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Spanning Tree Methods for Discriminative Training of Dependency Parsers

Ryan McDonald Koby Crammer Fernando Pereira
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA, 19107

{ryantm,crammer,pereira}@cis.upenn.edu

Abstract

Untyped dependency parsing can be
viewed as the problem of finding maxi-
mum spanning trees (MSTs) in directed
graphs. Using this representation, the Eis-
ner (1996) parsing algorithm is sufficient
for searching the space of projective trees.
More importantly, the representation is
extended naturally to non-projective pars-
ing using Chu-Liu-Edmonds (Chu and
Liu, 1965; Edmonds, 1967) MST algo-
rithm. These efficient parse search meth-
ods support large-margin discriminative
training methods for learning dependency
parsers. We evaluate these methods exper-
imentally on the English and Czech tree-
banks.

1 Introduction

Dependency parsing has seen a surge of interest
lately. In particular, applications such as relation
extraction (Culotta and Sorensen, 2004), machine
translation (Ding and Palmer, 2005), synonym gen-
eration (Shinyama et al., 2002) and lexical resource
augmentation (Snow et al., 2004) have all exploited
dependency representations. A primary reason for
using dependency trees over more informative lexi-
calized phrase structures is that they are simpler and
thus more efficient to learn and parse while still en-
coding much of the predicate-argument information
needed in such applications.

Dependency trees represent words and their argu-
ments through directed edges in the tree and have a

root

hit

John ball with

the bat

the

root John hit the ball with the bat

Figure 1: An example dependency tree.

long history (Hudson, 1984). Figure 1 shows a de-
pendency tree for the sentence, John hit the ball with
the bat. A dependency tree must satisfy the tree con-
straint: each word must have exactly one incoming
edge. We augment each sentence with a dummy root
symbol that serves as the root of any dependency
analysis of the sentence.

The tree in Figure 1 tree can be seen as a spe-
cial class of dependencies that only contain projec-
tive (also known as nested or non-crossing) edges.
Assuming a unique root as the first word in the sen-
tence, a projective tree is one that can be written with
all words in a predefined linear order and all edges
drawn on the plane with none crossing. Figure 1
shows this construction for the example sentence.
Equivalently, we can say a tree is projective if and
only if an edge from word w to word u implies that
w is an ancestor of all words between w and u.

In English, projective trees are sufficient to ana-
lyze most sentence types. In fact, the largest source
of English dependency trees is automatically gener-
ated from the Penn treebank (Marcus et al., 1993)



root John saw a dog yesterday which was a Y orkshire Terrier

Figure 2: A non-projective dependency tree.

and is by convention exclusively projective. How-
ever, there are certain examples in which a non-
projective tree is preferable. Consider the sentence,
John saw a dog yesterday which was a Yorkshire Ter-
rier. Here the relative clause which was a Yorkshire
Terrier and the object it modifies (the dog) are sepa-
rated by a temporal modifier of the main verb. There
is no way to draw the dependency tree for this sen-
tence in the plane with no crossing edges, this is il-
lustrated in Figure 2.

In languages with more flexible word order than
English, such as German, Dutch and Czech, non-
projective dependencies are more frequent. Rich
inflection systems reduce the demands on word or-
der for expressing grammatical relations, leading to
non-projective dependencies that we need to repre-
sent and parse efficiently.

The trees in Figure 1 and Figure 2 are untyped,
that is, edges are not partitioned into types represent-
ing additional syntactic information such as gram-
matical function. However, typed edges are often
useful. For instance, the dependency from hit to
John could by typed NP-SBJ to indicate that John
heads a noun phrase that is the subject of the clause
headed by hit. We study untyped dependency trees
mainly, but edge types can be added with simple ex-
tensions to the models we present here.

In this work we represent dependency parsing
as search for a maximum spanning tree in a di-
rected graph. This representation applies to both
the projective and non-projective cases, and the Eis-
ner (1996) and the Chu-Liu-Edmonds (Chu and Liu,
1965; Edmonds, 1967) algorithms allow us to search
the space of spanning trees efficiently during both
training and testing.

We then present a model for learning dependency
structures based on online large-margin discrimi-
native training techniques. Specifically, we look
at variants of the Margin Infused Relaxed Algo-
rithm (MIRA) (Crammer and Singer, 2003; Cram-

mer et al., 2003) that are extensions to structured
outputs such as trees. We show that online learn-
ing algorithms allow us to learn complex structures
efficiently and with high accuracy. We validate
our methods on Czech and English and show that
our model achieves state-of-the-art performance for
both languages without any language-specific en-
hancements.

Section 2 describes an edge based factorization
of dependency trees and uses it to equate depen-
dency parsing to the problem of finding maximum
spanning trees in directed graphs. Section 3 outlines
the online large-margin learning framework used to
train our dependency parsers. Finally we present re-
sults in Section 5 for English and Czech.

1.1 Previous Work

Most recent work on training parsers from anno-
tated data has focused on models and training algo-
rithms for phrase-structure parsing. The best phrase-
structure parsing models represent generatively the
joint probability P (x,y) of sentence x having the
structure y (Collins, 1999; Charniak, 2000). These
models are easy to train because all of their parame-
ters are simple functions of counts of parsing events
in the training set. However, they achieve that sim-
plicity by making drastic conditional independence
assumptions, and training does not optimize a crite-
rion directly related to parsing accuracy. Therefore,
we might expect better performance from discrimi-
natively trained models, as has been shown for other
tasks like document classification (Joachims, 2002)
and shallow parsing (Sha and Pereira, 2003). Ratna-
parkhi’s conditional maximum entropy model (Rat-
naparkhi, 1999), trained to maximize conditional
likelihood P (y|x) of the training data, performed
nearly as well as generative models of the same vin-
tage even though it scores individual parsing deci-
sions in isolation and as a result it may suffer from
the label bias problem (Lafferty et al., 2001).



Only recently has any work been done on discrim-
inatively trained parsing models that score entire
structures y for a given sentence x rather than just
individual parsing decisions (Riezler et al., 2002;
Clark and Curran, 2004; Collins and Roark, 2004;
Taskar et al., 2004). The most likely reason for
this is that discriminative training requires repeat-
edly reparsing the training corpus with the current
model to determine the parameter updates that will
improve the training criterion. This general descrip-
tion applies equally for extensions to parsing of stan-
dard discriminative training techniques such as max-
imum entropy (Berger et al., 1996), the perceptron
algorithm (Rosenblatt, 1958), or support vector ma-
chines (Boser et al., 1992), which we call here lin-
ear parsing models because they all score a parse
y as a weighted sum of parse features, w · f(x,y).
The reparsing cost is already quite high for simple
context-free models with O(n3) parsing complexity,
but it becomes prohibitive for lexicalized grammars
with O(n5) parsing complexity.

