Figure 5.22 shows some examples of the extracted patterns. Here, a window size

of eight items is used for items collected from the queue and the stack during training

phase. In order to identify what kind of pattern produces the greatest accuracy, we

have identified three different types of patterns:

Pattern one: The first element of this pattern, as shown in Figure 5.22, is the head.

The second element is a list of up to eight items collected from the queue and the stack

during training. The third element is the dependent item. The fourth element is the

label of the dependent item. The first line in Figure 5.22 shows ‘PV’ as the head of

‘NOUN’ and the label of the dependent is ‘SBJ’. The second example shows that the

dependent item (‘NOUN’) is the object of the head item (‘PV’).

PV, [NOUN, PV, ICONJ, PRON, PREP, NOUN, ADJ, CONJ], NOUN, SBJ
PV, [PV, NOUN, PREP, PV, ICONJ, NOUN, PREP, NOUN], NOUN, OBJ

Figure 5.22: Examples of pattern one for assigning labels to dependency relations.

Pattern two: The first element of this pattern, as shown in Figure 5.23, is the head.

The second element is a list of up to eight items collected from the queue and the stack

during training. The third element is the dependent item. The fourth element is the

label of the dependent item and the last element is the distance between the head item

and the dependent item. The first example in Figure 5.23 shows that the label of the

dependent is ‘SBJ’ whereby ‘PV’ is the head of ‘NOUN’ and whether they are adjacent

because the distance between them is 1. The second example shows that the label of

the dependent is ‘OBJ’ whereby ‘PV’ is the head of ‘NOUN’ and the distance between

the head and the dependent is 2.
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PV, [NOUN, PV, ICONJ, PRON, PREP, NOUN, ADJ, CONJ], NOUN, SBJ, 1.
PV, [PV, NOUN, PREP, PV, ICONJ, NOUN, PREP, NOUN], NOUN, OBJ, 2.

Figure 5.23: Examples of pattern two for assigning labels to dependency relations.

Pattern three: The first element of this pattern, as shown in Figure 5.24, is the

head. The second element is a list of up to eight items collected from the queue and

the stack during training. The third element is the dependent item. The fourth element

is the label of the dependent item and the last element is the frequency of the pattern

recorded during training, which is used for computing the probability of the pattern

during parsing. The first example in Figure 5.24 shows that the ‘PV’ is the head of

‘NOUN’, the label of the dependent is SBJ, and that the last element indicates that the

pattern occurred 6 times during training. The second example shows that the dependent

item ‘NOUN’ is the object of the head item (‘PV’) which occurred 4 times during

training.

PV, [NOUN, PV, ICONJ, PRON, PREP, NOUN, ADJ, CONJ], NOUN, SBJ, 6.
PV, [PV, NOUN, PREP, PV, ICONJ, NOUN, PREP, NOUN], NOUN, OBJ, 4.

Figure 5.24: Examples of pattern three for assigning labels to dependency relations.

The assignment of labels to dependency relations is performed in two steps: (i)

the dependency relation between two words is established, and (ii) one of the patterns

above is used for determining what label should be assigned to the dependency rela-

tion. This approach differs from the approach used in MaltParser. MaltParser learns

models during the training phase for assigning labels to dependency relations when it

performs LEFT-ARC or RIGHT-ARC reduce operations. Alternatively, it is possible

to train two (or more) separate models where the first model determines the unlabelled

attachments dependency relations while the second model determines the labels for

the dependency relations between two words during the reduce operations17. We show

in our experiments in the following chapter that our approach to label assignment for

dependency relations yields a better accuracy result than MaltParser.

17This information is obtained via email communications with Joakim Nivre and Johan Hall on 31

January 2015.
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5.5 Summary

In this chapter we have described the relationship between phrase structure trees and

dependency trees. And we have presented an approach for converting phrase structure

trees to dependency formats. We have conducted several experiments on MaltParser

using different data-sets, where each dataset was based on a version of HPT that was

used for converting the dataset from phrase structure trees to dependency trees.

Moreover, we have presented a small modification to the arc-standard algorithm of

MaltParser and we have shown that it is possible to process non-projective sentences

(this has been demonstrated in Section 5.2.1). We have presented a technique for

assigning scores to different parse states where these states are stored in an agenda.

The agenda is stored in a chart table. In this way we have used features of shift-

reduce parsing with chart parsing. Furthermore, we have demonstrated the possibility

of running our parser deterministically or non-deterministically and have shown that

non-deterministic parsing performed better than deterministic parsing.

Finally, we have described the steps in generating a parse model and we have out-

lined our approach to assigning labels to dependency relations.



Chapter 6

Parser Evaluation

In this chapter, we will evaluate our parsing algorithm. Firstly, we will evaluate a large

a number of machine learning algorithms in order to identify those algorithms that

produce good classification accuracy, because we believe classifying our data correctly

will help in improving the accuracy of the parser. Secondly, we will evaluate our parser

by training it on those classifiers with 80% accuracy or more in order to test the effect

of each classifier on parsing accuracy. In Section 6.5.2 we will describe the way we

extract different types of constraint rules from our dependency treebank and integrate

them in our parser. Finally, we will compare the accuracy of our parser with that of the

arc-standard algorithm of MaltParser.

6.1 The evaluation of various classification algorithms

Table 6.1 contains the results for a number of machine learning algorithms that we

have used for classifying the first 4000 sentences from the DATB (this is the depen-

dency treebank that we have obtained by converting the phrase structure trees from the

PATB).

We consider a machine learning algorithm appropriate for producing a parse model

if it meets two requirements: (i) it produces a good classification accuracy. Although

the accuracy of a classification algorithm may not directly reflect the accuracy of a

parser that uses its recommendations, a classifier that produces a high level of accuracy

is more likely to assist a parser to make more informed parse decisions at each parse

step than a classifier that produces a low level of accuracy. (ii) its output can be used

for generating a parse model (a set of questions and answers) which can be used for

making recommendations to a data-driven parser; for example, what action (SHIFT,

127
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LEFT-ARC, or RIGHT-ARC) the parser should take in a specific situation.

We have used various features for training the different classification algorithms.

These features include POS tags, word forms, word locations in sentences, their spans

(i.e., their start and end positions in sentences). Additionally, we have used a combi-

nation of these features such as word forms with POS tags, words forms with word

location or word spans, and similar combination of POS tags with other features. The

use of these features for training each classification along with the classification accu-

racy is presented in Table 6.1.

The output of some other classifiers, such as the output of the NaiveBayes classifier

shown in Figure 6.1, is opaque and therefore we cannot derive a question-answer-type

parse model from it. The classifiers that have been used in subsequent sections for

evaluating their effectiveness in parsing natural languages are based on those that their

output allowed for deriving a usable parse model.

Figure 6.1: A screenshot of NaiveBayes classifier output using WEKA.

During the evaluation of the classification algorithms, some of the widely used clas-

sifiers did not yield encouraging results. For example, the LiBSVM classifier which is

used in MaltParser did not perform well with the set of features that we have supplied.
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It only managed to learn successfully from one feature (POS tags), while the accuracy

was well below the accuracy of some of the other classifiers. The entries for LiBSVM

in Table 6.1 are incomplete because training takes so long (3 days per case) that future

experiments seemed infeasible. However, the fact that it produces no better classifica-

tion accuracy than the J48 algorithm in the cases that we have looked at suggests that

it is unlikely to substantially outperform it in the remaining cases.

From the large number of experiments we have conducted using several machine

learning algorithms, we will evaluate DNDParser by training it using the classification

algorithms that produced a high classification accuracy in the following section1.

1All the experiments conducted in this thesis are performed on a Linux based machine with 3.10GHz

processor and 4GB RAM.
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J48

Items on Queue 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Items on Stack 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Word (%) 52.38 54.87 55.28 55.43 67.70 68.08 68.12 68.24 67.81 68.29 68.37 68.53 68.10 68.56 68.67 68.81

Word + location (%) 56.60 55.90 54.53 53.41 71.95 72.08 71.79 71.92 72.03 72.23 71.88 71.67 72.10 72.41 72.11 71.80

Word + location + span (%) 67.52 67.45 66.79 68.83 72.52 72.65 72.08 71.73 72.50 72.76 72.25 72.00 72.49 72.87 72.45 72.17

Word + span (%) 64.40 64.90 64.35 63.81 70.54 70.67 70.46 70.17 70.66 70.81 70.64 70.43 70.68 70.83 70.79 70.56

POS (%) 63.21 64.45 64.50 64.50 83.61 84.76 84.88 84.94 84.48 85.63 85.77 85.80 84.75 85.89 86.05 86.04

POS + location (%) 63.79 64.59 64.65 64.68 84.46 85.27 85.27 85.27 85.04 85.89 85.91 85.92 85.25 86.96 86.08 86.09

POS + location + span (%) 76.77 77.28 77.21 77.23 84.54 85.12 85.11 85.23 85.10 85.81 85.84 85.92 85.28 85.95 85.97 85.99

POS + span (%) 76.15 76.74 76.66 76.68 84.29 84.98 85.00 85.00 84.93 85.71 85.69 85.67 85.09 85.88 85.88 85.88

Word + POS (%) 63.31 64.40 64.20 63.87 84.07 85.25 85.25 85.28 85.05 86.23 86.24 86.24 85.25 86.46 86.47 86.39

Word + POS + location (%) 63.44 63.15 62.71 62.58 85.24 85.93 85.93 85.83 85.77 86.57 86.53 86.45 85.84 86.63 86.57 86.54

Word + POS + location + span (%) 77.54 77.82 77.54 77.45 85.40 85.90 85.84 85.83 85.89 86.48 86.54 86.47 85.94 86.49 86.55 86.44

Word + POS + span (%) 77.21 77.32 77.16 76.99 85.34 85.87 85.76 85.79 85.89 86.50 86.45 86.43 85.90 86.53 86.49 86.36

LibSVM

Items on Queue 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Items on Stack 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Word (%) - - - - - - - - - - - - - - - -

Word + location (%) - - - - - - - - - - - - - - - -

Word + location + span (%) - - - - - - - - - - - - - - - -

Word + span (%) - - - - - - - - - - - - - - - -

POS (%) 61.87 63.73 63.55 63.21 73.45 74.40 74.73 74.62 74.32 75.41 75.43 75.39 74.58 75.62 75.63 75.55

POS + location (%) - - - - - - - - - - - - - - - -

POS + location + span (%) - - - - - - - - - - - - - - - -

POS + span (%) - - - - - - - - - - - - - - - -

Word + POS (%) - - - - - - - - - - - - - - - -

Word + POS + location (%) - - - - - - - - - - - - - - - -

Word + POS + location + span (%) - - - - - - - - - - - - - - - -

Word + POS + span (%) - - - - - - - - - - - - - - - -

Id3

Items on Queue 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Items on Stack 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Word (%) 52.36 54.75 55.01 55.02 67.62 67.85 67.71 67.65 67.64 67.94 67.77 67.68 67.74 67.97 67.79 67.62

Word + location (%) 54.88 51.29 47.63 44.77 68.70 66.02 63.63 62.37 67.83 65.22 63.04 61.89 66.92 64.41 62.55 61.49

Word + location + span (%) 63.27 60.33 58.23 56.83 68.61 65.65 63.69 62.69 67.77 64.85 63.18 62.26 66.89 64.23 62.79 62.00

Word + span (%) 61.77 58.91 56.36 54.74 67.08 64.46 62.42 61.21 66.14 63.60 61.84 60.71 65.24 62.81 61.25 60.36

POS (%) 63.21 64.07 62.78 60.76 83.56 84.15 83.04 81.64 83.74 83.41 81.78 80.54 82.31 81.47 79.70 78.81

POS + location (%) 57.53 50.87 46.46 44.84 77.55 75.79 74.80 74.57 76.25 75.48 75.04 74.95 74.94 74.83 74.65 74.61

POS + location + span (%) 71.96 68.77 66.95 66.27 77.57 75.71 74.70 74.51 76.31 75.42 74.92 74.83 75.13 74.85 74.63 74.57

POS + span (%) 71.72 68.43 66.45 65.69 77.42 75.51 74.49 74.28 76.10 75.17 74.71 74.59 74.92 74.64 74.41 74.33

Word + POS (%) 63.05 63.17 61.18 58.68 83.46 83.62 82.25 81.02 83.34 82.89 81.29 80.36 81.76 81.04 79.67 79.09

Word + POS + location (%) 56.27 49.34 45.50 44.19 77.36 75.84 75.13 74.96 76.31 75.73 75.39 75.33 75.21 75.29 75.07 75.04

Word + POS + location + span (%) 71.76 68.65 67.01 66.48 77.38 75.72 74.92 74.79 76.39 75.64 75.22 75.15 75.36 75.21 75.00 74.93

Word + POS + span (%) 71.51 68.26 66.50 65.90 77.23 75.54 74.68 74.55 76.17 75.45 75.04 74.97 75.18 75.04 74.81 74.73

RandomTree

Items on Queue 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Items on Stack 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Word (%) 52.37 54.77 55.06 55.08 67.72 68.04 68.00 68.00 67.82 68.27 68.26 68.32 68.01 68.47 68.51 68.50

Word + location (%) 55.27 52.23 49.25 47.03 71.36 70.67 69.48 70.25 71.32 70.64 69.35 68.67 71.05 70.19 69.36 69.83

Word + location + span (%) 66.44 64.02 - - 72.02 70.55 - - 71.83 70.27 - - 71.50 69.937 - -

Word + span (%) 64.04 63.25 61.18 59.71 69.97 69.27 68.23 67.46 69.80 68.99 68.25 67.39 69.63 68.67 67.79 67.89

POS (%) 63.21 64.17 63.12 61.45 83.67 84.82 84.50 83.71 84.47 85.28 84.71 84.26 84.26 84.78 84.31 83.69

POS + location (%) 58.73 53.11 49.39 47.72 83.04 82.93 80.76 79.18 82.77 81.41 80.15 78.84 81.71 80.09 78.18 80.12

POS + location + span (%) 76.02 70.97 69.12 69.12 82.54 81.00 79.17 76.32 81.78 79.41 78.02 76.26 80.27 78.79 77.42 76.47

POS + span (%) 75.68 73.35 68.10 67.72 83.15 81.47 79.89 79.19 81.50 80.89 78.69 77.78 80.60 79.93 77.28 76.95

