197,914 research outputs found

    Duplicate Detection in Probabilistic Data

    Get PDF
    Collected data often contains uncertainties. Probabilistic databases have been proposed to manage uncertain data. To combine data from multiple autonomous probabilistic databases, an integration of probabilistic data has to be performed. Until now, however, data integration approaches have focused on the integration of certain source data (relational or XML). There is no work on the integration of uncertain (esp. probabilistic) source data so far. In this paper, we present a first step towards a concise consolidation of probabilistic data. We focus on duplicate detection as a representative and essential step in an integration process. We present techniques for identifying multiple probabilistic representations of the same real-world entities. Furthermore, for increasing the efficiency of the duplicate detection process we introduce search space reduction methods adapted to probabilistic data

    Taming Data Explosion in Probabilistic Information Integration

    Get PDF
    Data integration has been a challenging problem for decades. In an ambient environment, where many autonomous devices have their own information sources and network connectivity is ad hoc and peer-to-peer, it even becomes a serious bottleneck. To enable devices to exchange information without the need for interaction with a user at data integration time and without the need for extensive semantic annotations, a probabilistic approach seems rather promising. It simply teaches the device how to cope with the uncertainty occurring during data integration. Unfortunately, without any kind of world knowledge, almost everything becomes uncertain, hence maintaining all possibilities produces huge integrated information sources. In this paper, we claim that only very simple and generic rules are enough world knowledge to drastically reduce the amount of uncertainty, hence to tame the data explosion to a manageable size

    IMPrECISE: Good-is-good-enough data integration

    Get PDF
    IMPrECISE is an XQuery module that adds probabilistic XML functionality to an existing XML DBMS, in our case MonetDB/XQuery. We demonstrate probabilistic XML and data integration functionality of IMPrECISE. The prototype is configurable with domain knowledge such that the amount of uncertainty arising during data integration is reduced to an acceptable level, thus obtaining a "good is good enough" data integration with minimal human effort

    Qualitative Effects of Knowledge Rules in Probabilistic Data Integration

    Get PDF
    One of the problems in data integration is data overlap: the fact that different data sources have data on the same real world entities. Much development time in data integration projects is devoted to entity resolution. Often advanced similarity measurement techniques are used to remove semantic duplicates from the integration result or solve other semantic conflicts, but it proofs impossible to get rid of all semantic problems in data integration. An often-used rule of thumb states that about 90% of the development effort is devoted to solving the remaining 10% hard cases. In an attempt to significantly decrease human effort at data integration time, we have proposed an approach that stores any remaining semantic uncertainty and conflicts in a probabilistic database enabling it to already be meaningfully used. The main development effort in our approach is devoted to defining and tuning knowledge rules and thresholds. Rules and thresholds directly impact the size and quality of the integration result. We measure integration quality indirectly by measuring the quality of answers to queries on the integrated data set in an information retrieval-like way. The main contribution of this report is an experimental investigation of the effects and sensitivity of rule definition and threshold tuning on the integration quality. This proves that our approach indeed reduces development effort — and not merely shifts the effort to rule definition and threshold tuning — by showing that setting rough safe thresholds and defining only a few rules suffices to produce a ‘good enough’ integration that can be meaningfully used

    A probabilistic database extension

    Get PDF
    Data exchange between embedded systems and other small or large computing devices increases. Since data in different data sources may refer to the same real world objects, data cannot simply be merged. Furthermore, in many situations, conflicts in data about the same real world objects need to be resolved without interference from a user. In this report, we report on an attempt to make a RDBMS probabilistic, i.e., data in a relation represents all possible views on the real world, in order to achieve unattended data integration. We define a probabilistic relational data model and review standard SQL query primitives in the light of probabilistic data. It appears that thinking in terms of `possible worlds¿ is powerful in determining the proper semantics of these query primitives

    Integrating and Ranking Uncertain Scientific Data

    Get PDF
    Mediator-based data integration systems resolve exploratory queries by joining data elements across sources. In the presence of uncertainties, such multiple expansions can quickly lead to spurious connections and incorrect results. The BioRank project investigates formalisms for modeling uncertainty during scientific data integration and for ranking uncertain query results. Our motivating application is protein function prediction. In this paper we show that: (i) explicit modeling of uncertainties as probabilities increases our ability to predict less-known or previously unknown functions (though it does not improve predicting the well-known). This suggests that probabilistic uncertainty models offer utility for scientific knowledge discovery; (ii) small perturbations in the input probabilities tend to produce only minor changes in the quality of our result rankings. This suggests that our methods are robust against slight variations in the way uncertainties are transformed into probabilities; and (iii) several techniques allow us to evaluate our probabilistic rankings efficiently. This suggests that probabilistic query evaluation is not as hard for real-world problems as theory indicates

    A note on evolutionary stochastic portfolio optimization and probabilistic constraints

    Full text link
    In this note, we extend an evolutionary stochastic portfolio optimization framework to include probabilistic constraints. Both the stochastic programming-based modeling environment as well as the evolutionary optimization environment are ideally suited for an integration of various types of probabilistic constraints. We show an approach on how to integrate these constraints. Numerical results using recent financial data substantiate the applicability of the presented approach

    Dealing with Uncertainty in Lexical Annotation

    Get PDF
    We present ALA, a tool for the automatic lexical annotation (i.e.annotation w.r.t. a thesaurus/lexical resource) of structured and semi-structured data sources and the discovery of probabilistic lexical relationships in a data integration environment. ALA performs automatic lexical annotation through the use of probabilistic annotations, i.e. an annotation is associated to a probability value. By performing probabilistic lexical annotation, we discover probabilistic inter-sources lexical relationships among schema elements. ALA extends the lexical annotation module of the MOMIS data integration system. However, it may be applied in general in the context of schema mapping discovery, ontology merging and data integration system and it is particularly suitable for performing “on-the-fly” data integration or probabilistic ontology matching

    User Feedback in Probabilistic XML

    Get PDF
    Data integration is a challenging problem in many application areas. Approaches mostly attempt to resolve semantic uncertainty and conflicts between information sources as part of the data integration process. In some application areas, this is impractical or even prohibitive, for example, in an ambient environment where devices on an ad hoc basis have to exchange information autonomously. We have proposed a probabilistic XML approach that allows data integration without user involvement by storing semantic uncertainty and conflicts in the integrated XML data. As a\ud consequence, the integrated information source represents\ud all possible appearances of objects in the real world, the\ud so-called possible worlds.\ud \ud In this paper, we show how user feedback on query results\ud can resolve semantic uncertainty and conflicts in the\ud integrated data. Hence, user involvement is effectively postponed to query time, when a user is already interacting actively with the system. The technique relates positive and\ud negative statements on query answers to the possible worlds\ud of the information source thereby either reinforcing, penalizing, or eliminating possible worlds. We show that after repeated user feedback, an integrated information source better resembles the real world and may converge towards a non-probabilistic information source
    corecore