Our approach is most related to those of Collins
and Roark (2004) and Taskar et al. (2004) for phrase
structure parsing. Collins and Roark (2004) pre-
sented a broad coverage linear parsing model trained
with the averaged perceptron algorithm. However,
in order to use parse features with sufficient history,
the parsing algorithm must prune away heuristically
most possible parses. Taskar et al. (2004) formu-
late the parsing problem in the large margin struc-
tured classification setting (Taskar et al., 2003), but
are limited to parsing sentences of 15 words or less
due to computation time. Though these approaches
represent good first steps towards discriminatively-
trained parsers, they have not yet been able to dis-
play the benefits of discriminative training that have
been seen in information extraction and shallow
parsing.

The following work on dependency parsing is
most relevant to our research. Eisner (1996) gave
a generative model with a cubic parsing algorithm
based on an edge factorization of trees. Yamada and
Matsumoto (2003) trained support vector machines
(SVM) to make parsing decisions in a shift-reduce
dependency parser. As in Ratnaparkhi’s parser, the
classifiers are trained on individual decisions rather
than on the overall quality of the parse. Nivre and
Scholz (2004) developed a history-based learning

model. Their parser uses a hybrid bottom-up/top-
down linear-time heuristic parser and has the ability
to label edges with semantic types. The accuracy of
their parser is lower than that of Yamada and Mat-
sumoto (2003).

One interesting class of dependency parsers are
those that provide types on edges. A well known
parser in this class is the link-grammar system of
Sleator and Temperley (1993). Nivre and Scholz
(2004) provide two systems, one a pure depen-
dency parser and the other a typed model that labels
edges with syntactic categories. Wang and Harper
(2004) provide a rich dependency model with com-
plex edge types containing an abundant amount of
lexical and syntactic information drawn from a tree-
bank. Though we focus primarily on pure (or un-
typed) dependency trees, simple extensions to the
models we describe here allow for the inclusion of
types.

Previous attempts at broad coverage dependency
parsing have primarily dealt with projective con-
structions. In particular, the supervised approaches
of Yamada and Matsumoto (2003) and Nivre and
Scholz (2004) have provided the best results for pure
dependency parsers for projective trees. Another
source of dependency parsers come from lexical-
ized phrase-structure parsers with the ability to out-
put dependency information (Collins, 1999; Char-
niak, 2000; Yamada and Matsumoto, 2003). How-
ever, since these systems are based on finding phrase
structure through nested chart parsing algorithms,
they cannot model projective edges tractably. How-
ever, Yamada and Matsumoto (2003) showed that
these models are still very powerful since they con-
sider much more information when making deci-
sions then pure dependency parsers.

For non-projective dependency parsing, Nivre and
Nilsson (2005) presented a parsing model that al-
lows for the introduction of non-projective edges
into dependency trees through learned edge trans-
formations within their memory-based parser. They
test this system on Czech and show an improvement
over a pure projective parser. Another broad cover-
age non-projective parser is that of Wang and Harper
(2004) for English, which presents very good results
using a constraint dependency grammar framework
that is rich in lexical and syntactic information.

The present work is closely related to that of



Hirakawa (2001) who, like us, relates the prob-
lem of dependency parsing to finding spanning trees
for Japanese text. However, that parsing algorithm
uses branch and bound techniques and is still in the
worst case exponential (though in practice it seems
tractable). Furthermore, no justification was pro-
vided for the empirical adequacy of equating span-
ning trees with dependency trees.

As this report was being completed, the work of
Ribarov (2004) was brought to our attention. In this
work, Ribarov also equates the problem of depen-
dency parsing to finding maximum spanning trees
in directed graphs. Furthermore, the learning model
employed is the perceptron algorithm (Rosenblatt,
1958), which is also an online learning technique.
However, his empirical evaluation on the Prague De-
pendency Treebank (Hajič, 1998) results in an ac-
curacy well below the state of the art. This is most
likely due to a very impoverished feature representa-
tion that focuses primarily on aspects of the complex
Czech part-of-speech tags and does not consider lex-
ical information.

2 Dependency Parsing and Spanning Trees

2.1 Edge Based Factorization

In what follows, x = x1 · · · xn represents a generic
input sentence, and y represents a generic depen-
dency tree for sentence x. Seeing y as the set of tree
edges, we write (i, j) ∈ y if there is a dependency
in y from word xi to word xj .

In this paper we follow the common method of
factoring the score of a dependency tree as the sum
of the scores of all edges in the tree (Eisner, 1996)1.
In particular, we define the score of an edge to be
the dot product between a high dimensional feature
representation of the edge and a weight vector,

s(i, j) = w · f(i, j)

Thus the score of a dependency tree y for sentence
x is,

s(x,y) =
∑

(i,j)∈y

s(i, j) =
∑

(i,j)∈y

w · f(i, j)

1Eisner (1996) in fact uses probabilities for edge scores and
thus defines the probability of a tree as the product, not sum, of
all the edges in it.

Assuming an appropriate feature representation as
well as a weight vector w, dependency parsing is the
task of finding the dependency tree y with highest
score for a given sentence x.

For the rest of this section we assume that the
weight vector w is known and thus we know the
score s(i, j) of each possible edge. In Section 3 we
present a method for learning the weight vector.

2.2 Maximum Spanning Trees

Consider a directed graph, G = (V,E) in which
each edge (i, j) (where vi, vj ∈ V ) has a score
s(i, j). Since G is directed, s(i, j) does not nec-
essarily equal s(j, i). The maximum spanning tree
(MST) of G is the tree y that maximizes the value
∑

(i,j)∈y
s(i, j), such that (i, j) ∈ E and every ver-

tex in V is used in the construction of y. The max-
imum projective spanning, tree of G is constructed
similarly except that it can only contain projective
edges relative to some linear ordering on the vertices
of G. The MST problem for directed graphs is also
known as the maximum arborescence problem.

For each sentence x we define the directed graph
Gx = (Vx, Ex) where

Vx = {x0 = root, x1, . . . , xn} and
Ex = {(i, j) : xi 6= xj , xi ∈ Vx, xj ∈ Vx − root}

That is, Gx is a graph where all the words and the
dummy root symbol are vertices and there is a di-
rected edge between every pair of words and from
the root symbol to every word. It is clear that de-
pendency trees for x and spanning trees for Gx

coincide, since both kinds of trees are required to
reach all the words in the sentence. Hence, find-
ing the (projective) dependency tree of highest score
is equivalent to finding the maximum (projective)
spanning tree in Gx rooted at the artificial root.

2.2.1 Non-projective Trees

To find the highest scoring non-projective tree we
simply search the entire space of spanning trees with
no restrictions. Well-known algorithms exist for the
less general case of finding spanning trees in undi-
rected graphs (Cormen et al., 1990). These algo-
rithms even have k-best extensions (Eppstein, 1990).