Word + POS (%) 63.13 63.40 61.70 59.46 84.08 85.02 84.34 83.62 84.80 85.37 84.34 83.57 84.36 84.46 83.33 83.28

Word + POS + location (%) 57.51 51.66 48.15 46.84 83.33 82.06 81.23 80.10 82.02 81.84 80.62 79.17 81.24 80.27 79.03 77.99

Word + POS + location + span (%) 75.44 72.24 - - 82.91 80.68 78.92 77.35 81.75 79.59 77.50 76.33 80.48 78.09 76.77 75.02

Word + POS + span (%) 75.68 71.56 68.87 - 82.89 81.75 79.46 78.42 81.71 80.58 77.87 77.34 80.37 78.95 76.87 77.17

NaiveBayes

Items on Queue 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Items on Stack 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Word (%) 51.89 53.98 54.10 54.58 66.71 66.99 61.83 60.13 65.70 65.95 65.48 63.37 64.57 65.06 64.68 64.60

Word + location (%) 53.22 53.69 53.98 53.56 66.20 60.72 57.56 57.02 64.45 64.12 57.03 55.68 62.10 62.21 54.67 52.74

Word + location + span (%) 53.45 51.97 48.89 48.79 60.05 50.95 47.39 49.98 55.98 47.29 44.51 47.60 51.12 45.28 42.79 45.28

Word + span (%) 53.46 53.42 52.31 51.08 63.03 56.69 51.92 53.47 61.93 55.32 48.75 51.09 58.75 52.30 46.46 48.57

POS (%) 61.87 61.46 60.12 59.39 78.36 76.58 74.79 70.42 76.95 76.78 76.19 74.02 75.40 76.01 75.38 74.17

POS + location (%) 60.05 59.12 58.17 58.31 77.46 73.49 66.60 64.05 74.76 74.70 71.13 67.13 71.35 72.39 70.68 67.1

POS + location + span (%) 58.37 57.68 56.00 55.30 72.95 65.37 59.14 58.43 69.06 65.72 58.22 57.11 63.75 61.27 55.49 54.24

POS + span (%) 59.77 58.54 57.37 57.24 75.08 69.93 62.92 61.15 71.68 70.93 65.13 61.31 67.19 67.62 63.37 59.63

Word + POS (%) 59.38 58.67 58.20 58.13 76.55 76.72 71.35 66.00 73.84 74.67 73.66 71.04 70.76 72.12 72.21 71.02

Word + POS + location (%) 58.54 57.84 57.39 57.33 76.23 73.52 64.61 62.25 71.93 72.50 69.20 63.57 68.08 69.13 67.89 62.70

Word + POS + location + span (%) 57.79 56.92 55.66 54.77 72.86 65.40 58.09 57.62 67.91 64.58 56.72 55.55 62.92 59.78 53.95 52.73

Word + POS + span (%) 58.78 57.51 56.76 56.25 74.54 69.66 61.49 59.98 69.87 69.69 62.84 59.08 65.67 65.33 60.50 56.89

DecisionStump

Items on Queue 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Items on Stack 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Word (%) 50.00 50.00 50.00 50.00 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77

Word + location (%) 50.00 50.00 50.00 50.00 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77

Word + location + span (%) 50.00 50.00 50.00 50.00 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77

Word + span (%) 50.00 50.00 50.00 50.00 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77

POS (%) 50 50 50 50 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58

POS + location (%) 50 50 50 50 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58

POS + location + span (%) 50 50 50 50 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58

POS + span (%) 50.00 50.00 50.00 50.00 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58 60.58

Word + POS (%) 50.00 50.00 50.00 50.00 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77

Word + POS + location (%) 50.00 50.00 50.00 50.00 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77

Word + POS + location + span (%) 50.00 50.00 50.00 50.00 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77

Word + POS + span (%) 50.00 50.00 50.00 50.00 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77 63.77

Table 6.1: Classification accuracy with various items on the queue and stack.
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6.2 Optimising unlabelled attachment

In this section we will evaluate DNDParser using deterministic and non-deterministic

approaches. Our aim here is to check the parsing accuracy for unlabelled attachment

scores (UAS) and its speed (the time taken for determining each dependency relation

between two words in seconds). All of the testings conducted in this section are based

on 1-fold validation because our goal is to find the best parsing strategy with a specific

classifier. Carrying out 5-fold validation would simply make the experiments take five

times as long without producing much extra information. However, in Section 6.4.2

we conduct 5-fold cross validations.

6.2.1 Deterministic parsing evaluation

Here we use the classification algorithm that has the highest accuracy to drive the pars-

ing algorithm completely deterministically. We will evaluate the deterministic parsing

algorithm using the different variations described in Section 5.3. In these experiments,

the parser must accept the final state that it produces, which may or may not contain a

complete parse tree, since it is possible that the final state (where the queue is empty;

i.e., the parser processed all the words in the queue) produced by the parser may not be

a terminal state; i.e., the queue is empty but the stack has more than one item, meaning

that all the items on the queue have been processed but a full parse tree has not been

produced.

We have evaluated DNDParser deterministically to observe its performance when

using different orders-of-preference when the parser is presented with a number of

equally scored states. We have used the setting POS+LOC feature with a window size

of four items on the queue and two items on the stack because this gives the highest

classification accuracy. The result of deterministic parser evaluation is presented in

Table 6.2.

The parser does not perform well when it is used deterministically, but it is no-

ticeable that performing furthest-item-first reduction is a better strategy to use than

closest-item-first reduction. Moreover, in both strategies, the LA-SHIFT-RA orders-

of-preference (from page 122) produces better parsing accuracy than the other orders.

The results presented in Table 6.2 indicate that running the parser with different

strategies yields different results. We anticipate that the parser does not perform well

when the parser accepts the first established final parse state as the final analysis. We

believe that the parsing performance may improve if the parser is allowed to roll back
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to the previous state that has the highest score in the agenda when a final parse state

does not contain a complete parse analysis for a given sentence. This non-deterministic

approach is explored in the following section.

Furthest-item-first reduction

Classification algorithm Feature Queue size Stack size orders-of-preference UAS (%) Speed

J48 POS+LOC 4 2 LA-SHIFT-RA 52.27 0.054

SHIFT-RA-LA 45.93 0.052

SHIFT-LA-RA 46.02 0.046

RA-SHIFT-LA 28.33 0.034

RA-LA-SHIFT 28.33 0.033

LA-RA-SHIFT 28.33 0.035

Closest-item-first reduction

Classification algorithm Feature Queue size Stack size orders-of-preference UAS (%) Speed

J48 POS+LOC 4 2 LA-SHIFT-RA 46.12 0.046

SHIFT-LA-RA 45.62 0.046

SHIFT-RA-LA 46.0 0.112

RA-SHIFT-LA 28.31 0.033

RA-LA-SHIFT 27.89 0.028

LA-RA-SHIFT 27.89 0.029

Table 6.2: Deterministic parsing with different strategies and POS tags and location as

features and a window size of four items on the queue and two items on the stack.

6.2.2 Non-deterministic parsing evaluation

In this section we use the same classification algorithm that we have used for evalu-

ating DNDParser deterministically. Here, we evaluate it non-deterministically using

the different variations described in Section 5.3. In these experiments, the parser is al-

lowed to roll back to the previous highest scored state if the final state does not contain

a complete parse tree.

The results for non-deterministic parsing evaluation are presented in Table 6.3.

Among all of the experiments in this section, as shown in Table 6.3 (and in the previ-

ous section), it is apparent that the furthest-item-first reduction strategy performs bet-

ter than the other strategy (closest-item-first reduction). However, the SHIFT-LA-RA

orders-of-preference produces better results when DNDParser was used non-determinis-

tically. The reason that LA-SHIFT-RA order produced better results when DND-

Parser was used deterministically is because the parser performs LEFT-ARC instead of

SHIFT when the classifier fails to recommend an operation, which results in assigning

an item on the stack as the parent of an item on the queue. If a SHIFT operation is

performed instead, then the parser would produce a less complete tree when the final

state is reached the first time, whereas a less complete tree would mean more errors
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Furthest-item-first reduction

Classification algorithm Feature Queue size Stack size orders-of-preference UAS (%) Speed

J48 POS+LOC 4 2 SHIFT-LA-RA 70.6 0.074

LA-SHIFT-RA 52.39 0.062

SHIFT-RA-LA 44.77 0.066

RA-LA-SHIFT 30.02 0.052

RA-SHIFT-LA 28.31 0.043

LA-RA-SHIFT 28.31 0.052

Closest-item-first reduction

Classification algorithm Feature Queue size Stack size orders-of-preference UAS (%) Speed

J48 POs+LOC 4 2 SHIFT-LA-RA 62.6 0.079

LA-SHIFT-RA 45.63 0.050

SHIFT-RA-LA 45.12 0.177

RA-LA-SHIFT 27.88 0.052

LA-RA-SHIFT 27.88 0.041

RA-SHIFT-LA 28.29 0.043

Table 6.3: Non-deterministic parsing with different strategies and POS and location as

features with a window size of four items on the queue and two items on the stack.

in the parse analyses and hence lower accuracy. Also, performing LEFT-ARC assigns

stack items as the parent of the head of the queue at the earliest possible stages where

the operation should not have been performed.

In the case of non-deterministic parsing, DNDParser benefits from the SHIFT-LA-

RA order because the parser has the chance to explore different states if the queue

becomes empty and a complete parse tree is not produced. When the classifier fails to

recommend a parse operation, then it is safer to perform a SHIFT operation because

the parser can roll back to the previous highest scored state if the SHIFT does not lead

to a complete parse analysis.

The results shown in Tables 6.2 and 6.3 indicate that running DNDParser non-

deterministically is more effective than running it deterministically in terms of accu-

racy. However, running the parser non-deterministically is about 50% slower than

running it deterministically.

In the following section, we will repeat the experiments in Sections 6.2.1 and 6.2.2

by training the parser on the J48 classifier but with different features and settings. Our

goal in repeating those experiments is to find an answer to the following question:

“Will the parser perform better or worse if it is trained with the same classification

algorithm but with a different set of features and settings?” We also present a number

of experiments by running the parser trained on a number of classification algorithms

with various features and settings.
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6.3 Parser evaluation with different features and set-

tings

In this section we will evaluate DNDParser in the same way as in the previous section.

However, in this section, the parser is trained using different settings and features.

Here, we train it with J48 but with POS tags only as features and window sizes of

four item on the queue and three items on the stack. Our goal in conducting these

evaluations is to find out whether the parser performs differently if it is trained with

different features and settings. The results of our findings are presented in Tables 6.4

and 6.5.

Furthest-item-first reduction

Classification algorithm Feature Queue size Stack size orders-of-preference UAS (%) Speed

J48 POS 4 3 LA-SHIFT-RA 72.48 0.062

SHIFT-LA-RA 59.77 0.047

SHIFT-RA-LA 59.41 0.067

RA-LA-SHIFT 53.67 0.043

LA-RA-SHIFT 53.67 0.042

RA-SHIFT-LA 53.67 0.041

Closest-item-first reduction

Classification algorithm Feature Queue size Stack size orders-of-preference UAS (%) Speed

J48 POS 4 3 LA-SHIFT-RA 66.46 0.058

SHIFT-LA-RA 59.76 0.035

SHIFT-RA-LA 59.58 0.41

RA-SHIFT-LA 52.62 0.037

RA-LA-SHIFT 51.35 0.030

LA-RA-SHIFT 51.35 0.032

Table 6.4: Different strategies for deterministic parsing with POS only as features with

a window size of four items on the queue and three items on the stack.

Furthest-item-first reduction

Classification algorithm Feature Queue size Stack size orders-of-preference UAS (%) Speed

J48 POS 4 3 SHIFT-LA-RA 76.12 0.074

LA-SHIFT-RA 72.61 0.062

SHIFT-RA-LA 57.54 0.078

RA-SHIFT-LA 53.6 0.060

RA-LA-SHIFT 53.6 0.059

LA-RA-SHIFT 53.6 0.060

Closest-item-first reduction

Classification algorithm Feature Queue size Stack size orders-of-preference UAS (%) Speed

J48 POS 4 3 SHIFT-LA-RA 70.75 0.076

LA-SHIFT-RA 66.48 0.058

SHIFT-RA-LA 57.01 0.077

RA-SHIFT-LA 52.55 0.056

LA-RA-SHIFT 51.34 0.052

RA-LA-SHIFT 51.34 0.051

Table 6.5: Non-deterministic parsing evaluation with different strategies and POS only

as features with a window size of four items on the queue and three items on the stack.

It appears that using different settings affects the performance of the parser greatly.
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From the experiments conducted in this section, and the previous section, it is apparent

that running the parser non-deterministically with SHIFT-LA-RA orders-of-preference

and using a furthest-item-first reduction strategy produces the best parsing perfor-

mance. In the following section we will conduct a large number of experiments by

training the parser on a number of different classifiers with different features and set-

tings.

6.4 Evaluating classifiers for parsing

In the previous section (Section 6.1) a number of classification algorithms were iden-

tified. As presented in Table 6.1 the classification accuracy varies because each algo-

rithm learns differently from the set of training data. In this section, we investigate

the effect of using different classification algorithms on the parser’s performance when

it is being trained by different classifiers. Specifically, we train our parser by using

those classifiers that produce the highest classification accuracy with a SHIFT-LA-RA

orders-of-preference and a furthest-items-first reduction strategy. The objective in us-

ing different classifiers for training the parser is to identify the algorithms that help the

parser perform best in terms of accuracy and efficiency.

These experiments also highlight whether generating different parsing models by

using different classification algorithms contribute in different ways to parsing perfor-

mance. The optimal accuracy of a classification accuracy may or may not necessarily

lead to better parsing performance. Hence, we can investigate the effectiveness of

different classification algorithms in parsing natural languages.

From Table 6.1, we can identify the classification algorithms with the highest de-

gree of accuracy. In this section, we train DNDParser using J48, RandomTree, and Id3

algorithms since they all classified the same set of training data with over 80% accu-

racy. For each of these algorithms we use the same settings that produced the optimal

accuracy (see the numbers in bold with grey background in Table 6.1). For example,

based on the results in Table 6.1, we will use the POS tags as a training feature for

the J48 algorithm with four items on the queue and four items on the stack because

with this setting the algorithm produced 86.05% accuracy, while if we are using POS

tags and their locations in a sentence as training features for the J48 algorithm then

we will use four items on the queue and two items on the stack because the algorithm

performs best with this setting, which produced 86.96% accuracy. Moreover, we limit

the window size for the queue and stack to a maximum of 4 items because previous
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experiments conducted by Jaf and Ramsay [Jaf and Ramsay, 2013] had shown that

using a larger window size than 4 items did not have any effect on the performance

of parsing accuracy. For the experiment results presented in Table 6.6, we have used

DNDParser non-deterministically, with the SHIFT-LA-RA orders-of-preference and a

furthest-item-first reduction strategy because the parser performed best with this set-

ting.

Classifier Features Classification Accuracy Queue size Stack size UAS (%) Speed

J48 POS 86.05% 4 3 76.1 0.074

J48 POS 86.04% 4 4 75.4 0.080

J48 POS + location 86.96% 4 2 70.3 0.146

J48 POS + location + span 85.99% 4 4 69.2 0.161

J48 POS + span 85.88% 4 2 70.6 0.145

J48 POS + span 85.88% 4 3 70.8 0.150

J48 POS + span 85.88% 4 4 70.9 0.142

J48 Words + POS 86.47% 4 3 71.4 0.096

J48 Words + POS + location 86.63% 4 2 69.9 0.140

J48 Words + POS + location + span 86.55% 4 3 68.0 0.183

J48 Words + POS + span 86.53% 4 2 69.8 0.161

RandomTree POS 85.28% 3 2 70.9 0.141

RandomTree POS + Location 83.04% 2 1 68.6 0.154

RandomTree POS + Location + span 82.54% 2 1 67.8 0.181

RandomTree POS + span 83.15% 2 1 68.2 0.181

RandomTree Words + POS 85.02% 2 2 70.0 0.196

RandomTree Words + POS + location 83.33% 2 1 68.7 0.198

RandomTree Words + POS + location + span 82.91% 2 1 66.8 0.196

RandomTree Words + POS + span 82.89% 2 1 68.6 0.184

Id3 POS 83.74% 3 1 70.6 0.083

Id3 Words + POS 83.62% 2 2 68.1 0.099

Table 6.6: Non-deterministic parsing with different classification algorithms, features

and settings.

The results of the evaluation of our parser are presented in Table 6.6. The best

parsing performance is achieved when training the parser using the J48 classification

algorithm on only POS tags as a feature and the window size for the queue and stack

is four and three respectively (marked bold in Table 6.6). The experiments in Table 6.6

show that training a classifier using a small set of features produces relatively similar

classification accuracy to using a larger set of features. However, using a smaller set

of features helps the parser to produce more accurate parse analyses and this can be

achieved more quickly than using a larger set of features. It can be noted from Table

6.6 that using the J48 algorithm with only POS tags as a training feature produces a

lower level of classification accuracy (86.05%) than when using POS tags and their
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locations as training features (86.96%). However, using the former features helps the

parser to produce the best parsing results. Using only POS tags improves the parsing

accuracy for unlabelled attachment score by 5.8%. Additionally, using a smaller set of

features makes the parser 50% quicker. Furthermore, using a smaller window size for

the queue and the stack is better for parsing performance. Training the parser on the

same training feature (POS tags only) but with a smaller window size (four items on

the queue and three items on the stack) improves the parsing accuracy by 0.78% for

unlabelled attachment score.

The reason for the improved parsing efficiency when training the parser on smaller

sets of feature is that the question set that the parser searches through is smaller and

hence it will find an answer more quickly compared to situations where there are sev-

eral features for searching through. The reason for the improved parsing accuracy

when training the parser on smaller set of features is most likely because the parser

learns consistently from a smaller set of features rather than from several features

where the training data is not large enough to learn more effectively.

In the following sections we will evaluate the labelled attachment score of our

parser. We will also attempt to extract different kinds of constraint rules from a depen-

dency treebank and apply them to the our data-driven parser. Our goal is to find out

whether applying constraint rules to DNDParser improves the parsing performance.

In the remaining experiments, we will use the J48 classifier with POS tags only as

features, with window sizes of four items on the queue and three items on the stack

because this classifier with this setting produced the best parsing performance.

6.4.1 Labelled attachment score evaluation

In Section 5.4.1, we have described the extraction of different kinds of patterns for

determining the dependency labels for each dependency relation during parsing. In this

section, we experiment with using these rules and report on the parsing performance

regarding the labelled attachment accuracy. We are using the parse setting from the

previous experiments that produced the optimal parsing performance; i.e., training the

parser with the J48 classifier with POS tags as features and four items on the queue

and three items on the stack. Furthermore, we run the parser non-deterministically

with SHIFT-LA-RA orders-of-preference and furthest-item-first reduction strategy.

The tables below show the results for using each kind of pattern with a number of

different window sizes of the queue and stack. From the large number of experiments,

we see that using pattern two with a window size of five items on the queue and five
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items on the stack produces the highest labelled attachment accuracy. We will be

using pattern two for the subsequent experiments when assigning labels to dependency

relations.

Different window size of queue and stack (pattern one)

Queue size Stack size UAS LAS LA Speed

2 2 76.1 59.3 77.73 0.075

2 3 76.1 65.7 85.02 0.076

2 4 76.1 68.1 87.92 0.077

2 5 76.1 69.2 89.28 0.076

3 2 76.1 63.3 82.39 0.077

3 3 76.1 68.6 88.5 0.079

3 4 76.1 70.3 90.56 0.078

3 5 76.1 70.8 91.07 0.078

4 2 76.1 67.0 86.78 0.078

4 3 76.1 70.2 90.48 0.079

4 4 76.1 71.3 91.75 0.08

4 5 76.1 71.5 92.05 0.08

5 2 76.1 68.4 88.48 0.08

5 3 76.1 70.9 91.33 0.081

5 4 76.1 71.7 92.26 0.082

5 5 76.1 71.9 92.49 0.082

Table 6.7: Parser evaluation for LAS using pattern one.

Different window size of queue and stack + distance between head and dependent (pattern two)

Queue size Stack size UAS LAS LA Speed

2 2 76.1 67.6 87.81 0.074

2 3 76.1 69.3 89.68 0.075

2 4 76.1 70.0 90.58 0.076

2 5 76.1 70.8 91.42 0.077

3 2 76.1 68.2 88.52 0.076

3 3 76.1 70.1 90.72 0.077

3 4 76.1 70.9 91.62 0.078

3 5 76.1 71.3 91.98 0.078

4 2 76.1 69.5 90.01 0.078

4 3 76.1 70.7 91.32 0.079

4 4 76.1 71.4 92.15 0.08

4 5 76.1 71.7 92.4 0.08

5 2 76.1 70.4 91.03 0.08

5 3 76.1 71.2 91.94 0.081

5 4 76.1 71.8 92.57 0.082

5 5 76.1 72.0 92.66 0.082

Table 6.8: Parser evaluation for LAS using pattern two.
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Different window size of queue and stack with label probability (pattern three)

Queue size Stack size UAS LAS LA Speed

2 2 76.1 60.7 79.15 0.074

2 3 76.1 66.7 86.12 0.075

2 4 76.1 69.2 89.14 0.076

2 5 76.1 70.4 90.49 0.077

3 2 76.1 63.9 82.94 0.076

3 3 76.1 69.0 88.94 0.077

3 4 76.1 70.8 91.08 0.078

3 5 76.1 71.3 91.58 0.078

4 2 76.1 67.3 87.08 0.078

4 3 76.1 70.5 90.75 0.08

4 4 76.1 71.5 92.01 0.08

4 5 76.1 71.8 92.31 0.08

5 2 76.1 68.4 88.56 0.08

5 3 76.1 70.9 91.4 0.081

5 4 76.1 71.7 92.34 0.081

5 5 76.1 71.9 92.57 0.082

Table 6.9: Parser evaluation for LAS using pattern three.

6.4.2 5-fold cross validation of DNDParser

In the previous sections we have evaluated DNDParser using 1-fold validation. Our

aim for 1-fold validation was to identify the best settings, classifiers, and strategies

for labelled attachment accuracy. Since we have identified the best classifier with

the appropriate features and settings for parser training we will conduct 5-folds cross

validation in this section and most of the following section. From the previous experi-

ments (Section 6.2) we have identified that the parser performed best when trained on

the J48 classifier with a window size of four items on the queue and three items on

the stack and with POS tags only as features. Regarding the labelled attachment accu-

racy, we have discovered that pattern two (Section 6.4.1) leads to the highest labelled

attachment score accuracy. The result for the 5-fold cross validation of the parser is

presented in Table 6.10. It is worth noting that the result presented in Table 6.10 is

lower than the results we have presented in the previous tables, because here we have

conducted a 5-fold validation while the results in the previous tables are based on a

1-fold validation.

Classifier Features Classification Accuracy Queue size Stack size DNDParser
UAS (%) LAS (%) LA (%) Speed

J48 POS 86.05% 4 3 74.5 71.0 93.6 0.081

Table 6.10: 5-fold cross validation result of DNDParser.
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6.5 Constraint rules and parsing

One of the extensions that we have added to the arc-standard algorithm of MaltParser

is the scoring technique (see Section 5.2.2). This extension provides an opportunity to

integrate constraint rules into the parser. This can be achieved by assigning a score to

encourage the recommendations made by the parsing model if they produce a depen-

dency relation that obeys the constraints. Alternatively, if we want to ignore the role

of constraint rules in the parsing decision then we assign a score of zero to them. This

way we deactivate the constraint rules. This corresponds to contribution C.2 in this

study. Since producing a grammar for a natural language parser is an expensive and

difficult task, we opt to extract different kinds of constraint rules from the dependency

treebank.

Dependency data-driven parsers produce relations between different items in a

given sentence based on knowledge obtained during parser training, i.e., by follow-

ing recommendations made by a parse model. Parsers are trained on a set of training

data by using machine learning algorithms. As shown in Table 6.1, where the accuracy

of a number of machine learning algorithms is recorded, classification algorithms do

not learn effectively from a set of training data completely. Thus, the parse models

produced from them are prone to making recommendations to parsers that may lead to

incorrect analyses, or they may fail to make any recommendations at all.

The absence of grammatical rules in data-driven parsers makes it impossible to

validate the plausibility of the parse analyses produced by these parsers. Writing a set

of grammatical rules for any natural languages that can be used adequately for parsing

natural languages is an expensive and time consuming task. Since there is a large

number of treebanks available where these treebanks contain an implicit underlying

grammar, as used by the treebank annotators, one can hope to extract a set of constraint

rules that are a reasonable representation of the grammar of the language in question.

Our goal in using constraint rules is to validate the parse analyses that are produced

by following the recommendations made by a parsing model; i.e., to check that the rec-

ommendation made by a parsing model (for performing LEFT-ARC, or RIGHT-ARC

operations) for the parser results in producing correct dependency relations, whereby

the relations obey some constraint rules which are part of the language in question.

In this section, we show an approach for integrating constraint rules into DNDParser,

which is our contribution C.1 in this study).
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6.5.1 Applying constraints to DNDParser

Integrating constraint rules into DNDParser that was presented in the previous section

is fairly easy. A parse analysis that is produced by following a parse operation, which

is recommended by the parse model is checked to see whether it is plausible. A parse

analysis is considered plausible if it obeys the constraint rules.

A recommended parse operation is assigned a score. We attempt to use constraint

rules to assign an additional score if the constraints agree with the recommendation

of the parse model; i.e., if it produces a plausible parse analysis. This means that the

recommendations made by a parse model are validated by using a set of constraint rules

to check whether they produce acceptable parse analyses; i.e., if the parser benefits

from the information provided by a parse model and from a set of constraint rules.

The effect of these rules on the parser’s decision is when the parser produces a

number of states from one state where each state has a score computed by adding the

score given by the parsing rules to the score given by the constraint rules.

In situations where the parser is presented with a state that has one or more items

on the queue and the stack has more than one item, then the parser generates more than

three states because it checks for relations between the head of the queue and any item

on the stack. In this kind of situation, two or more states may be given a positive score.

In order to determine which of the equally scored states should be explored next, the

score of the constraint rules for an operation will influence the parser’s decision. For

example in Figure 6.2 where the parsing rules suggested a LEFT-ARC(1) (making 3

from the queue the parent of 2 on the stack) and also a LEFT-ARC(2) (making 3 the

head of the queue the parent of 1 from the stack) they were both given a score of 1.

However, we assumed that the constraint rules also encouraged the recommendation

of the parsing rule and that they gave their scores to the two recommended opera-

tions, where LEFT-ARC(1) is given as 0.25 and LEFT-ARC(2) is given as 0.5. In this

situation, LEFT-ARC(2), with a total score of 1.5 plus the score of the currently ex-

plored state, will be placed on the top of the agenda because it will have the highest

score. Here, in these kinds of situations, the constraint rules influence the decision

of the parser when a LEFT-ARC(2) operation is performed instead of LEFT-ARC(1)

operation.

Since we have a dependency treebank we can extract different types of constraint

rules in the form of patterns from the dependency trees. The main type is the parent-

daughter relations between the words of a sentence.
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States | Action Queue Stack Trees Parsing rules score Constraint rules score Total score

--------------|-------------------------------------------------------------------------------------------------------------

Current state | θ [3,4] [2,1] θ 0 0 0

New states | SHIFT [4] [3,2,1] θ 0 0 0

| RIGHT-ARC(1) [2,4] [1] (2>3) 0 0 0

| RIGHT-ARC(2) [1,2,4] [] (1>3) 0 0 0

| LEFT-ARC(1) [3,4] [1] (3>2) 1 0.25 1.25

| LEFT-ARC(2) [2,3,4] [] (3>1) 1 0.5 1.5

Figure 6.2: Generating more than three parse states from one state.

The following sections describe different types of constraint rules that can be ex-

tracted from a dependency treebank, where they can be integrated into our parser.

6.5.2 Extracting constraint rules from PATB

The main type of relations that are accounted for in dependency parsing are the parent-

daughter relations between different words in a sentence. We use the POS tags and

some other information when extracting dependency relations between words in sen-

tences. The main reason for using POS tags instead of word forms is that POS tags

are more general than word forms and hence they allow for some generalisations in

the rules. We devote the following sections to describing different constraint rules ex-

tracted from a set of dependency trees. The following section corresponds to our third

contribution of this study, which is C.3 in Section 1.4.