Efficient algorithms for the directed case are less
well known, but they exist, in particular the Chu-
Liu-Edmonds algorithm (Chu and Liu, 1965; Ed-



Chu-Liu-Edmonds(G, s)
Graph G = (V, E)
Edge weight function s : E → R

1. Let M = {(x∗, x) : x ∈ V, x∗ = arg maxx′ s(x′, x)}
2. Let GM = (V, M)
3. If GM has no cycles, then it is an MST: return GM

4. Otherwise, find a cycle C in GM

5. Let GC = contract(G, C, s)
6. Let y = Chu-Liu-Edmonds(GC , s)
7. Find a vertex x ∈ C s. t. (x′, x) ∈ y, (x′′, x) ∈ C
8. return y ∪ C − {(x′′, x)}

contract(G = (V, E), C, s)
1. Let GC be the subgraph of G excluding nodes in C
2. Add a node c to GC representing cycle C
3. For x ∈ V − C : ∃x′∈C(x′, x) ∈ E

Add edge (c, x) to GC with
s(c, x) = maxx′∈C s(x′, x)

4. For x ∈ V − C : ∃x′∈C(x, x′) ∈ E
Add edge (x, c) to GC with

s(x, c) = maxx′∈C [s(x, x′) − s(a(x′), x′) + s(C)]
where a(v) is the predecessor of v in C
and s(C) =

P

v∈C
s(a(v), v)

5. return GC

Figure 3: Chu-Liu-Edmonds algorithm for finding
maximum spanning trees in directed graphs.

monds, 1967). Informally, the algorithm has each
vertex in the graph greedily select the incoming edge
with highest weight. If a tree results, then this must
be the maximum spanning tree. If not, there must be
a cycle. The procedure identifies a cycle and con-
tracts it into a single vertex and recalculates edge
weights going into and out of the cycle. It can be
shown that a maximum spanning tree on the con-
tracted graph is equivalent to a maximum spanning
tree in the original graph (Leonidas, 2003). Hence
the algorithm can recursively call itself on the new
graph. Pseudo-code for the algorithm is given in
Figure 3. This presentation of the algorithm is based
on that given by Leonidas (2003). Tarjan (1977)
gives an efficient implementation of the algorithm
that has a complexity of O(n2) for dense graphs,
which is what we need here.

To find the highest scoring non-projective tree for
a sentence, x, we simply construct the graph Gx and
run it through the Chu-Liu-Edmonds algorithm. The
resulting spanning tree is the best non-projective de-
pendency tree. This process is illustrated by an ex-
ample in Appendix A.

The Chu-Liu-Edmonds algorithm has extensions
to the k-best case (Hou, 1996), however, for dense
graphs these algorithms have a runtime of O(n6).

Hence, for natural language parsing, these k-best ex-
tensions are not feasible. This is not a fatal flaw for
our purpose, but some of the training algorithms we
discuss can benefit from having access to the k-best
outcomes.

A possible concern with searching the entire
space of spanning trees is that we have not used
language-specific syntactic constraints to guide the
search. Many languages that allow non-projectivity
are still primarily projective. By searching all pos-
sible non-projective trees, we run the risk of finding
extremely bad trees. We address this concern in Sec-
tion 5.

2.2.2 Projective Trees

Using a slightly modified version of the CKY
(Younger, 1967) chart parsing algorithm, it is pos-
sible to generate and represent all projective depen-
dency trees in a forest that is O(n5) in size and takes
O(n5) time to create. However, Eisner (1996) made
the observation that if one keeps the head of each
chart item to either the left or right periphery of that
item, then it is possible to parse in O(n3). The idea
is to parse the left and right dependents of a word
independently, and combine them at a later stage.
This removes the need for the additional head in-
dices of the O(n5) algorithm and requires only two
additional binary variables that specify the direction
of the item (either gathering left dependents or gath-
ering right dependents) and whether an item is com-
plete (available to gather more dependents). Fig-
ure 4 illustrates the algorithm. We use r, s and t for
the start and end indices of chart items, and h1 and
h2 for the indices of the heads of chart items. In the
first step, it can be seen that all items are complete.
The algorithm then creates an incomplete item from
the words h1 to h2 with h1 as the head. This item is
eventually completed at a later stage. As with nor-
mal CKY parsing, larger elements are created from
pairs of smaller elements in a bottom-up fashion.

It is relatively easy to augment the Eisner algo-
rithm so that each chart item also stores the score
of the best possible tree that gave rise to the item.
This augmentation is identical to those used for the
standard CKY algorithms. We must also store back
pointers so that it is possible to reconstruct the best
tree from the chart item that spans the entire sen-
tence. The Eisner algorithm is discussed in more



h1 h1 h2 h2

⇒

s h1 h1 r r+1 h2 h2 t

h1

h1 h2 h2

⇒

s h1 h1 h2 h2 t

h1

h1

s h1 h1 t

Figure 4: O(n3) algorithm of Eisner (1996), needs to keep 3 indices at any given stage.

detail in Appendix B.
For the maximum projective spanning tree prob-

lem it is easy to show that the Eisner dependency
parsing algorithm is an exact solution if we are given
a linear ordering of the vertices in the graph. In-
deed, every projective dependency tree of sentence
x is also a projective spanning tree of the graph Gx

and vice-versa. Thus, if we can find the maximum
projective dependency tree using the Eisner algo-
rithm, then we can also find the maximum spanning
tree. For natural language dependency tree parsing,
the linear ordering on the graph vertices is explicitly
given by the order of the words in the sentence.

In addition to running in O(n3), the Eisner algo-
rithm has the additional benefit that it is a bottom-up
dynamic programming chart parsing algorithm al-
lowing for k-best extensions that increase complex-
ity by just a factor of O(k log k) (Huang and Chiang,
2005).

2.3 Dependency Trees as MSTs: Summary

In the preceding discussion, we have shown that nat-
ural language dependency parsing can be reduced to
finding maximum spanning trees in directed graphs.
This reduction results from edge-based factoriza-
tion and can be applied to projective languages with
the Eisner parsing algorithm and non-projective lan-
guages with the Chu-Liu-Edmonds maximum span-
ning tree algorithm. The only remaining problem is
how to learn the weight vector w. This will be dis-
cussed in the next section.

A major advantage of our approach over other
dependency parsing models is its uniformity and
simplicity. By viewing dependency structures as
spanning trees, we have provided a general frame-
work for parsing trees for both projective and non-
projective languages. Furthermore, our parsing al-
gorithms are more efficient than lexicalized phrase
structure parsing algorithms, allowing us to search
the entire space without any pruning. In particu-
lar our non-projective parsing algorithm based on

the Chu-Liu-Edmonds MST algorithm provides true
non-projective parsing. This is in contrast to other
non-projective methods, such as that of Nivre and
Nilsson (2005), who implement non-projectivity in a
pseudo-projective parser with edge transformations.
This formulation also dispels the notion that non-
projective parsing is “harder” than projective pars-
ing. In fact, it is actually easier since the best known
non-projective parsing complexity is O(n2) versus
the O(n3) complexity of the Eisner projective pars-
ing algorithm.