6.5.3 Parent daughter relations extraction

From the dependency tree shown in Figure 6.3, we can specify the parent-daughter

relations between the words in the sentence. These relations are easily obtained during

parser training. At each parse step, the relations between two items are recorded when

the parser performs LEFT-ARC or RIGHT-ARC operations. The parsing steps for the

sentence in (14) are presented in Figure 6.4.

(14)

ú
æ
	�AÖÏ @ ÈñÊK



@ ú


	̄ �éK
Pñ� ð 	àA 	JJ. Ë @ðP@ 	P l�' A� 	Ë@ 	àñ�Ô 	g xmswn alf sA’i.h

zAraW lbnAn w swryT fy ’ylwl almA.dy “fifty thousand tourists visited

Lebanon and Syria last September” [Habash and Roth, 2009c]

For example, from the dependency tree in Figure 6.3 we can identify that @ðP@ 	P
zArwA “visited”V 4 is the parent of l�' A� sA’i.h “tourists”N3, ð w “and”C6, and ú


	̄
fy

“in”P8. We can also identify that l�'A� sA’i.h “tourists”N3 is the parent of 	àñ�Ô 	g xm-

swn “fifty”NN1 and
	Ë@ laf “thousand”NN3, and so on. Using the information available
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@ðP @ 	P
zArwA

‘visited’
V4

l�' A�
sA’i.h

‘tourists’
N3

	àñ�Ô 	g
xmswn

‘fifty’

NN1

	Ë@
laf

‘thousand’
NN2

ð
w

‘and’
C6

	àA 	JJ. Ë
lbnAn

‘Lebonan’
NP5

�éK
Pñ�
swryT

‘Syria’

NP7

ú

	̄

fy

‘in’
P8

ÈñÊK


@

’ylwl

‘September’

NP9

ú
æ
	�AÖÏ @

almA.dy

‘last’
NP10

Figure 6.3: Dependency tree for the sentence in (14). The POS tags are abbreviated to

accommodate space in Figure 6.4.

Dependency relations: (V4>N3) (V4>C6) (V4>P8) (N3>NN1) (N3>NN2) (C6>NP5) (C6>NP7) (P8>NP9) (NP9>NP10)

-----------------------------------------------------------------------------------------------------

Steps Action Queue Stack RELS

-----------------------------------------------------------------------------------------------------

1 θ [NN1,NN2,N3,V4,NP5,C6,NP7,P8,NP9,NP10] [] θ
2 SHIFT [NN2,N3,V4,NP5,C6,NP7,P8,NP9,NP10] [NN1] θ
3 SHIFT [N3,V4,NP5,C6,NP7,P8,NP9,NP10] [NN2,NN1] θ
4 RIGHT-ARC [N3,V4,NP5,C6,NP7,P8,NP9,NP10] [NN1] R1 = (N3>NN2)

5 RIGHT-ARC [N3,V4,NP5,C6,NP7,P8,NP9,NP10] [] R2=R1Y(N3>NN1)

6 SHIFT [V4,NP5,C6,NP7,P8,NP9,NP10] [N3] R2

7 RIGHT-ARC [V4,NP5,C6,NP7,P8,NP9,NP10] [] R3=R2Y(V4>N3)

8 SHIFT [NP5,C6,NP7,P8,NP9,NP10] [V4] R3

9 SHIFT [C6,NP7,P8,NP9,NP10] [NP5,V4] R3

10 RIGHT-ARC [C6,NP7,P8,NP9,NP10] [V4] R4=R3Y(C6>NP5)

11 SHIFT [NP7,P8,NP9,NP10] [C6,V4] R4

12 LEFT-ARC [C6,P8,NP9,NP10] [V4] R5=R4Y(C6>NP7)

13 LEFT-ARC [V4,P8,NP9,NP10] [] R6=R5Y(V4>C6)

14 SHIFT [P8,NP9,NP10] [V4] R6

15 SHIFT [NP9,NP10] [P8,V4] R6

16 SHIFT [NP10] [NP9,P8,V4] R6

17 LEFT-ARC [NP9] [P8,V4] R7=R6Y(NP9>NP10)

18 LEFT-ARC [P8] [V4] R8=R7Y(P8>NP9)

19 LEFT-ARC [V4] [] R9=R8Y(V4>P8)

20 SHIFT [] [V4] R9

-----------------------------------------------------------------------------------------------------

Figure 6.4: Parse transitions for processing the sentence in (14) for extracting a set of

relations between items.
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in a dependency tree we parse each sentence using the tree as a grammar. When the

parser performs LEFT-ARC or RIGHT-ARC operations, the relations between the par-

ent and the daughter item are recorded. The dependency relations are then stored as a

set of constraint rules for parsing test data, an example of a set of relations extracted

from the parse transitions of Figure 6.4 is shown in Figure 6.5. The first line of Figure

6.4 says that l�'A� sA’i.h “tourists”N3 is the parent of 	àñ�Ô 	g xmswn “fifty”NN1 and so

on.

(N3, NN1)

(N3, NN2)

(V4, N3)

(C6, NP5)

(C6, NP7)

(V4, C6)

(NP9, NP10)

(P8, NP9)

(V4, P8)

Figure 6.5: Extracted dependency relation between parents and daughter during parser

training from Figure 6.4.

Each relation is recorded as a tuple where each tuple contains two items: the first

item is the parent, and the second item is the daughter. A set of tuples is then used

as constraint rules during parsing. When the parse model recommends a LEFT-ARC

or a RIGHT-ARC operation, this could make x the parent of y. The parser can check

from the set of constraint rules to see whether making x the parent of y is allowed or is

plausible. A recommended operation that results in producing a dependency relation

between two items that does not obey any constraint rules must not be encouraged;

i.e., it must not be given a positive score. Intuitively, one can use information about the

frequency of rules: A rule with high frequency rate should be given priority. However,

previous experiments with using such information showed that they were not helpful.

Hence, information about the frequency of rules is ignored. So, the computation of the

scores is the sum of three scores:

1. the original score of the parse state.

2. the score for the recommendation of the parse model.

3. the score for obeying/disobeying a constraint rule.
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We have evaluated the parser using the parent-daughter relations and the result for

this evaluation is presented in Table 6.11.

UAS (%) LAS (%) LA (%) Speed

70.1 66.7 93.4 0.059

Table 6.11: Evaluating DNDParser with parent-daughter constraint rules.

The output of using the kind of constraint rules that have been presented in this

section is not encouraging. The results in Table 6.11 show that using the constraint

rules slightly worsens the parsing performance. The reason for the worsening of the

parsing performance is that the constraint rules are very generalised, hence many op-

erations suggested by the parsing rules are encouraged by the constraint rules. For

example, in Figure 6.4, in step 3 the correct operation is RIGHT-ARC for making N3

the head of NN2. However, having a large number of overly generalised constraint rules

may include a rule that allows NN2 to be the head of N3. Introducing such a rule will

encourage the parser to perform LEFT-ARC instead of RIGHT-ARC, which may not

be the correct operation.

Although the application of constraint rules harms the parsing accuracy, they can

actually improve the parsing speed substantially, from 0.081 seconds per relations to

0.059 seconds per relation. An explanation of this outcome is that the parser accepts

many individual relations as plausible and hence produces a final parse analysis more

quickly, even if it is not especially plausible.

It is likely that the major problem with the constraint rules above is they lack con-

textual information. In order to improve them we may include some contextual infor-

mation, such as situations in which x appeared as the head of y and situations in which

y appeared as the head of x. The extraction of this kind of constraint rule is discussed

in Section 6.5.

6.5.4 Subtree extraction

From a set of dependency trees, we can extract a different set of constraint rules. In this

section we describe a different set of constraint rules that we have extracted from the

treebank. These constraint rules consist of different sets of subtrees. They include both

lexicalised subtrees and unlexicalised subtrees. In lexicalised subtrees, each subtree is

headed by a lexical item and has zero or more leaves. The leaves are stored in a list of

tuples where the first element of each tuple is a number indicating the frequency of a
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set of leaves (which are a list POS tags) for the lexical item. These constraint rules are

called lexicalised subtrees because each rule is headed by a lexical item, which is the

head of the tree, and the list of items which is a set of POS tags for the daughters of

the head. Figure 6.6 shows a set of lexicalised subtrees extracted from the dependency

tree of Figure 6.3.

Lexicalised subtrees

‘zArwA’, (1, [‘NOUN’, ‘CONJ’, ‘PREP’]).

‘sA’i.h’, (1, [‘NOUN-NUM’, ‘NOUN-NUM’]).

‘w’, (1, [‘NOUN-PROP’, ‘NOUN-NUM’]).

‘fy’, (1, [‘NOUN-PROP’]).

‘’aylwl’, (1, [‘NOUN-PROP’]).

‘xmswn’, (1, []).

‘alf’, (1, []).

‘lbnAn’, (1, []).

‘swryT’, (1, []).

‘almA.dy’, (1, []).

Figure 6.6: A set of lexicalised subtrees extracted from Figure 6.3.

Since the LEFT-ARC and the RIGHT-ARC operations result in removing a daugh-

ter item from the stack or queue, which may be required in subsequent parsing stages,

it is vital to ensure that the daughter item has collected all of its daughters. Removing

an item from the stack or the queue when it is required in subsequent parsing steps

will result in producing wrong trees, or possibly parse failure. The error propagation

may be severe when LEFT-ARC or RIGHT-ARC operations are mistakenly performed.

Thus, subtrees can be used for encouraging the parser to remove a daughter item only if

there is evidence that the daughter item has collected all of and only its daughters (This

corresponds to completeness and cohesion in Lexical Functional Grammar (LFG) [Ka-

plan and Bresnan, 1995]). This check is performed in two steps by using the subtrees:

(i) collect all the daughters of the item from the tree that have been built by the parser,

and (ii) find a subtree (from the set of subtrees collected during parser training) that is

headed by the dependent item with the same set of daughters that are collected in (i).

If a matching subtree is found then we can assume that the dependent item has all of

its daughters and hence the parse operation can be encouraged.

Encouraging a parse operation using the subtrees is performed by giving a score

to the parse operation. Each daughter in a subtree is associated with a score, which

represents the frequency of the subtree during the training stage. The score is used

for computing the percentage of the subtree with a specific set of daughters, which is

computed by dividing the score associated with the daughter by the total associated
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scores of all other daughters headed by the same lexical item. The computed score is

then used for encouraging the parse operation.

We have evaluated DNDParser using this set of constraint rules and the results

of the evaluation presented in Table 6.12 indicate an improvement over the previous

experiments, where DNDParser was evaluated without the application of the constraint

rules. In the next section we will attempt to use a set of unlexicalised constraint rules.

Constraint rules UAS (%) LAS (%) LA (%) Speed

DNDParser with lexicalised subtrees 73.06 69.15 94.21 0.151

Table 6.12: Constraining DNDParser with a set of probabilistic lexicalised subtrees.

Unlexicalised subtrees The data in the set of lexicalised subtrees is sparse because

it is possible that many of the lexical items that occur during testing have never been

seen during the training. In order to overcome the problem of sparsity, we will extract

a set of unlexicalised subtrees from the treebank. The set of unlexicalised subtrees are

headed by a POS tag instead of a lexical item. The rules in Figure 6.7 show a set of

unlexicalised subtrees extracted from the tree in Figure 6.3.

‘VERB’, (1, [‘NOUN’,‘CONJ’,‘PREP’]).

‘NOUN’, (1, [‘NOUN-NUM’, ‘NOUN-NUM’]).

‘CONJ’, (1, [‘NOUN-PROP’, ‘NOUN-NUM’]).

‘PREP’, (1, [‘NOUN-PROP’]).

‘NOUN-PROP’, (1, [‘NOUN-PROP’]).

‘NOUN-PROP’, (3, []).

‘NOUN-NUM’, (2, []).

Figure 6.7: A set of unlexicalised subtrees extracted from Figure 6.3.

The result of the evaluation using a set of unlexicalised subtrees is shown in Ta-

ble 6.13. We can see from this table that using unlexicalised subtrees improves the

accuracy of DNDParser .

Constraint rules UAS (%) LAS (%) LA (%) Speed

DNDParser with unlexicalised subtrees 75.9 72.4 94.84 0.133

Table 6.13: Constraining DNDParser with a set of probabilistic unlexicalised subtrees.
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6.5.5 Parent daughter relations extraction with local contextual in-

formation

Using a set of daughter-parent relations can be highly generalised and it may allow

for establishing relations between different items that should not be allowed in some

situations. In order to reduce the generalisation of the constraint rules obtained in the

previous section, we may include a specification of the items that appear around or in

between parents and the daughters in the rules.

For example, during parser training we use the dependency tree for each sentence as

a grammar for parsing a given sentence. As in the previous section, during each LEFT-

ARC or RIGHT-ARC transition, the relation between the parent and the daughter is

recorded. Additionally, some items from the queue and the stack are collected and

recorded with each relation. By using the parse transitions from Figure 6.4 we collect

up to two items from the queue and two items from the stack for each relation that is

established between words items2. Additionally, the frequency of the rule is counted

and recorded in each relation where they are used for computing the probability of the

rule during parsing. The conditional probability of each rule is computed in three steps:

(i) obtaining the frequency of a rule, (ii) obtaining the sum of the frequency of all the

rules with the same parent and daughter relations (regardless of the local information

collected from the queue and the stack), (iii) dividing the number obtained in step (i)

by the number obtained in step (ii). The probability of each rule is then used as a score

for encouraging a parse operation suggested by the parsing rules.

From the training data, we have extracted a set of relations with varying window

size for the queue and the stack. In Figure 6.8 we show an example of constraint

rules with a window size of two items from the queue and two items from the stack,

which are extracted from the parse transitions presented in Figure 6.4. The first line

of the rules in Figure 6.8 says that l�' A� sA’i.h “tourists”N3 is the parent of 	àñ�Ô 	g
xmswn “fifty”NN1, the two items on the queue are l�'A� sA’i.h “tourists”N3 and ðP@ 	P
zAraw “visited”V 4 and the first item on the stack is 	àñ�Ô 	g xmswn “fifty”NN1 while the

‘-’ says that there is no second item on the stack. The last element of the rule is its

frequency in the training data.