It is worth noting that our formalism for depen-
dency parsing is grammarless. This has become
common in the parsing community. For instance,
the Collins parser (Collins, 1999) does not use a
specific context-free grammar, but searches the en-
tire space of phrase structures. This is also true
for some state-of-the-art dependency parsers such
as Yamada and Matsumoto (2003), who search the
same space, but with heavy pruning. This con-
trasts with grammar-based dependency parsers such
as link-grammar parsers (Sleator and Temperley,
1993) and constraint dependency grammars (Wang
and Harper, 2004).

3 Online Learning

In this section, we describe an online large-margin
method for learning the weight vector w. Large-
margin classifiers have been shown to provide
good regularization when applied to document clas-
sification (Joachims, 2002) and sequential tag-
ging (Collins, 2002; Taskar et al., 2003). As usual
for supervised learning, we assume a training set
T = {(xt,yt)}

T
t=1, consisting of pairs of a sentence

xt and its correct dependency tree yt.
The online-learning algorithms we consider are

instances of the algorithm schema in Figure 5. A
single training instance is examined at each itera-
tion, and the weight vector is updated by algorithm-
specific rule. The auxiliary vector v accumulates the



Training data: T = {(xt, yt)}
T
t=1

1. w0 = 0; v = 0; i = 0

2. for n : 1..N

3. for t : 1..T

4. w(i+1) = update w(i) according to instance (xt, yt)

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N ∗ T )

Figure 5: Generic online learning algorithm.

successive values of of w, so that the final weight
vector is the average of the weight vectors after each
iteration. This averaging effect has been shown to
help reduce overfitting (Collins, 2002).

In what follows, dt(x) denotes the set of possible
dependency trees for sentence x, and bestk(x; w) ⊆
dt(x) denotes the set of k highest scoring trees rela-
tive to the weight vector w.

3.1 MIRA

(Crammer and Singer, 2001) present a natural ap-
proach to large-margin multi-class classification,
which was later extended by (Taskar et al., 2003)
to structured classification:

min ‖w‖
s.t. s(x,y)− s(x,y′) ≥ L(y,y′)
∀(x,y) ∈ T , y

′ ∈ dt(x)

where L(y,y′) is a real-valued loss for the output y
′

relative to the correct output y.
Informally, this minimizes the norm of the weight

vector subject to margin constraints that keep the
score of the correct output above the score of each
incorrect output by an amount given by the loss of
the incorrect output.

The Margin Infused Relaxed Algorithm
(MIRA) (Crammer and Singer, 2003; Cram-
mer et al., 2003) employs this optimization directly
within the online framework. On each update,
MIRA attempts to keep the new weight vector
as close as possible to the old weight vector,
subject to correctly classifying the instance under
consideration with a margin given by the loss of the
incorrect classifications. This can be formalized by
substituting the following update into line 4 of the

root

hit

John ball

the with bat

the

Figure 6: An example incorrect dependency tree rel-
ative to that in Figure 1. The loss of this dependency
tree is 2 since with and bat are incorrectly identified
as dependents of ball.

generic online algorithm,

min
∥

∥w(i+1) −w(i)
∥

∥

s.t. s(xt,yt)− s(xt,y
′) ≥ L(yt,y

′)
∀y′ ∈ dt(xt)

This quadratic programming problem can be solved
using Hildreth’s algorithm (Censor and Zenios,
1997). Crammer and Singer (2003) and Crammer
et al. (2003) provide an analysis of both the online
generalization error and convergence properties of
MIRA.

For the dependency/spanning tree problem, we
defined the loss of a tree to be the number of words
with incorrect incoming edges relative to the correct
tree. This is closely related to the Hamming loss
that is often used for sequences (Taskar et al., 2003).
For instance, consider the correct tree in Figure 1
and an incorrect tree in Figure 6. The loss of the in-
correct tree relative to the correct one is 2 since with
and bat are both incorrectly labeled as dependents of
ball. This is just one possible definition of the loss
for an incorrect tree. Other possibilities are the 0-
1 loss (Taskar, 2004) or another more linguistically
motivated loss that penalizes some errors (say con-
junction and preposition dependencies) over others.
Being able to learn a weight setting relative to some
loss function is quite advantageous. For many appli-
cations, there are certain parts of a dependency tree
that are relevant and others that are not. One merely
needs to change the loss function to focus on reduc-
ing specific errors in the trees.

To use these algorithms for parsing, we follow the
common identification of structure prediction with
multi-class classification, in which each structure is
a possible class for a sentence. The primary problem
with this view is that for arbitrary inputs there are



typically exponentially many possible classes and
thus exponentially many margin constraints. This
is the case for dependency parsing.

3.1.1 k-best MIRA

One solution for the exponential blow-up in num-
ber of classes is to relax the optimization by using
only the margin constraints for the k outputs y with
the highest scores s(x,y). The resulting online up-
date (to be inserted in Figure 5, line 4) would then
be:

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(xt,yt)− s(xt,y
′) ≥ L(yt,y

′)

∀y′ ∈ bestk(xt; w(i))

In Section 5 we show that this relaxation works well
and even small values of k yield near optimal per-
formance. We call this algorithm k-best MIRA.

With 1-best MIRA, we can use the Eisner or the
Chu-Liu-Edmonds algorithms to find the best de-
pendency trees during training and make the appro-
priate update to the weight vector. As mentioned
earlier, the Eisner algorithm can be extended to the
k-best case. However, the Chu-Liu-Edmonds al-
gorithm cannot be extended in practice and we are
force to set k = 1 when using it.

3.1.2 Factored MIRA

Another solution to the blow-up in possible parses
is to exploit the structure of the output to factor
the exponential number of margin constraints into
a polynomial number of local constraints (Taskar et
al., 2003; Taskar et al., 2004; Taskar, 2004).

For the directed maximum spanning tree problem,
we can factor the output by edges to obtain the fol-
lowing constraints:

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(l, j) − s(k, j) ≥ 1
∀(l, j) ∈ yt, (k, j) /∈ yt

This states that the weight of the correct incoming
edge to the word xj and the weight of all other in-
coming edges must be separated by a margin of 1.
It is easy to show that when all these constraints
are satisfied, the correct spanning tree and all incor-
rect spanning trees are separated by a score at least
as large as the number of incorrect incoming edges.

This is because the scores for all the correct arcs can-
cel out, leaving only the scores for the errors causing
the difference in overall score. Since each single er-
ror results in a score increase of at least 1, the entire
score difference must be at least the number of er-
rors.