We have conducted many experiments using this type of constraint rule. We have

used various window sizes for the queue and stack items for each constraint rules. The

queue size and the stack size are set with a window size between two items and five

2The number of items collected from the queue and the stack may vary between 1 . . . n.
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(N3, NN1, [N3, V4, NN1, ‘-’], 1).

(N3, NN2, [N3, V4, NN2, NN1], 1).

(V4, N3, [V4, NP5, N3, ‘-’], 1).

(C6, NP5, [C6, NP7, NP5, V4], 1).

(C6, NP7, [NP7, P8, C6, V4], 1).

(V4, C6, [C6, P8, V4, ‘-’], 1).

(NP9, NP10, [NP10, ‘-’, NP9, P8], 1).

(P8, NP9, [NP9, ‘-’, P8, V4], 1).

(V4, P8, [P8, ‘-’, V4, ‘-’], 1).

Figure 6.8: Dependency relations with local information from the tree in Figure 6.3.

Note: excluding the parent and the daughter from the local information made no dif-

ference to parsing performance.

items. The experiments presented in Table 6.14 shows the results for using various

window sizes for the queue and the stack3. The evaluation results presented in Table

6.14 are based on 1-fold validation because our goal is to find out the window size of

queue and stack that produce the best parsing performance.

Queue items Stack items UAS (%) LAS (%) LA (%) Speed

2 2 75.3 70.2 93.08 0.098

2 3 75.1 69.7 93.15 0.104

2 4 74.1 69.9 93.06 0.099

2 5 73.9 68.9 93.0 0.105

3 2 76.4 71.2 93.05 0.097

3 3 76.6 71.3 93.07 0.102

3 4 76.1 70.8 93.05 0.104

3 5 76.0 70.8 93.05 0.108

4 2 77.3 72.0 93.01 0.101

4 3 77.3 72.1 93.02 0.103

4 4 77.3 72.0 93.03 0.109

4 5 77.3 72.0 93.03 0.111

5 2 77.1 71.8 92.99 0.108

5 3 77.2 71.9 93.01 0.112

5 4 77.0 71.7 93.02 0.111

5 5 76.8 71.6 92.98 0.118

Table 6.14: 1-fold validation when constraining DNDParser with a set of probabilistic

parent-daughter relations with different window sizes for the queue and the stack.

We can identify that the best parsing performance is achieved on a 1-fold validation

with a window size of four items on the queue and three items on the stack. In Table

3We have evaluated the parser using constraint rules with up to 5 items on the queue and 5 items

on the stack because using a combination of more than 10 items yielded no improvement in parsing

performance.
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6.15, we have presented the performance of DNDParser using a 5-fold cross valida-

tions with the settings that produced the best parsing performance during the 1-fold

validation, where the queue size is four items and the stack size is three items.

Queue items Stack items UAS (%) LAS (%) LA (%) Speed

4 3 76.2 72.7 94.85 0.145

Table 6.15: 5-fold validation when constraining the data-driven parser with a set of

probabilistic parent-daughter relations with four items in the queue and three items on

the stack.

6.5.6 Combining constraints

Since the effect of each type of constraint rule on parsing performance is different, we

would like to see their effect when they are combined. In this section we demonstrate

the parsing performance involved when combining the set of dependency relations with

the set of subtrees. In this evaluation process, the parser checks for a relation between

two items from the set of relations collected during training stage and it encourages the

parse operation if it finds a relation by giving the score outlined in Section 6.5.5 to the

parse state otherwise it awards zero score. A similar process is performed in applying

the unlexicalised subtree rules. If a subtree is found for the dependent item, then the

score outlined in Section 6.5.4 is given. The result of this evaluation is presented in

Table 6.16. Combining different constraints does not yield better results than using

each constraint individually. However, using a combination of different constraint

rules leads to better parsing accuracy than using none but the parsing speed degrades

by about 36%.

Constraint rules UAS LAS LA Speed

Parent-daughter relations and unlexicalised subtrees 75.3% 71.8% 94.82% 0.127

Table 6.16: 5-fold cross validation of DNDParser with combined set of constraint rules.
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6.6 A comparison with the state-of-the-art parser

In this section we compare the two different versions of our parser (DNDParser and

constraint DNDParser (CDNDParser)) with the best result we have obtained for Malt-

Parser, as shown in Table 5.3.

The results we have obtained previously for MaltParser, which is one of the state-

of-the-art parsers, and the best performance for our parsers, which we have presented

in the previous sections, are presented in Table 6.17. We can note that our purely

data-driven parser (DNDParser) is 43% more efficient than MaltParser. Although the

unlabelled attachment accuracy of our parser is slightly lower than that of MaltParser

(0.7%), the labelled attachment score and the labelled accuracy is more accurate than

MaltParser by 1% and 1.4% respectively. We anticipate that this improved accuracy

of labelled attachment scores and labelled score is because we have used a different

approach to MaltParser (see Section 5.4.1 for more details).

The use of constraint rules has improved the parsing accuracy of DNDParser but

it has noticeably degraded its speed. This indicates that the use of constraint rules im-

proves parsing accuracy at the expense of its speed. However, the use of constraint

rules improved the parsing accuracy over the accuracy of MaltParser by 1% for un-

labelled attachment score, 2.7% for labelled attachment score and 2.65% for labelled

accuracy, while the parser remained as efficient as MaltParser.

Parser UAS (%) LAS (%) LA (%) Speed

MaltParser 75.2 70.0 92.2 0.144

DNDParser 74.5 71.0 93.6 0.081

CDNDParser 76.2 72.7 94.85 0.145

Table 6.17: Parse accuracies of MaltParser and the different version of DNDParser.

From the experiments that we have conducted in this chapter, we can note that

applying constraints to a data-driven parser improves its accuracy but that the speed

may degrade. The method that we have presented in this chapter where we use a

scoring technique for activating/deactivating the application of constraints (see Section

6.5) allows for trading off between accuracy and speed.
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6.7 Error analysis

From the CoNLL evaluation script we investigated the types of errors that the parser

makes. In Figure 6.9 the parsing errors regarding the assignment of heads and depen-

dents to items are shown. Two of the most frequently occurring items when the wrong

head or the wrong dependent was attached to them were PREP and CONJ. The PREP

occurred 4,279 times while the CONJ item occurred 1038 time. The parser attached the

wrong head to PREP 43% of the time. The errors with PREP were related to the PP-

attachment problem, which is hard to solve using a training data of small size, which

in our experiments is 112,885 words. In contrast, the errors with the CONJ occurred

because we have made the conjunctions the head of conjunction phrases and when

we have converted PATB to dependency format we have changed the sentence-initial

CONJ to ICONJ. Thus, the parser failed to identify the right heads for CONJ items. In

experiments conducted by Alabbas and Ramsay [Alabbas and Ramsay, 2013] where

they had made sentences in CONJ final during the PATB conversion to dependency for-

mat, the error rates with CONJ were lower. However, our experiments on MaltParser

using the HPT V.4 (where coordinated items had lower priority in the head percolation

table), did not yield higher results than HPT V.5 (where coordinated items had higher

priority).
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The overall error rate and its distribution over CPOSTAGs

--------------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

--------------+-------+-------+------+-------+------+-------+-------

total | 26834 | 6081 | 23% | 1872 | 7% | 462 | 2%

--------------+-------+-------+------+-------+------+-------+-------

NOUN | 5957 | 1105 | 19% | 767 | 13% | 242 | 4%

PREP | 4279 | 1857 | 43% | 16 | 0% | 15 | 0%

DET+NOUN | 3060 | 500 | 16% | 272 | 9% | 56 | 2%

NOUN_PROP | 2513 | 349 | 14% | 202 | 8% | 35 | 1%

DET+ADJ | 1942 | 231 | 12% | 163 | 8% | 15 | 1%

PV | 1585 | 425 | 27% | 20 | 1% | 19 | 1%

CONJ | 1038 | 518 | 50% | 8 | 1% | 8 | 1%

IV | 976 | 313 | 32% | 20 | 2% | 20 | 2%

ADJ | 905 | 208 | 23% | 89 | 10% | 8 | 1%

SUB_CONJ | 760 | 138 | 18% | 38 | 5% | 2 | 0%

ICONJ | 713 | 0 | 0% | 0 | 0% | 0 | 0%

NUM | 634 | 109 | 17% | 28 | 4% | 4 | 1%

POSS_PRON | 534 | 11 | 2% | 94 | 18% | 1 | 0%

PRON | 421 | 55 | 13% | 57 | 14% | 22 | 5%

REL_PRON | 371 | 8 | 2% | 0 | 0% | 0 | 0%

NEG_PART | 206 | 99 | 48% | 2 | 1% | 2 | 1%

NOUN_NUM | 196 | 22 | 11% | 8 | 4% | 0 | 0%

DEM_PRON | 177 | 15 | 8% | 38 | 21% | 8 | 5%

ADV | 155 | 50 | 32% | 2 | 1% | 1 | 1%

PVSUFF_DO | 84 | 0 | 0% | 21 | 25% | 0 | 0%

ABBREV | 81 | 17 | 21% | 0 | 0% | 0 | 0%

VERB_PART | 68 | 14 | 21% | 0 | 0% | 0 | 0%

IVSUFF_DO | 60 | 3 | 5% | 23 | 38% | 1 | 2%

VERB | 35 | 16 | 46% | 1 | 3% | 1 | 3%

PART | 25 | 6 | 24% | 3 | 12% | 2 | 8%

EXCEPT_PART | 16 | 4 | 25% | 0 | 0% | 0 | 0%

FOCUS_PART | 14 | 3 | 21% | 0 | 0% | 0 | 0%

DET | 11 | 2 | 18% | 0 | 0% | 0 | 0%

NO_FUNC | 9 | 0 | 0% | 0 | 0% | 0 | 0%

DET+NUM | 3 | 0 | 0% | 0 | 0% | 0 | 0%

INTERROG_PART | 3 | 2 | 67% | 0 | 0% | 0 | 0%

CV | 1 | 0 | 0% | 0 | 0% | 0 | 0%

LATIN | 1 | 0 | 0% | 0 | 0% | 0 | 0%

RC_PART | 1 | 1 | 100% | 0 | 0% | 0 | 0%

--------------+-------+-------+------+-------+------+-------+-------

Figure 6.9: A sample error report from the CoNLL evaluation script.



154 CHAPTER 6. PARSER EVALUATION

6.8 Summary

In this chapter we have evaluated several machine learning classifiers that could be

used for generating a parse model. We have also conducted a large number of exper-

iment on our parser, where we have ran it deterministically and non-deterministically.

We have learned from our experiments that running the parser non-deterministically

produces better parsing accuracy but the parsing speed degrades substantially.

Also, we have shown an approach for extracting different types of constraint rules

from a dependency treebank. Our experiments have shown that applying different type

of constraint rules to a non-deterministic data-driven parser affect parsing performance

(in terms of speed and accuracy) in different ways. Some types of constraint rules affect

the parsing speed while other types affect the parsing accuracy. We have demonstrated

that it is possible to improve the parsing accuracy by using a set of constraint rules,

these are presented in Section 6.5.



Chapter 7

Conclusion, Contributions, and Future

Work

7.1 Conclusion

In this research we have re-implemented a variation of a state-of-the-art parser (Malt-

Parser) in order to be able to non-deterministically process a set of natural language

sentences. We have modified the arc-standard version of MaltParser, which is based

on a shift-reduce parsing algorithm. In this algorithm, the parser processes items from

a queue and a stack. A queue consists of some input strings while a stack consists of

items from the queue that have been looked at by the parser. The original algorithm

establishes dependency relations, if possible, between the head of the queue and the

top item on the stack. We have identified a limitation in this algorithm in that it cannot

generate trees for non-projective sentences1. We have modified the original algorithm

by allowing our parser to establish dependency relations between the head of the queue

and one or more items on the stack, which include items that are buried deep inside

the stack. We have shown in Section 5.2.1 that with this modification the parser is

able to reproduce the correct analysis for a non-projective sentence while the original

algorithm could not. This is one of the contributions of this research.

The modified algorithm may generate a number of new parse states from a single

state. Each parse state is given a score based on two different factors: (i) if the parsing

rules suggest that the parse operation (SHIFT, LEFT-ARC, or RIGHT-ARC) should

be performed, and (ii) if the constraint rules agree with the recommendation made by

1non-projective sentences are those with overlapping arcs between words as shown in Figure 5.11 in

Section 5.2.1.

155



156 CHAPTER 7. CONCLUSION, CONTRIBUTIONS, AND FUTURE WORK

the parsing rules. The parsing states are then sorted by their scores and stored in an

agenda, where the state on the top of the agenda is explored first.

We have shown in Section 6.5.2 an approach for extracting different kinds of con-

straint rules from a dependency treebank. Our primary aim in re-implementing Malt-

Parser was to identify a way of applying constraint rules to it and to investigate whether

the application of constraint rules would affect the performance of the parser. We ap-

plied two different kinds of constraint rules to the parser. Our findings are encouraging

for pursuing further research in this direction. We have learned that the application of

constraint rules to data-driven parsing may improve parsing accuracy (1.2% for unla-

belled attachment score, 1.7% for labelled attachment score, and 1.25% for labelled

score). However, it can worsen the parsing speed by 44% (see chapter 5.2 for more

details of the re-implementation of the original algorithm and the results of our ex-

periments). The improvement of parsing accuracy using constraint rules is our second

contribution. Also, with our implementation we can deactivate the application of con-

straint rules (by assigning a score of 0 to it) if we aim for speed rather than accuracy.

Alternatively, we can activate these rules (by assigning a score of 1) if we aim for ac-

curacy rather than speed. The ability to activate/deactivate the application of constraint

rules is a further contribution.

The focus of the background chapters of this research was to investigate and high-

light features of a number of parsing algorithms (top-down parsing, bottom-up parsing,

left-corner parsing, shift-reduce parsing, and chart parsing).

Additionally, another background chapter was dedicated to investigating different

frameworks for processing the syntax of natural languages. These frameworks were

dependency frameworks and phrase structure frameworks. Also, we have briefly de-

scribed the probabilistic parsing approaches.