Though this condition is sufficient, it is not nec-
essary. For sequences, this form of factorization has
been called local lattice preference (Crammer et al.,
2004). Let n be the number of nodes in graph Gx.
Then the number of constraints is O(n2), since for
each node we must maintain n− 1 constraints.

4 Feature Space

In Section 2.1 we defined the score of an edge as

s(i, j) = w · f(i, j)

This assumes that we have a high-dimensional fea-
ture representation for each edge (i, j). MIRA, like
perceptron (Rosenblatt, 1958) and support-vector
machines (Boser et al., 1992), has also direct dual
formulation that supports the use of kernels between
instances instead of an explicit feature representa-
tion. Kernels would allow us to express relationships
between instances that would be impossible or im-
practical to express in terms of feature vectors, but
the dual formulation would require computing ker-
nel values between all instances (or instance parts in
the factored case), which is impractical for the large
training sets we consider here. Therefore, all of our
experiments use the primal formulation in terms of
feature vectors.

The basic set of features we use are shown in Ta-
ble 1a and b. All features are conjoined with the
direction of attachment as well as the distance be-
tween the two words creating the dependency. These
features provide back-off from very specific features
over words and part-of-speech (POS) tags to less
sparse features over just POS tags. These features
are added for both the entire words as well as the 5-
gram prefix if the word is longer than 5 characters.

Using just features over edges (or word pairs) in
the tree was not enough for high accuracy since all
attachment decisions were made outside of the con-
text in which the words occurred. To solve this prob-
lem, we added two more types of features, which can
be seen in Table 1c. The first feature class recog-
nizes word types that occur between the parent and



child words in an attachment decision. These fea-
tures take the form of POS trigrams: the POS of the
parent, that of the child, and that of a word in be-
tween, for all the words between the parent and the
child. This feature was particularly helpful for nouns
to select their parents correctly, since it helps reduce
the score for attaching a noun to another noun with
a verb in between, which is a relatively infrequent
configuration. The second class of additional fea-
tures represents the local context of the attachment,
that is, the words before and after the parent-child
pair. These features take the form of POS 4-grams:
The POS of the parent, child, word before/after par-
ent and word before/after child. We also include
back-off features to trigrams where one of the local
context POS tags was removed.

These new features can be efficiently added since
they are given as part of the input and do not rely
on knowledge of dependency decisions outside the
current edge under consideration. Adding these fea-
tures resulted in a large improvement in performance
and brought the system to state-of-the-art accuracy.
For illustrative purposes Appendix C shows the fea-
ture representation for our example sentence over
the edge (hit,with).

All the features described here are binary.

4.1 Language Generality

The feature set we propose is generalizable to any
language that can be tokenized and assigned POS
tags similar to English. In fact, our feature templates
were created by trial and error on our English devel-
opment set, but used for both our English and Czech
parsers. The only difference between the two parsers
is that they are trained on language specific data sets.

5 Experiments

We performed experiments on two sets of data, the
English Penn Treebank (Marcus et al., 1993) and the
Czech Prague Dependency Treebank (PDT) (Hajič,
1998). For the English data we extracted depen-
dency trees using the rules of Yamada and Mat-
sumoto (2003), which are similar, but not identical,
to those used by Collins (1999). Because the de-
pendency trees are extracted from the phrase struc-
tures in the Penn Treebank, they are by conven-
tion exclusively projective. We used sections 02-

21 of the Treebank for training data, section 22 for
development and section 23 for testing. All ex-
periments were run using every single sentence in
each set of data regardless of length. For the En-
glish data only, we followed the standards of Ya-
mada and Matsumoto (2003) and did not include
punctuation in the calculation of accuracies. For
the test set, the number of words without punctu-
ation is 49,892, which aligns with the experiments
of Yamada and Matsumoto. Since our system as-
sumes part-of-speech information as input, we used
the maximum entropy part-of-speech tagger of Rat-
naparkhi (1996) to provide tags for the development
and testing data. The number of features extracted
from the Penn Treebank was 6, 998, 447.

For the Czech data, we did not have to automat-
ically extract dependency structures since manually
annotated dependency trees are precisely what the
PDT contains. We used the predefined training, de-
velopment and testing split of this data. Further-
more, we used the automatically generated POS tags
that were provided with the data. Czech POS tags
are extremely complex and consist of a series of
slots that may or may not be filled with some value.
These slots represent lexical properties such as stan-
dard POS, case, gender, and tense. The result is
that Czech POS tags are rich in information, but
quite sparse when viewed as a whole. To reduce
sparseness, our features rely only on the reduced
POS tag set from Collins et al. (1999). The num-
ber of features extracted from the PDT training set
was 13, 450, 672.

Czech has more flexible word order than English
and as a result the PDT contains non-projective de-
pendencies. On average, 23% of the sentences in
the training, development and test sets have at least
one non-projective dependency. However, less than
2% of total edges are actually non-projective. There-
fore, handling non-projective arcs correctly has a
relatively small effect on overall accuracy. To show
the effect more clearly, we created two Czech data
sets. The first, Czech-A, consists of the entire PDT.
The second, Czech-B, includes only the 23% of sen-
tences with at least one non-projective dependency.
This second set will allow us to analyze the effec-
tiveness of the algorithms on non-projective mate-
rial.

The following sections describe three main sys-



a)

Basic Uni-gram Features
p-word, p-pos
p-word
p-pos
c-word, c-pos
c-word
c-pos

b)

Basic Bi-gram Features
p-word, p-pos, c-word, c-pos
p-pos, c-word, c-pos
p-word, c-word, c-pos
p-word, p-pos, c-pos
p-word, p-pos, c-word
p-word, c-word
p-pos, c-pos

c)

In Between POS Features
p-pos, b-pos, c-pos
Surrounding Word POS Features
p-pos, p-pos+1, c-pos-1, c-pos
p-pos-1, p-pos, c-pos-1, c-pos
p-pos, p-pos+1, c-pos, c-pos+1
p-pos-1, p-pos, c-pos, c-pos+1

Table 1: Features used by system. p-word: word of parent in dependency edge. c-word: word of child.
p-pos: POS of parent. c-pos: POS of child. p-pos+1: POS to the right of parent in sentence. p-pos-1: POS
to the left of parent. c-pos+1: POS to the right of child. c-pos-1: POS to the left of child. b-pos: POS of a
word in between parent and child.

tems we evaluated.

5.1 k-best MIRA Eisner

This system uses the projective dependency parsing
algorithm of Eisner to obtain the k best dependency
trees for k-best MIRA training. Even though this
system cannot extract non-projective dependencies,
it still does very well since less than 2% of all depen-
dency edges in our datasets are non-projective (0%
for English). We also use the Eisner algorithm for
testing since we found it performed the best on this
model. We set k = 5 for this system.