Since we conducted all of the experiments presented in this thesis on Arabic, be-

cause we had access to the Penn Arabic Treebank, we have devoted Chapter 4 to briefly

describing some of the structural complexities of Arabic that may pose challenges to

parsers.
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7.2 Contributions of the thesis

In this study we have made a number of contributions to the field:

C.1 We have presented an approach to integrating a set of constraint rules into a

data-driven parser. In Section 5.2.2, we have discussed our approach for assign-

ing scores to parse states and outlined one of the benefits of this approach, which

is the ability to assign scores obtained from constraint rules to parse states. In

Section 6.5.1 we have described the way we apply constraint rules to our parser,

and in Sections 6.5.3, 6.5.4, 6.5.5 and 6.5.6 we have shown the effect of con-

straint rules on parsing performance.

C.2 We have demonstrated a technique for easily activating/deactivating the applica-

tion of a set of constraint rules to data-driven parsing, which provides an option

for trading off between accuracy and speed. See Section 6.5 for more details.

C.3 We have shown a number of ways for automatically and quickly extracting dif-

ferent types of constraint rules from a set of dependency trees. This approach

has been demonstrated in Section 6.5.2.

C.4 We have modified the arc-standard algorithm of MaltParser to parse non-projective

sentences. Our re-implementation of the original algorithm allows for parsing

non-projective sentences. We have proved this technique by applying it to a well

known non-projective Czeck sentence in Section 5.2.1.

Using our parser in data-driven mode is 43% more efficient than MaltParser and its

labelled attachment score and the labelled accuracy is more accurate than MaltParser

by 1% and 1.4% respectively. Applying a set of constraint rules to our parser im-

proved its accuracy over the accuracy of MaltParser by 1% for the unlabelled attach-

ment score, 2.7% for the labelled attachment score and 2.65% for labelled accuracy

while the parser remained as efficient as MaltParser.
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7.3 Future work

The main focus of this study has been on improving the performance of a data-driven

parser by using a set of constraint rules, which are extracted from a set of dependency

trees. For this purpose, we re-implemented a version of a state-of-the-art parser (the

arc-standard algorithm of MaltParser). The modified version of the parser that is pre-

sented here has been tested on Arabic. Since it is possible to train the parser using a

set of data from a treebank, and we can automatically extract constraint rules from a

set of dependency trees, it is possible to test the parser on a different language where

a treebank is available. One of the tasks for the future will be to obtain a treebank

for a different language and train and test the parser on it in order to investigate its

extendibility to other languages.

Additionally, since it is possible to integrate a set of constraint rules into the parser,

which may act as grammatical rules, it may be possible to integrate a set of linguisti-

cally rich grammatical rules and run the parser as purely grammar-driven. More, it is

possible to balance the weight of the parsing rules and that of the grammatical rules so

that the parser can pay attention to both sources of information equally, which makes

the parser completely hybrid. This would be another future task.

Some other authors such as Charniak [Charniak, 2000] used a re-ranking technique

to selecting the best final tree analysis from a set of final trees that are produced by the

parser. This technique led to some improvements to parsing accuracy. We would like

to use a similar technique in the future. Since we give probability scores, which are

obtained from constraint rules, we may use those scores to compute the scores for

complete trees and select a tree with the highest score as the final parse tree.
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Appendix A

Parse Trees

A.1 Top-down parse trees

S[1]

VPNP

(1)

S[1]

VPNP[2]
alternatives: [DET N]

PRON

(2)

S[1]

VPNP[2]
alternatives: [DET N]

PRON[3]

I[4]

(3)

S[1]

VPNP[2]

NDET

(4)

S[1]

VP[5]
alternatives: [TV NP, SV S]

ADJCOP

NP[2]
alternatives: [DET N]

PRON[3]

I[4]

(5)

S[1]

VP[5]
alternatives: [SV S]

NPTV

NP[2]
alternatives: [DET N]

PRON[3]

I[4]

(6)

Figure A.1: Top-down parse trees, from tree (1) to tree (6).
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S[1]

VP[5]
alternatives: [SV S]

NPTV[6]

know

NP[2]
alternatives: [DET N]
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I[4]

(7)
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alternatives: [DET N]
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Figure A.1: Top-down parse trees, from tree (7) to tree (12).
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Figure A.1: Top-down parse trees, from tree (13) to tree (17).
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Figure A.1: Top-down parse trees (18) and (19).



A.1. TOP-DOWN PARSE TREES 175
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Figure A.1: Top-down parse trees, from tree (20) to tree (23).
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Figure A.1: Top-down parse trees (24) and (25).



A.1. TOP-DOWN PARSE TREES 177

S[1]
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that[11]
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alternatives: [DET N]
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Figure A.1: Top-down parse trees (26) and (27).
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A.2 Bottom-up parsing
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PRON[2]
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TV[5]
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TV[5]
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that[6
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PRON[2]
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TV[5]
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know[4]
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(5)

NP[3]
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that[6]

TV[5]
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(6)
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alternatives: [DET]

that[6]

TV[5]
alternatives: [SV]

know[4]

NP[3]

PRON[2]

I[1]

(7)

Figure A.2: Bottom-up parse trees, from tree (1) to tree (7).
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TV[5]
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(8)
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TV[5]
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man[8]
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I[1]

TV[5]
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know[4]

DET[7]

that[6]

TV[9]
alternatives: [N]

man[8]

COP[11]

is[10]

ADJ[113

happy[12]

(11)

NP[3]

PRON[2]

I[1]

TV[5]
alternatives: [SV]

know[4]

DET[7]

that[6]

TV[9]
alternatives: [N]

man[8]

VP[14]

ADJ[113

happy[12]

COP[11]

is[10]

(12)

NP[3]

PRON[2]

I[1]

TV[5]
alternatives: [SV]

know[4]

DET[7]

that[6]

N[9]

man[8]

(13)
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I[1]

TV[5]
alternatives: [SV]

know[4]
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N[9]

man[8]

DET[7]

that[6]

(14)

Figure A.2: Bottom-up parse trees, from tree (8) to tree (14).
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NP[3]
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VP[11]

NP[10]

N[9]

man[8]
alternatives: [N]

DET[7]
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TV[5]
alternatives: [SV]

know[4]

(15)
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N[9]

man[8]
alternatives: [N]
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TV[5]
alternatives: [SV]

know[4]

NP[3]
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NP[3]
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I[1]

SV[5]
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PRON[2]
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SV[5]
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NP[8]

PRON[7]
alternatives: [DET]

that[6]

(19)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

NP[8]
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alternatives: [DET]

that[6]
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alternatives: [N]
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NP[3]

PRON[2]

I[1]

SV[5]

know[4]

NP[8]
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alternatives: [DET]

that[6]

TV[10]
alternatives: [N]

man[9]

COP[12]

is[11]

(21)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

NP[8]

PRON[7]
alternatives: [DET]

that[6]

TV[10]
alternatives: [N]
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COP[12]

is[11]

ADJ[14]

happy[13]

(22)

Figure A.2: Bottom-up parse trees, from tree (15) to tree (22).
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NP[3]

PRON[2]

I[1]

SV[5]
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alternatives: [DET]

that[6]

TV[10]
alternatives: [N]

man[9]

VP[15]
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happy[13]

COP[12]

is[11]

(23)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

NP[8]
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man[9]
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NP[3]
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I[1]

SV[5]

know[4]

NP[8]

PRON[7]
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that[6]
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man[9]

COP[12]
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NP[3]

PRON[2]
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SV[5]

know[4]
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PRON[7]
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happy[13]
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NP[3]
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know[4]
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(27)

NP[3]

PRON[2]

I[1]

SV[5]

know[4]

DET[7]

that[6]

(28)

Figure A.2: Bottom-up parse trees, from tree (23) to tree (28).
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NP[3]
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I[1]

SV[5]
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DET[7]

that[6]

TV[9]
alternatives: [N]

man[7]
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man[8]

DET[7]

that[6]

(34)

Figure A.2: Bottom-up parse trees, from tree (29) to tree (34).
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man[8]

DET[7]
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happy[13]

COP[12]
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Figure A.2: Bottom-up parse trees, from tree (35) to tree (40)
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A.3 Left-corner parse trees

PRON[2]

I[1]

(1)

NP[3]

PRON[2]

I[1]

(2)

S[4]

VP[5]NP[3]

PRON[2]
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NP[8]
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TV[7]
alternatives: [SV]

know[6]

NP[3]

PRON[2]
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(5)
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VP[5]

NP[8]
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that[9]

TV[7]
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NP[3]

PRON[2]

I[1]

(6)

Figure A.3: Left-corder parse trees, from tree (1) to tree (6).
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that[9]

SV[7]

know[6]

NP[3]

PRON[2]

I[1]
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Figure A.3: Left-corder parse trees, from tree (7) to tree (10).
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Figure A.3: Left-corder parse trees, from tree (11) to tree (14).
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Figure A.3: Left-corder parse trees, from tree (15) to tree (18).
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Figure A.3: Left-corder parse trees (19) and (20).
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Shift-reduce Parsing Transitions

Step Queue Stack Action Alternatives

---------------------------------------------------------------------------------------------------

1 I know that man is happy [] Reduce: PRON Ñ I -

2 PRON know that man is happy [] Reduce: NP Ñ PRON -

3 NP know that man is happy [] Shift -

4 know that man is happy NP Reduce: TV Ñ know SV Ñ know

5 TV that man is happy NP Shift -

6 that man is happy TV NP Reduce: PRON Ñ that DET Ñ that

7 PRON man is happy TV NP Reduce: NP Ñ PRON -

8 NP man is happy TV NP Reduce: VP Ñ TV NP -

9 VP man is happy NP Reduce: S Ñ NP VP -

10 S man is happy [] Shift -

11 man is happy S Reduce: TV Ñ man N Ñ man

12 TV is happy S Shift -

13 is happy TV S Reduce: COP Ñ is -

14 COP happy TV S Shift -

15 happy COP TV S Reduce: ADJ Ñ happy -

16 ADJ COP TV S Reduce: VP Ñ COP ADJ -

17 VP TV S Shift -

18 [] VP TV S Backtrack to step 11 -

19 man is happy S Reduce: N Ñ man -

20 N is happy S Shift -

21 is happy N S Reduce: COP Ñ is -

22 COP happy N S Shift -

23 happy COP N S Reduce: ADJ Ñ happy -

24 ADJ COP N S Reduce: VP -

25 VP N S Shift -

26 [] VP N S Backtrack to step 6 -

27 that man is happy TV NP Reduce: DET Ñ that -

28 DET man is happy TV NP Shift -

29 man is happy DET TV NP Reduce: TV Ñ man N Ñ man

30 TV is happy DET TV NP Shift -

31 is happy TV DET TV NP Reduce: COP Ñ is -

32 COP happy TV DET TV NP Shift -

33 happy COP TV DET TV NP Reduce: ADJ Ñ happy -

34 ADJ COP TV DET TV NP Reduce: VP Ñ COP ADJ -

35 VP TV DET TV NP Shift -

36 [] VP TV DET TV NP Backtrack to step 29 -

37 man is happy DET TV NP Reduce: N Ñ man -

38 N is happy DET TV NP Reduce: NP DET N -

39 NP is happy TV NP Reduce: VP Ñ TV NP -

40 VP is happy NP Reduce: S Ñ NP VP -

Figure B.1: Complete parse transitions, from step 1 to step 40.
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Step Queue Stack Action Alternatives

---------------------------------------------------------------------------------------------------

41 S is happy [] Shift -

42 is happy S Reduce: COP Ñ is -

43 COP happy S Shift -

44 happy COP S Reduce: ADJ Ñ happy -

45 ADJ COP S Reduce: VP Ñ COP ADJ -

46 VP S Shift -

47 [] VP S Backtrack to step 4 -

48 know that man is happy NP Reduce: SV Ñ know -

49 SV that man is happy NP Shift -

50 that man is happy SV NP Reduce: PRON Ñ that DET Ñ that

51 PRON man is happy SV NP Reduce: NP Ñ PRON -

52 NP man is happy SV NP Shift -

53 man is happy NP SV NP Reduce: TV Ñ man N - man

54 TV is happy NP SV NP Shift -

55 is happy TV NP SV NP Reduce: COP Ñ happy -

56 COP happy TV NP SV NP Shift -

57 happy COP TV NP SV NP Reduce: ADJ Ñ happy -

58 ADJ COP TV NP SV NP Reduce: VP Ñ COP ADJ -

59 VP TV NP SV NP Shift -

60 [] VP TV NP SV NP Backtrack to step 53 -

61 man is happy NP SV NP Reduce N Ñ man -

62 N is happy NP SV NP Shift -

63 is happy N NP SV NP Reduce: COP Ñ is -

64 COP happy N NP SV NP Shift -

65 happy COP N NP SV NP Reduce: ADJ Ñ happy -

66 ADJ COP N NP SV NP Reduce: VP Ñ COP ADJ -

67 VP N NP SV NP Shift -

68 [] VP N NP SV NP Backtrack to step 50 -

69 that man is happy SV NP Reduce: DET Ñ that -

70 DET man is happy SV NP Shift -

71 man is happy DET SV NP Reduce: TV - man N Ñ man

72 TV is happy DET SV NP Shift -

73 is happy TV DET SV NP Reduce: COP Ñ is -

74 COP happy TV DET SV NP Shift -

75 happy COP TV DET TV NP Reduce: ADJ Ñ happy -

76 ADJ COP TV DET TV NP Reduce: VP Ñ COP ADJ -

77 VP TV DET TV NP Shift -

78 [] VP TV DET TV NP Backtrack to step 71 -

79 man is happy DET SV NP Reduce: N Ñ man -

80 N is happy DET SV NP Reduce: NP Ñ DET N -

81 NP is happy SV NP Shift -

82 is happy NP SV NP Reduce: COP Ñ is -

83 COP happy NP SV NP Shift -

84 happy COP NP SV NP Reduce: ADJ Ñ happy -

85 ADJ COP NP SV NP Reduce: VP Ñ COP ADJ -

86 VP NP SV NP Reduce: S Ñ NP VP -

87 S SV NP Reduce: VP Ñ SV S -

88 VP NP Reduce: S Ñ NP VP -

89 S [] Shift -

90 [] S - -

Figure B.2: Remaining parse transitions.
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CoNLL-X data file format

The data in the CoNLL file follows the following rules:

• A blank line marks the start of a new sentence.