5.2 k-best MIRA CLE

In this system we use the Chu-Liu-Edmonds algo-
rithm to find the best dependency tree for 1-best
MIRA training and testing. The asymptotic decod-
ing complexity is actually better than the projective
case: O(n2) (Tarjan, 1977) versus O(n3) (Eisner,
1996). We use the Chu-Liu-Edmonds algorithm to
find the best tree for the test data.

5.3 Factored MIRA

This system uses the quadratic set of constraints
based on edge factorization as described in Sec-
tion 3.1.2. We use the Chu-Liu-Edmonds algorithm
to find the best tree for the test data.

5.4 Results

Results are shown in Table 2 (Czech) and Table 3
(English). Each table has three metrics. The first and
most widely recognized is Accuracy, which mea-
sures the number of words that correctly identified
their parent in the tree. The second is Root, which
measures the number of sentences that correctly

identified the root word of the sentence (the real root,
not the artificially inserted root). For Czech this is
actually the harmonic mean between the precision
and recall since the PDT allows sentences to have
more than one root. The final metric is Complete,
which measures the number of sentences in which
the resulting tree was completely correct.

For Czech, we compare our results to Nivre and
Nilsson (2005). This system also allows for the
introduction of non-projective arcs through the use
of pseudo-projective parsing with edge transforma-
tions. Nivre and Nilsson (2005) do not report root
accuracies. We report results for all three models.

Clearly, there is an advantage in using the Chu-
Liu-Edmonds algorithm for Czech dependency pars-
ing. Even though less than 2% of all dependen-
cies are non-projective, we still see an absolute im-
provement of up to 1.1% in overall accuracy over
the projective model. Furthermore, when we focus
on the subset of data that only contains sentences
with at least one non-projective dependent, the effect
is amplified. Another major improvement here is
that the Chu-Liu-Edmonds non-projective MST al-
gorithm has a parsing complexity of O(n2), versus
the O(n3) complexity of the projective Eisner algo-
rithm. This is substantial considering that n = 20
on average. However, for the factored model, we
do have O(n2) margin constraints versus k for the
k-best models, which does result in a significant in-
crease in training time.

One concern raised in Section 2.2.1 is that search-
ing the entire space of non-projective trees could
cause problems for languages that are primarily pro-
jective. However, as we can see, this is not a prob-



Czech-A Czech-B
Accuracy Root Complete Accuracy Root Complete

N&N2005 80.1 - 22.2 - - -
k-best MIRA Eisner 83.3 88.6 31.3 74.8 82.0 0.0

1-best MIRA CLE 84.1 89.0 32.2 81.0 86.5 14.9
factored MIRA 84.4 88.3 32.3 81.5 85.8 14.3

Table 2: Dependency parsing results for Czech. Czech-B is the subset of Czech-A containing only sentences
with at least one non-projective dependency.

English
Accuracy Root Complete

Y&M2003 90.3 91.6 38.4
N&S2004 87.3 84.3 30.4

k-best MIRA Eisner 90.9 94.2 37.5

Table 3: Dependency parsing results for English
compared with other state-of-the-art models.

lem. The main reason is probably that the learn-
ing algorithm sets low weights for non-projective
arcs between words that are distant from each other.
Furthermore, in the k-best learning scheme, our pa-
rameters are set relative to our parsing algorithm.
Hence, the parser should learn to produce either pro-
jective or mildly non-projective trees.

One option with the k-best projective system is
to rearrange the words in the training set so that the
data is projectivized (Collins et al., 1999). This at
least allows the training algorithm to obtain reason-
ably low error on the training set. We found that
this did improve performance slightly to 83.6% ac-
curacy. However, this model still uses the more cum-
bersome O(n3) Eisner algorithm. Furthermore this
method is somewhat unprincipled in that it scram-
bles contextual features somewhat.

For English, we compared the model to the sys-
tems of Yamada and Matsumoto (2003) and Nivre
and Scholz (2004). The only model we present re-
sults is k-best MIRA Eisner (Section 5.1) since we
found all other models to perform worse (see Ap-
pendix D for more on this). This is of course because
they do not take into account the a-priori knowledge
that the English data is exclusively projective.

It can be seen that our online large-margin mod-
els using the projective algorithm of Eisner provides
state-of-the-art performance when compared to cur-
rent systems. In particular, the models presented
here do much better than all previous models for

finding the correct root in the dependency tree. This
is most likely due to the fact that our models do not
prune the search space and thus are not subject to er-
ror propagation due to poor decisions near leaves in
the tree.

The results just discussed are the highlights from
a complete experiment matrix. We have two de-
grees of freedom, training and test. For training,
we can choose k-best MIRA with projective Eis-
ner parsing, 1-best MIRA with Chu-Liu-Edmonds
non-projective parsing, or factored MIRA. At test
time, we can choose to use either projective or non-
projective parsing. Appendix D presents the results
for the full set of training-test combinations for both
English and Czech.

5.4.1 Lexicalized Phrase Structure Parsers

It is well known that dependency trees extracted
from lexicalized phrase structure parsers (Collins,
1999; Charniak, 2000) typically are more ac-
curate than those produced by pure dependency
parsers (Yamada and Matsumoto, 2003). We com-
pared our system to the Bikel re-implementation
of the Collins parser (Bikel, 2004; Collins, 1999)
trained with the same head rules as our system.
There are two ways to extract dependencies from
lexicalized phrase structure. The first is to use the
automatically generated dependencies that are ex-
plicit in the lexicalization of the trees. We call this
system Collins-auto. The second is to take just the
phrase structure output of the parser and run the au-
tomatic head rules over it to extract the dependen-
cies. We call this system Collins-rules. Table 4
shows the results comparing our system, MIRA-
normal, to the Collins parser for English. All sys-
tems are implemented in Java and run on the same
machine.

Interestingly, the dependencies that are automati-
cally produced by the Collins parser are worse than



English
Accuracy Root Complete Complexity Time

Collins-auto 88.2 92.3 36.1 O(n5) 98m 21s
Collins-rules 91.4 95.1 42.6 O(n5) 98m 21s

MIRA-normal 90.9 94.2 37.5 O(n3) 5m 52s
MIRA-Collins 92.2 95.8 42.9 O(n5) 105m 08s

Table 4: Results comparing our system to those based on the Collins parser. Complexity represents the
computational complexity of each parser and Time the CPU time to parse sec. 23 of the Penn Treebank.

those extracted statically using the head rules. Ar-
guably, this displays the artificialness of English de-
pendency parsing using dependencies automatically
extracted from treebank phrase-structure trees. Our
system falls in-between, better than the automati-
cally generated dependency trees and worse than the
head-rule extracted trees.

Since the dependencies returned from our system
are better than those actually learnt by the Collins
parser, one could argue that our model is learning
to parse dependencies more accurately. However,
phrase structure parsers are built to maximize the ac-
curacy of the phrase structure and use lexicalization
as just an additional source of information. Thus
it is not too surprising that the dependencies output
by the Collins parser are not as accurate as our sys-
tem, which is trained and built to maximize accuracy
on dependency trees. In complexity and runtime,
our system is a huge improvement over the Collins
parser.

The final system in Table 4 takes the output of
Collins-rules and adds a feature to MIRA-normal
that indicates for given edge, whether the Collins
parser believed this dependency actually exists. We
call this system MIRA-Collins. This is a well known
discriminative training trick — using the sugges-
tions of a generative system to influence decisions.
This system can essentially be considered a correc-
tor of the Collins parser and represents a significant
improvement over it. However, there is an added
complexity with such a model as it requires the out-
put of the O(n5) Collins parser.

5.4.2 k-best MIRA Approximation

We need to determine how justifiable is the k-
best MIRA approximation. Table 5 indicates the
test accuracy and training time on English for the
k-best MIRA Eisner system with k = 1, 2, 5, 10, 20.
Even though the k-best parsing multiplies asymp-

k=1 k=2 k=5 k=10 k=20
Accuracy 90.73 90.82 90.88 90.92 90.91

Train time 183m 235m 627m 1372m 2491m

Table 5: Evaluation of k-best MIRA approximation.

totic parsing complexity by a k log k factor, empir-
ically the training times seem to scale linearly with
k. Peak performance is achieved for low k with a
slight degradation around k = 20. The most likely
reason for this phenomenon is that the model is over-
fitting by ensuring that even unlikely trees are sepa-
rated from the correct tree in proportion to their loss.

5.5 Training Time and Model Size

A major concern when training discriminative learn-
ers on large training sets for computationally heavy
tasks such as dependency parsing is training time.
Currently, on a 64-bit Linux machine running Java
1.5, the largest model (Czech on the full data with
the Eisner algorithm) takes just under a day to train.
However, most models take under 10 hours. These
times increase by a factor of 2-2.5 when the model is
run on a 32-bit machine. Currently, the Czech model
can only be run on the 64-bit machine, because of
the very large feature set. However, we could eas-
ily remedy this by only including features that occur
more than once in the training set. This reduces the
feature space substantially with little harm to per-
formance. Feature count cut-offs are common, but
typically used as a form of regularization.

5.6 Experimental Summary

To summarize, in this section we presented re-
sults for online large-margin algorithms trained to
parse dependency trees either as projective struc-
tures (using the Eisner algorithm) or non-projective
structures (using the Chu-Liu-Edmonds algorithm).
For English, we showed that the model outper-



forms other pure dependency parsers assuming pro-
jective structures. For Czech, we compared both
a projective and non-projective model and showed
that we achieve superior performance with the non-
projective system. This is interesting for several rea-
sons. First, it shows that viewing dependency trees
as maximum spanning trees is a viable, efficient
and general method for untyped dependency pars-
ing. Second, it allows a natural method for parsing
non-projective trees through the use of the Chu-Liu-
Edmonds algorithm, which is asymptotically more
efficient then the projective algorithm of Eisner.

In addition, we showed that our models compare
favorably to more powerful lexicalized phrase struc-
ture models in terms of performance and parsing
time. In particular the models we describe here
can outperform lexicalized phrase structure parsers
when they are treated as correctors of the output of
these models. We also showed empirically that our
k-best learning approximation is reasonable.

We should note the work of Zeman (2004), who
presents good results for Czech based on an exten-
sion to the work of Collins et al. (1999). In his
system, he transforms Czech dependency structures
to phrase structure and uses both the Collins parser
and Charniak parser for learning and extracting lexi-
calized phrase-structure. These structures are then
deterministically transformed back into dependen-
cies. The results presented by Zeman are compa-
rable to those shown here. However, Zeman only
presents results for the development data. Further-
more, since these models are based on lexicalized
phrase structure parsing they have a parsing com-
plexity of O(n5).

6 Conclusions and Future Work

In this paper we presented a general framework for
parsing dependency trees based on an equivalence
to maximum spanning trees in directed graphs. This
framework provides natural and efficient mecha-
nisms for parsing both projective and non-projective
languages through the use of the Eisner and Chu-
Liu-Edmonds algorithms. To learn these structures
we used a simple supervised online large-margin
learning technique (MIRA) that empirically pro-
vides state-of-the-art performance for both English
and Czech.

A major advantage of our models is the abil-
ity to naturally model non-projective parses. Non-
projective parsing is commonly considered more
difficult than projective parsing. However, under
our framework, we show that the opposite is ac-
tually true and that non-projective parsing has a
lower asymptotic complexity. Using this frame-
work, we presented results showing that the non-
projective model outperforms the projective model
on the Prague Dependency Treebank, which con-
tains a small number of non-projective edges.

The systems we present are also language general
in that none of the features are tailored specifically
to any one language. In fact, it is reasonable to as-
sume that any language that may be tokenized and
assigned part-of-speech tags like English and Czech
can be modeled by our framework. To test this hy-
pothesis we plan on applying our parser on other lan-
guages such as Dutch and Turkish, both of which
have available treebanks.

We plan to extend the present work to typed de-
pendency structures. In particular, we wish to iden-
tify what kinds of edge types are useful for pars-
ing and information extraction applications and how
such types can be modeled in a spanning tree frame-
work.

Another direction for future work is to investigate
different methods of factorizing the output for the
factored MIRA learning method. We used a rather
naive and strict factorization. A softer factoriza-
tion would be similar to the M3 factorizations de-
scribed by Taskar (2004). It would be interesting
to see which factorizations work best for projective
and non-projective languages and what this tells us
about the structure of these languages.
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APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm



on this graph. Note that we need to keep track of
the real endpoints of the edges into and out of wjs

for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root to wjs represented a tree from root to
saw to John, so we include all those edges to get the
MST,

root

saw

John Mary

10

3030

This is obviously the MST for this graph.

B Eisner Algorithm

Here we give a brief description of the Eisner algo-
rithm (Eisner, 1996) for parsing projective depen-
dency/spanning trees.

Let C[s][t][d][c] be a dynamic programming table
that stores the score of the best subtree from position
s to position t, s ≤ t, with direction d and complete
value c. d ∈ {←,→} and indicates the direction of
the subtree (gathering left or right dependents). If
d =← then t must be the head of the subtree and if
d =→ then s is the head. c ∈ {0, 1} indicates if a
subtree is complete (c = 1, no more dependents) or
incomplete (c = 0, needs to be completed). For in-
stance, C[s][t][←][1] would be the score of the best
subtree represented by the item,

s t

and C[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic program-
ming table bottom-up just like the CKY parsing al-
gorithm (Younger, 1967) by finding optimal sub-
trees for substrings of increasing increasing length.
Pseudo code for filling up the dynamic programming
table is in Figure 7.