• Each sentence consists of one or more tokens and each token starts on a new

line.

• For each token, ten fields are used for describing it 1, as shown in Table C.1. A

single tab character is used for separating each field while Space/blank characters

are not allowed between fields.

• For each non-dummy values for the fields (ID, FORM, CPOSTAG, POSTAG,

HEAD and DEPREL) a non-underscore value is used in order to guarantee that

that the file contains non-dummy values for all languages.

• UTF-8 unicode is used for encoding the data files.

An example of the dependency tree for the sentence John loves Mary is shown in

Figure C.1 and the CoNLL representation for it is shown in Figure C.2 .

1See http://ilk.uvt.nl/conll/#dataformat.
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# Field name Description

1 ID Token counter, starting at 1 for each new sentence.
2 FORM Word form or punctuation symbol.
3 LEMMA Lemma or stem (depending on particular data set) of word form, or an underscore if not available.
4 CPOSTAG Coarse-grained POS tag, where tagset depends on the language.
5 POSTAG Fine-grained POS tag, where the tagset depends on the language, or identical to the coarse-grained

part-of-speech tag if not available.
6 FEATS Unordered set of syntactic and/or morphological features (depending on the particular language),

separated by a vertical bar (|), or an underscore if not available.
7 HEAD Head of the current token, which is either a value of ID or zero (‘0’). Note that depending on the

original treebank annotation, there may be multiple tokens with an ID of zero.
8 DEPREL Dependency relation to the HEAD. The set of dependency relations depends on the particular

language. Note that depending on the original treebank annotation, the dependency relation may
be meaningful or simply ‘ROOT’.

9 PHEAD Projective head of current token, which is either a value of ID or zero (‘0’), or an underscore if not
available. Note that depending on the original treebank annotation, there may be multiple tokens an
with ID of zero. The dependency structure resulting from the PHEAD column is guaranteed to be
projective (but is not available for all languages), whereas the structures resulting from the HEAD
column will be non-projective for some sentences of some languages (but is always available).

10 PDEPREL Dependency relation to the PHEAD, or an underscore if not available. The set of dependency rela-
tions depends on the particular language. Note that depending on the original treebank annotation,
the dependency relation may be meaningful or simply ‘ROOT’.

Table C.1: CoNLL-X data file format.

ROOT

loves (VERB)

John (NOUN)

SUBJECT

Mary (NOUN)

OBJECT

Figure C.1: Dependency tree for the sentence John loves Mary.

0 root _ ROOT ROOT _ _ ROOT _ _

1 John _ NOUN NOUN _ 2 SUBJECT _ _

2 loves _ VERB VERB _ 0 ROOT _ _

3 Mary _ NOUN NOUN _ 2 OBJECT _ _

Figure C.2: CoNLL format for the sentence John loves Mary.



Appendix D

The Variation of HPTs

This appendix contains the different versions of the Head Percolation Tables (HPT)

that we have mentioned in Chapter 5 Section 5.1.3.2.

The organisation of the head child in the HPT V.1, as in Figure D.1 is performed

randomly during the conversion of the Penn Arabic Treebank from phrase structure

format to dependency format.

The HPT V.2, as in Figure D.2, is similar to HPT V.1 but In this version coordinate

conjunctions (CONJ) into CONJ and ICONJ, where ICONJ is used for sentence-initial

coordinate and CONJ is used for non-sentence-initial coordinate.

The HPT V.3, as in Figure D.3, is similar to HPT V.2 but items in the entries are or-

dered according to their phrase category. For example, adjectives in adjectival phrases

are put before nouns, prepositions etc. Additionally, coordinating conjunctions (CONJ

and ICONJ) have the highest priority inside all the entries and determiners are given

higher priority than nouns.

HPT V4 is the same as HPT V.3 but coordinating conjunctions (CONJ and ICONJ)

have the lowest possible priority inside all the entries.

HPT V.5 nouns are given a higher priority than determiners and everything else is

the same as HPT V.3.
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POS tag Possible head-child(s)

----------------------------------------------------------------------------------------------------

ADJP: ADJP, ADV, ADJ, DET+ADJ, NOUN_NUM, PP, NOUN, DET+NOUN, PRON, PRN, DET, PRT, PART, NP,

NUM, CONJP, CONJ, PREP

ADJP-OBJ: ADJ, NOUN

ADJP-PRD: ADV, ADJP, ADJ, PP, NOUN, SBAR, PRON, PRT, PART, NP, CONJ, PREP

ADV: ADV, ADJP, ABBREV, ADJP-PRD, ADJ, DET+ADJ, SBAR, DET, PART, CONJ, PP, NOUN, PRN, PRT,

NUM, DET+NOUN, NP, QP, NOUN_PROP, VP, PV, S, VERB, PUNC, NOUN_NUM, NP-TPC, PP-PRD,

NP-SBJ, WHNP, PRON, SUB_CONJ, PREP

CONJP: CONJ, ADV, NOUN, PART, ADJ, PREP

FRAG: FRAG, ADV, PP, NOUN, SBAR, PRN, PRT, PART, SUB_CONJ, NP, CONJ, ADJ

NAC: NOUN, NP, ADV, PP, SBAR, UCP, ADJP, CONJP, PRT, S, SUB_CONJ, CONJ, PREP

NP: NP, NAC, NOUN, DET+NOUN, DET+NUM, NP-OBJ, NOUN_NUM, NOUN_PROP, NP-SBJ, SBAR, ADJP,

DET+ADJ, DET, CONJP, PART, INTERJ, CONJ, WHNP, PP, LATIN, UCP, FRAG, PRN, PRT, ABBREV,

PV, ADV, IV, VP, S, X, ADJ, QP, PUNC, PRON, SUB_CONJ, PREP

NP-OBJ: NP-OBJ, NAC, NOUN, DET+NOUN, NUM, NP, NOUN_NUM, NOUN_PROP, NP-TPC, SBAR, ADJP, CONJP,

PART, INTERJ, X, CONJ, PP, PRN, PRT, ABBREV, ADV, IV, VP, S, PV, ADJ, QP, PRON, PREP

NP-PRD: NOUN, NOUN_PROP, DET+NOUN, NP, NUM, NOUN_NUM, ADV, QP, PP, PV, SBAR, PRT, ADJP, PRN,

CONJP, DET, PRON, ABBREV, PART, UCP, CONJ, ADJ, PREP

NP-SBJ: NP-SBJ, NAC, NP-PRD, NOUN, DET+NOUN, NUM, NP, NP-OBJ, NOUN_PROP, NOUN_NUM, FRAG, SBAR,

CONJP, PART, X, CONJ, PP, UCP, PRN, PRT, ADJP, ADV, QP, ADJP-PRD, S, PV, ADJ, DET+ADJ,

PP-PRD, PRON, PREP

NP-TPC: NAC, NUM, NP, NOUN_NUM, NOUN_PROP, NOUN, SBAR, ADJP, X, CONJ, PP, PV, UCP, PRN, PRT,

ABBREV, ADV, ADJ, QP, PUNC, PRON, PREP

PP: PP, PART, PRN, PRT, PV, PRON, PREP, NAC, SBAR, ADJP, CONJP, X, CONJ, NOUN, DET+NOUN,

UCP, NEG_PART, FRAG, ABBREV, NUM, NP, NP-OBJ, ADV, QP, NOUN_PROP, VP, S, ADJ, NP-TPC,

NP-SBJ, WHNP, SUB_CONJ

PP-OBJ: PREP, PP, NP, NOUN

PP-PRD: PP, PRT, PRN, PRON, PART, PREP, ADV, QP, NOUN, SBAR, NP-SBJ, ADJP, CONJP, S, SUB_CONJ,

NP, X, CONJ, ADJ

PP-SBJ: PREP, NP

PRN: PP, PART, PUNC, ADV, NOUN, DET+NOUN, NO_FUNC, SBAR, ADJP, ABBREV, S, NUM, NOUN_PROP, NP,

CONJ, ADJ

PRT: PRT, VERB, CONJ

QP: NOUN_NUM, NOUN, NUMERIC_COMMA, DET, PART, ABBREV, NUM, CONJ, ADJ, PREP

S: S, S-PRD, SBAR, S-SBJ, SQ, SBARQ-PRD, SUB_CONJ, FRAG, FRAG-PRD, NAC, NP-PRD, CONJP, PART,

PP-SBJ, X, CONJ, PP, PV, ADJP-PRD, INTJ, UCP, PRN, PRT, NUM, ADJP, NP, ADV, UCP-PRD, IV,

VERB, VP, LATIN, PUNC, UCP-SBJ, ADJ, NP-TPC, NO_FUNC, INTJ-PRD, PP-PRD, NP-SBJ

S-PRD: ADV, NP-TPC, PP, VP

S-SBJ: SUB_CONJ, VP

SBAR: SBAR, SUB, S, SUB_CONJ, ADV, PP, PV, VERB, PRT, PUNC, INTERJ, UCP, WHNP, PRON, PART, X,

NOUN, CONJ, CONJP, PREP, VERB

SBAR-SBJ: SBAR, SUB_CONJ, S

SBARQ: SQ, S, ADV

SBARQ-PRD: S, ADV

SQ: NP-SBJ, PP-PRD

UCP: ADV, FRAG, PP, SBAR, ADJP, VP, S, NP, CONJ

UCP-OBJ: NP, CONJ, SBAR

UCP-PRD: NP, ADJP, CONJ, S, PP

UCP-SBJ: ADV, PP, SBAR, VP, NP, CONJ

VP: VP, VERB, NAC, SBAR, NP-PRD, CONJP, ADJP-OBJ, PART, PP-SBJ, X, CONJ, WHNP, PP, PV, UCP,

FRAG, PRN, PRT, ADJP-PRD, NP, NP-OBJ, UCP-OBJ, ADV, UCP-PRD, NOUN_PROP, PP-OBJ, IV, S, NOUN,

UCP-SBJ, ADJ, CV, NP-TPC, PP-PRD, NP-SBJ, SBARQ, PUNC, ADJP, PRON, SUB_CONJ, PREP

WHNP: WHNP, ADV, NOUN, PRON, NP, CONJ, PP, PREP

X: LATIN, NOUN, NO_FUNC, PUNC, NUM, IV, PRON, ABBREV, PART, NOUN_PROP, SUB_CONJ, NEG_PART, NP,

PV, CONJ, PREP

Figure D.1: HPT V.1: randomly organised head child.
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POS tag Possible head-child(s)

-----------------------------------------------------------------------------------------------

ADJP: ADJP, ADV, ADJ, DET+ADJ, NOUN_NUM, PP, NOUN, DET+NOUN, PRON, PRN, DET, PRT, PART, NP,

NUM, CONJP, CONJ, PREP

ADJP-OBJ: ADJ, NOUN

ADJP-PRD: ADV, ADJP, ADJ, PP, NOUN, SBAR, PRON, PRT, PART, NP, CONJ, PREP

ADV: ADV, ADJP, ABBREV, ADJP-PRD, ADJ, DET+ADJ, SBAR, DET, PART, CONJ, PP, NOUN, PRN, PRT,

NUM, DET+NOUN, NP, QP, NOUN_PROP, VP, PV, S, VERB, PUNC, NOUN_NUM, NP-TPC, PP-PRD

NP-SBJ, WHNP, PRON, SUB_CONJ, PREP

CONJP: CONJ, ADV, NOUN, PART, ADJ, PREP

FRAG: FRAG, ADV, PP, NOUN, SBAR, PRN, PRT, PART, SUB_CONJ, NP, CONJ, ADJ

NAC: NOUN, NP, ADV, PP, SBAR, UCP, ADJP, CONJP, PRT, S, SUB_CONJ, CONJ, PREP

NP: NP, NAC, NOUN, DET+NOUN, NUM, DET+NUM, NP-OBJ, NOUN_NUM, NOUN_PROP, NP-SBJ, SBAR, ADJP,

DET+ADJ, DET, CONJP, PART, INTERJ, CONJ, WHNP, PP, LATIN, UCP, FRAG, PRN, PRT, ABBREV,

PV, ADV, IV, VP, S, X, ADJ, QP, PUNC, PRON, SUB_CONJ, PREP

NP-OBJ: NP-OBJ, NAC, NOUN, DET+NOUN, NUM, NP, NOUN_NUM, NOUN_PROP, NP-TPC, SBAR, ADJP, CONJP,

PART, INTERJ, X, CONJ, PP, PRN, PRT, ABBREV, ADV, IV, VP, S, PV, ADJ, QP, PRON, PREP

NP-PRD: NOUN, NOUN_PROP, DET+NOUN, NP, NUM, NOUN_NUM, ADV, QP, PP, PV, SBAR, PRT, ADJP, PRN,

CONJP, DET, PRON, ABBREV, PART, UCP, CONJ, ADJ, PREP

NP-SBJ: NP-SBJ, NAC, NP-PRD, NOUN, DET+NOUN, NUM, NP, NP-OBJ, NOUN_PROP, NOUN_NUM, FRAG, SBAR,

CONJP, PART, X, CONJ, PP, UCP, PRN, PRT, ADJP, ADV, QP, ADJP-PRD, S, PV, ADJ, DET+ADJ,

PP-PRD, PRON, PREP

NP-TPC: NAC, NUM, NP, NOUN_NUM, NOUN_PROP, NOUN, SBAR, ADJP, X, CONJ, PP, PV, UCP, PRN, PRT,

ABBREV, ADV, ADJ, QP, PUNC, PRON, PREP

PP: PP, PART, PRN, PRT, PV, PRON, PREP, NAC, SBAR, ADJP, CONJP, X, CONJ, NOUN, DET+NOUN,

UCP, NEG_PART, FRAG, ABBREV, NUM, NP, NP-OBJ, ADV, QP, NOUN_PROP, VP, S, ADJ, NP-TPC,

NP-SBJ, WHNP, SUB_CONJ

PP-OBJ: PREP, PP, NP, NOUN

PP-PRD: PP, PRT, PRN, PRON, PART, PREP, ADV, QP, NOUN, SBAR, NP-SBJ, ADJP, CONJP, S, SUB_CONJ,

NP, X, CONJ, ADJ

PP-SBJ: PREP, NP

PRN: PP, PART, PUNC, ADV, NOUN, DET+NOUN, NO_FUNC, SBAR, ADJP, ABBREV, S, NUM, NOUN_PROP, NP,

CONJ, ADJ

PRT: PRT, VERB, ICONJ

QP: NOUN_NUM, NOUN, NUMERIC_COMMA, DET, PART, ABBREV, NUM, CONJ, ADJ, PREP

S: S, S-PRD, SBAR, S-SBJ, SQ, SBARQ-PRD, SUB_CONJ, FRAG, FRAG-PRD, NAC, NP-PRD, CONJP, PART,

PP-SBJ, X, CONJ, ICONJ, PP, PV, ADJP-PRD, INTJ, UCP, PRN, PRT, NUM, ADJP, NP, ADV, UCP-PRD,

IV, VERB, VP, LATIN, PUNC, UCP-SBJ, ADJ, NP-TPC, NO_FUNC, INTJ-PRD, PP-PRD, NP-SBJ

S-PRD: ADV, NP-TPC, PP, VP

S-SBJ: SUB_CONJ, VP

SBAR: SBAR, SUB, S, SUB_CONJ, ADV, PP, PV, VERB, PRT, PUNC, INTERJ, UCP, WHNP, PRON, PART, X,

NOUN, ICONJ, CONJP, PREP, VERB

SBAR-SBJ: SBAR, SUB_CONJ, S

SBARQ: SQ, S, ADV

SBARQ-PRD: S, ADV

SQ: NP-SBJ, PP-PRD

UCP: ADV, FRAG, PP, SBAR, ADJP, VP, S, NP, CONJ

UCP-OBJ: NP, CONJ, SBAR

UCP-PRD: NP, ADJP, CONJ, S, PP

UCP-SBJ: ADV, PP, SBAR, VP, NP, CONJ

VP: VP, VERB, NAC, SBAR, NP-PRD, CONJP, ADJP-OBJ, PART, PP-SBJ, X, CONJ, WHNP, ICONJ, PP, PV,

UCP, FRAG, PRN, PRT, ADJP-PRD, NP, NP-OBJ, UCP-OBJ, ADV, UCP-PRD, NOUN_PROP, PP-OBJ, IV, S,

NOUN, UCP-SBJ, ADJ, CV, NP-TPC, PP-PRD, NP-SBJ, SBARQ, PUNC, ADJP, PRON, SUB_CONJ, PREP

WHNP: WHNP, ADV, NOUN, PRON, NP, CONJ, PP, PREP

X: LATIN, NOUN, NO_FUNC, PUNC, NUM, IV, PRON, ABBREV, PART, NOUN_PROP, SUB_CONJ, NEG_PART, NP,

PV, CONJ, PREP, ICONJ

Figure D.2: HPT V.2.
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POS tag Possible head-child(s)

---------------------------------------------------------------------------------------------------------

ADJP CONJ, CONJP, ADJ, DET+ADJ, ADJP, DET, DET+NOUN, NOUN, NP

ADJP-OBJ ADJ

ADJP-PRD CONJ, ADJ, ADJP, NOUN, NP

ADV CONJ, ADV, VP, PV, VERB, S, DET+NOUN, NOUN, NP, NP-SBJ, REL_PRON, PRON, NOUN_NUM, PART,

ADJ, DET+ADJ, PP, NUM, SUB_CONJ, SBAR

CONJP ICONJ, CONJ, NOUN, ADJ, PART, PREP

FRAG CONJ, SBAR, NOUN, NP, PRT, ADV, PP, FRAG

NAC CONJ, NOUN, NP, ADV, SUB_CONJ

NP ICONJ, CONJ, NOUN, DET, DET+NOUN, NOUN_PROP, NP, POSS_PRON, DEM_PRON, PRON, PV, SBAR,

PART, PRN, ADV, ADJ, DET+ADJ, PREP, PP, QP, NOUN_NUM, NUM, ABBREV, VP, S, FOREIGN

NP-OBJ CONJ, DET, DET+NOUN, NOUN, NOUN_PROP, NP, PRON, VP, S, ADJ, DET+ADJ, QP, NOUN_NUM, NUM,

ABBREV

NP-PRD CONJ, NOUN, NOUN_PROP, NP, PRON, PART, ADJ, QP, NOUN_NUM, NUM, ABBREV

NP-SBJ CONJ, DET, DET+NOUN, NOUN, NOUN_PROP, NP, PRON, SBAR, PRT, PV, ADJ, DET+ADJ, QP, ABBREV

NP-TPC CONJ, NOUN, NOUN_PROP, NP, PRON, ADV, ADJ, NUM, PUNC

PP ICONJ, CONJ, PREP, PP, DET+NOUN, NOUN, NOUN_PROP, SBAR, PV, VP, X, NP, S, NEG_PART

PP-OBJ PREP, PP, NOUN

PP-PRD CONJ, PREP, PP, NOUN, NP, S, PART, SBAR

PP-SBJ PREP

PRN CONJ, S, NP, ADV, PP, DET+NOUN, NOUN, NOUN_PROP, NUM, SBAR, ADJ, ADJP

PRT ICONJ, VERB, PART, PRT

QP CONJ, NOUN, NOUN_NUM, NUM, ADJ

S ICONJ, S, VERB, PV, IV, VP, CONJP, CONJ, NP, NP-TPC, NP-SBJ, NP-PRD, PRT, SBAR, ADV, ADJP,

ADJP-PRD, PP, PP-PRD, PART, FRAG, FRAG-PRD, X

S-PRD VP

S-SBJ VP

SBAR ICONJ, CONJ, VERB, PV, INTERJ, NOUN, S, PART, PRON, SBAR, UCP, SUB_CONJ, WHNP

SBAR-SBJ SBAR, S, SUB_CONJ

SBARQ SQ, S

SBARQ-PRD S

SQ NP-SBJ

UCP CONJ, S, NP, SBAR, VP, ADV, ADJP

UCP-OBJ CONJ, NP

UCP-PRD CONJ, NP

UCP-SBJ CONJ, NP

VP ICONJ, CONJ, PRT, VERB, PV, IV, CV, VP, PART, X, S, SBAR, NOUN, NOUN_PROP, NP, NP-SBJ, NP-PRD,

NP-OBJ, NP-TPC, ADJ , ADV, PREP, PP, NEG_PART, NAC

WHNP CONJ, NOUN, NP, PRON, PREP, PP, WHNP

X ICONJ, CONJ, PV, IV, PART, NOUN, NP, NOUN_PROP, PRON, PREP, NEG_PART, NUM, ABBREV, NO_FUNC, PUNC

Figure D.3: HPT V.3.
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POS tag Possible head-child(s)

----------------------------------------------------------------------------------------------------

ADJP ADJ, DET+ADJ, ADJP, DET, NOUN, DET+NOUN, NP, CONJ, CONJP

ADJP-OBJ ADJ

ADJP-PRD ADJ, ADJP, NOUN, NP, CONJ

ADV ADV, VP, PV, VERB, S, DET+NOUN, NOUN, NP, NP-SBJ, REL_PRON, PRON, NOUN_NUM, PART,

ADJ, DET+ADJ, PP, NUM, SUB_CONJ, SBAR, CONJ

CONJP NOUN, ADJ, PART, PREP, ICONJ, CONJ

FRAG SBAR, NOUN, NP, PRT, ADV, PP, FRAG, CONJ

NAC NOUN, NP, ADV, SUB_CONJ, CONJ

NP DET, DET+NOUN, NOUN, NOUN_PROP, NP, POSS_PRON, DEM_PRON, PRON, PV, SBAR, PART, PRN,

ADV, ADJ, DET+ADJ, PREP, PP, QP, NOUN_NUM, NUM, ABBREV, VP, S, FOREIGN, ICONJ, CONJ

NP-OBJ DET, DET+NOUN, NOUN, NOUN_PROP, NP, PRON, VP, S, ADJ, DET+ADJ, QP, NOUN_NUM, NUM, ABBREV,

CONJ

NP-PRD NOUN, NOUN_PROP, NP, PRON, PART, ADJ, QP, NOUN_NUM, NUM, ABBREV, CONJ

NP-SBJ DET, DET+NOUN, NOUN, NOUN_PROP, NP, PRON, SBAR, PRT, PV, ADJ, DET+ADJ, QP, ABBREV,

CONJ

NP-TPC NOUN, NOUN_PROP, NP, PRON, ADV, ADJ, NUM, PUNC, CONJ

PP PREP, PP, DET+NOUN, NOUN, NOUN_PROP, SBAR, PV, VP, X, NP, S, NEG_PART, ICONJ, CONJ

PP-OBJ PREP, PP, NOUN

PP-PRD PREP, PP, NOUN, NP, S, PART, SBAR, CONJ

PP-SBJ PREP

PRN S, NP, ADV, PP, DET+NOUN, NOUN, NOUN_PROP, NUM, SBAR, ADJ, ADJP, CONJ

PRT VERB, PART, PRT, ICONJ

QP NOUN, NOUN_NUM, NUM, ADJ, CONJ

S S, VERB, PV, IV, VP, CONJP, CONJ, NP, NP-TPC, NP-SBJ, NP-PRD, PRT, SBAR, ADV, ADJP,

ADJP-PRD

PP, PP-PRD, PART, FRAG, FRAG-PRD, X, ICONJ

S-PRD VP

S-SBJ VP

SBAR VERB, PV, INTERJ, NOUN, S, PART, PRON, SBAR, UCP, SUB_CONJ, WHNP, ICONJ, CONJ

SBAR-SBJ SBAR, S, SUB_CONJ

SBARQ SQ, S

SBARQ-PRD S

SQ NP-SBJ

UCP S, NP, SBAR, VP, ADV, ADJP, CONJ

UCP-OBJ NP ,CONJ

UCP-PRD NP, CONJ

UCP-SBJ NP, CONJ

VP ICONJ, CONJ, PRT, VERB, PV, IV, CV, VP, PART, X, S, SBAR, NOUN, NOUN_PROP, NP, NP-SBJ,

NP-PRD, NP-OBJ, NP-TPC, ADJ , ADV, PREP, PP, NEG_PART, NAC, ICONJ, CONJ

WHNP NOUN, NP, PRON, PREP, PP, WHNP, CONJ

X PV, IV, PART, NOUN, NP, NOUN_PROP, PRON, PREP, NEG_PART, NUM, ABBREV, NO_FUNC, PUNC,

ICONJ, CONJ

Figure D.4: HPT V.4.
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POS tag Possible head-child(s)

------------------------------------------------------------------------------------------------------------

ADJP CONJ, CONJP, ADJ, DET+ADJ, ADJP, NOUN, DET+NOUN, DET, NP

ADJP-OBJ ADJ

ADJP-PRD CONJ, ADJ, ADJP, NOUN, NP

ADV CONJ, ADV, VP, PV, VERB, S, NOUN, DET+NOUN, NP, NP-SBJ, REL_PRON, PRON, NOUN_NUM, PART, ADJ,

DET+ADJ, PP, NUM, PART, SUB_CONJ, SBAR

CONJP ICONJ, CONJ, NOUN, ADJ, PART, PREP

FRAG CONJ, SBAR, NOUN, NP, PRT, ADV, PP, FRAG

NAC CONJ, NOUN, NP, ADV, SUB_CONJ

NP ICONJ, CONJ, NOUN, NOUN_PROP, DET+NOUN, DET, NP, POSS_PRON, DEM_PRON, PRON, PV, SBAR, PART,

PRN, ADV, ADJ, DET+ADJ, PREP, PP, QP, NOUN_NUM, NUM, ABBREV, VP, S, FOREIGN

NP-OBJ CONJ, NOUN, NOUN_PROP, DET+NOUN, DET, NP, PRON, VP, S, ADJ, DET+ADJ, QP, NOUN_NUM, NUM, ABBREV

NP-PRD CONJ, NOUN, NOUN_PROP, NP, PRON, PART, ADJ, QP, NOUN_NUM, NUM, ABBREV

NP-SBJ CONJ, NOUN, NOUN_PROP, DET+NOUN, DET, NP, PRON, SBAR, PRT, PV, ADJ, DET+ADJ, QP, ABBREV

NP-TPC CONJ, NOUN, NOUN_PROP, NP, PRON, ADV, ADJ, NUM, PUNC

PP ICONJ, CONJ, PREP, PP, NOUN, DET+NOUN, NOUN_PROP, SBAR, PV, VP, X, NP, S, NEG_PART

PP-OBJ PREP, PP, NOUN

PP-PRD CONJ, PREP, PP, NOUN, NP, S, PART, SBAR

PP-SBJ PREP

PRN CONJ, S, NP, ADV, PP, NOUN, NOUN_PROP, DET+NOUN, NUM, SBAR, ADJ, ADJP

PRT ICONJ, VERB, PART, PRT

QP CONJ, NOUN, NOUN_NUM, NUM, ADJ

S ICONJ, S, VERB, PV, IV, VP, CONJP, CONJ, NP, NP-TPC, NP-SBJ, NP-PRD, PRT, SBAR, ADV, ADJP,

ADJP-PRD, PP, PP-PRD, PART, FRAG, FRAG-PRD, X

S-PRD VP

S-SBJ VP

SBAR ICONJ, CONJ, VERB, PV, INTERJ, NOUN, S, PART, PRON, SBAR, UCP, SUB_CONJ, WHNP

SBAR-SBJ SBAR, S, SUB_CONJ

SBARQ SQ, S

SBARQ-PRD S

SQ NP-SBJ

UCP CONJ, S, NP, SBAR, VP, ADV, ADJP

UCP-OBJ CONJ, NP

UCP-PRD CONJ, NP

UCP-SBJ CONJ, NP

VP ICONJ, CONJ, PRT, VERB, PV, IV, CV, VP, PART, X, S, SBAR, NOUN, NOUN_PROP, NP, NP-SBJ,

NP-PRD, NP-OBJ, NP-TPC, ADJ , ADV, PREP, PP, NEG_PART, NAC

WHNP CONJ, NOUN, NP, PRON, PREP, PP, WHNP

X ICONJ, CONJ, PV, IV, PART, NOUN, NP, NOUN_PROP, PRON, PREP, NEG_PART, NUM, ABBREV, NO_FUNC, PUNC

Figure D.5: HPT V.5.
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