Consider the line in Figure 7 indicated by (*).
This says that to find the best score for an incom-
plete left subtree

s t

we need to find the index s ≤ r < t that leads to
the best possible score through joining two complete
subtrees,

s r r+1 t

The score of joining these two complete subtrees is
the score of these subtrees plus the score of creating
an edge from word xt to word xs. This is guaran-
teed to be the score of the best subtree provided the
table correctly stores the scores of all smaller sub-
trees. This is because by enumerating over all values
of r, we are considering all possible combinations.

By forcing a unique root at the left-hand side of
the sentence, the score of the best tree for the entire
sentence is C[1][n][→][1]. The only remaining prob-
lem is how to extract the best dependency tree after
running the Eisner algorithm. In order to do this we
simply need to maintain back pointers to the sub-
trees that gave rise to the each item in the dynamic
programming table. This is identical to maintaining
back pointers for the Viterbi algorithm for sequences
and the CKY algorithm for parsing.

A quick look at the pseudo-code shows that the
run-time of the Eisner algorithm is O(n3). Note,
that unlike CFG parsing, there is no grammar con-
stant. This is significant because large scale CFG
parsing can sometimes have a grammar constant in
the thousands.



Initialization: C[s][s][d][c] = 0.0 ∀s, d, c
for k : 1..n

for s : 1..n
t = s + k
if t > n then break

C[s][t][←][0] = maxs≤r<t(C[s][r][→][1] + C[r + 1][t][←][1] + s(t, s)) (*)
C[s][t][→][0] = maxs≤r<t(C[s][r][→][1] + C[r + 1][t][←][1] + s(s, t))
C[s][t][←][1] = maxs≤r<t(C[s][r][←][1] + C[r][t][←][0])
C[s][t][→][1] = maxs<r≤t(C[s][r][→][0] + C[r][t][→][1])

end for
end for

Figure 7: Pseudo-code for bottom-up Eisner cubic parsing algorithm.

C Feature Example

Here we show a concrete example of the feature rep-
resentation of an edge in a dependency tree. The tree
is given below and the edge of interest is the depen-
dency between the main verb hit and its argument
headed preposition with. We use simplified part-of-
speech tags for illustrative purposes only.

root, RT

hit, V

John, N ball, N with, P

the, D bat, N

the, D

f(hit,with)

Basic Features

p-word=“hit”, p-pos=“V”, c-word=“with”, c-pos=“P”

p-pos=“V”, c-word=“with”, c-pos=“P”

p-word=“hit”, c-word=“with”, c-pos=“P”

p-word=“hit”, p-pos=“V”, c-pos=“P”

p-word=“hit”, p-pos=“V”, c-word=“with”

p-word=“hit”, c-word=“with”

p-pos=“V”, c-pos=“P”

p-word=“hit”, p-pos=“V”

c-word=“with”, c-pos=“P”

p-word=“hit”

p-pos=“V”

c-word=“with”

c-pos=“P”

Extended Features

p-pos=“V”, b-pos=“D”, c-pos=“P”

p-pos=“V”, b-pos=“N”, c-pos=“P”

p-pos=“V”, p-pos+1=“D”, c-pos-1=“N”, c-pos=“P”

p-pos=“V”, c-pos-1=“N”, c-pos=“P”

p-pos=“V”, p-pos+1=“D”, c-pos=“P”

p-pos-1=“N”, p-pos=“V”, c-pos-1=“N”, c-pos=“P”

p-pos=“V”, c-pos-1=“N”, c-pos=“P”

p-pos-1=“N”, p-pos=“V”, c-pos=“P”

p-pos=“V”, p-pos+1=“D”, c-pos=“P”, c-pos+1=“D”

p-pos=“V”, c-pos=“P”, c-pos+1=“D”

p-pos=“V”, p-pos+1=“D”, c-pos=“P”

p-pos-1=“N”, p-pos=“V”, c-pos=“P”, c-pos+1=“D”

p-pos=“V”, c-pos=“P”, c-pos+1=“D”

p-pos-1=“N”, p-pos=“V”, c-pos=“P”

Note that since hit and with are not longer than
5 characters we do not have any additional 5-
gram back-off features. If, however, the verb was
smashed, we could have the feature,

p-word:5=“smash”, c-word=“with”

along with other 5-gram back-off features.

All features are also conjoined with the direction
of attachment and the distance between the words.
So, in addition to the feature,

p-word=“hit”, c-word=“with”

the system would also have the feature,

p-word=“hit”, c-word=“with”, dir=R, dist=2

to indicate that the child with is to the right of the
parent hit and that they are separated by 2 words.
Distances were calculated into buckets with thresh-
olds of 1, 2, 3, 4, 5 and 10.



ENGLISH
k-best MIRA: Eisner 1-best MIRA: CLE Factored MIRA

Eisner 90.9 / 94.2 / 37.5 90.6 / 94.2 / 35.3 90.6 / 93.1 / 34.3
CLE 83.7 / 81.8 / 17.5 90.2 / 94.3 / 33.2 90.2 / 92.9 / 32.3

Table 6: Training vs. testing methods for English. Columns represent different training methods and
rows different testing methods. Each cell contains the standard dependency parsing metrics, Accu-
racy/Root/Complete as defined earlier.

CZECH-A
k-best MIRA: Eisner 1-best MIRA: CLE Factored MIRA

Eisner 83.3 / 88.6 / 31.3 83.6 / 88.2 / 29.9 83.9 / 87.5 / 30.3
CLE 75.0 / 86.3 / 17.6 84.1 / 89.0 / 32.2 84.4 / 88.3 / 32.3

Table 7: Training vs. testing methods for Czech.

D Additional Experimental Results

The systems we described in this paper have two de-
grees of freedom: learning and testing. The learn-
ing phase can take on any one of three values: k-
best MIRA with projective Eisner parsing (we set
k = 5), 1-best MIRA with non-projective Chu-Liu-
Edmonds MST parsing (CLE) or factored MIRA.
The test phase can take on one of two values: pro-
jective Eisner parsing or non-projective CLE pars-
ing. Table 6 and Table 7 present the results for each
system with the complete cross product of all the de-
grees of freedom for both languages.

The first interesting aspect of these results is that
training and parsing using projective algorithms pro-
vides the best performance for English. This is not
surprising at all since we know a priori that all trees
in the English data set are projective. However, if we
train using the non-projective parsing algorithm then
at test time we can obtain reasonably good results
using the non-projective parsing algorithm. This is
worth noting since the result is a dependency parser
for English that parses sentences in O(n2).

Furthermore, we can see that every system that is
trained using projective parsing algorithms performs
extremely bad when the test data is parsed using a
non-projective algorithm. This also makes sense.
During training, the parameters are set while never
considering unlikely non-projective parses. So, if
at testing we introduce these parses into the search
space, the model will have seen no negative evidence
to disregard them.
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