407 research outputs found

    Toward End-to-End, Full-Stack 6G Terahertz Networks

    Full text link
    Recent evolutions in semiconductors have brought the terahertz band in the spotlight as an enabler for terabit-per-second communications in 6G networks. Most of the research so far, however, has focused on understanding the physics of terahertz devices, circuitry and propagation, and on studying physical layer solutions. However, integrating this technology in complex mobile networks requires a proper design of the full communication stack, to address link- and system-level challenges related to network setup, management, coordination, energy efficiency, and end-to-end connectivity. This paper provides an overview of the issues that need to be overcome to introduce the terahertz spectrum in mobile networks, from a MAC, network and transport layer perspective, with considerations on the performance of end-to-end data flows on terahertz connections.Comment: Published on IEEE Communications Magazine, THz Communications: A Catalyst for the Wireless Future, 7 pages, 6 figure

    Taming and Leveraging Directionality and Blockage in Millimeter Wave Communications

    Get PDF
    To cope with the challenge for high-rate data transmission, Millimeter Wave(mmWave) is one potential solution. The short wavelength unlatched the era of directional mobile communication. The semi-optical communication requires revolutionary thinking. To assist the research and evaluate various algorithms, we build a motion-sensitive mmWave testbed with two degrees of freedom for environmental sensing and general wireless communication.The first part of this thesis contains two approaches to maintain the connection in mmWave mobile communication. The first one seeks to solve the beam tracking problem using motion sensor within the mobile device. A tracking algorithm is given and integrated into the tracking protocol. Detailed experiments and numerical simulations compared several compensation schemes with optical benchmark and demonstrated the efficiency of overhead reduction. The second strategy attempts to mitigate intermittent connections during roaming is multi-connectivity. Taking advantage of properties of rateless erasure code, a fountain code type multi-connectivity mechanism is proposed to increase the link reliability with simplified backhaul mechanism. The simulation demonstrates the efficiency and robustness of our system design with a multi-link channel record.The second topic in this thesis explores various techniques in blockage mitigation. A fast hear-beat like channel with heavy blockage loss is identified in the mmWave Unmanned Aerial Vehicle (UAV) communication experiment due to the propeller blockage. These blockage patterns are detected through Holm\u27s procedure as a problem of multi-time series edge detection. To reduce the blockage effect, an adaptive modulation and coding scheme is designed. The simulation results show that it could greatly improve the throughput given appropriately predicted patterns. The last but not the least, the blockage of directional communication also appears as a blessing because the geometrical information and blockage event of ancillary signal paths can be utilized to predict the blockage timing for the current transmission path. A geometrical model and prediction algorithm are derived to resolve the blockage time and initiate active handovers. An experiment provides solid proof of multi-paths properties and the numeral simulation demonstrates the efficiency of the proposed algorithm

    Performance evaluation of packet radio networks

    Get PDF
    The first ground wireless packet switching radio network, named the ALOHA network, was implemented in the early 1970s at University of Hawaii. The most distinct features of a packet radio network are: (1) the absence of physical connections between users, (2) the sharing of a common transmission medium, and (3) the broadcasting capability of each user. Today, the packet radio network technology is widely used in a variety of civilian as well as military applications;The throughput of a packet radio network is defined as the percentage of time the channel carries good packets. It is largely determined by the channel access method, the signal propagation characteristics, and the capture effect at a receiver. In this dissertation, we present two packet radio network models under the Slotted ALOHA channel access method and a capture model which is based on the relative strength of signal powers of the desired packet and the interfering packets;The first model is a single-hop network with a central station and finite number of users randomly distributed in a limited area. All the users communicate with each other through the central station, which is within one hop distance of all users. Given a density distribution function for the distance of a user, we show that there is an optimal transmission probability which maximizes the throughput of the network. Also, under a light traffic load, the throughput of a remote user is relatively insensitive to its distance from the station;The second model is a multi-hop network where a user is equipped with a directional antenna and not every user can directly communicate with every other else. As a result, a user communicates with another user either directly in a single hop or through some intermediate users in multiple hops. The location of all users is modeled by a two-dimensional Poisson process with an average of [lambda] users per unit area. By balancing the transmission probability and the antenna beam width, we show that the maximum hop-by-hop progress of a packet can be achieved when the transmitter and the receiver are separated by an optimal distance

    Channel-Access and Routing Protocols for Wireless Ad Hoc Networks with Directional Antennas

    Get PDF
    Medium-access control (MAC) and multiple-hop routing protocols are presented that exploit the presence of directional antennas at nodes in a wireless ad hoc network. The protocols are designed for heterogeneous networks in which an arbitrary subset use directional antennas. It is shown that the new protocols improvement the network`s performance substantially in a wide range of scenarios. A new MAC protocol is presented that employs the RTS/CTS mechanism. It accounts for the constraints imposed by a directional antenna system, and it is designed to exploit the capabilities of a directional antenna. It is shown that the receiver blocking problem is especially detrimental to the performance if the network includes nodes with directional antennas, and a simple solution is presented. A further improvement to the MAC protocol is presented which results in more efficient spatial reuse of traffic channels in the heterogeneous network. The protocol includes a mechanism by which a negotiating node pair dynamically determines if a traffic channel that is in use in the local area can be used concurrently to support additional traffic. It is shown that the new protocol yields significantly better performance than two existing approaches to the reuse of traffic channels. It is also shown that the improvements are achieved over a wide range of network conditions, including different network densities and different spread-spectrum processing gains. A new distributed routing protocol is also presented for use in heterogeneous wireless ad hoc networks. Two components of the routing protocol are jointly designed: a congestion-based link metric that identifies multiple routes with low levels of congestion, and a forwarding protocol that dynamically splits traffic among the multiple routes based on the relative capabilities of the routes. It is shown that the new routing protocol is able to exploit the decoupling of paths in the network resulting from the presence of nodes with directional antennas. Furthermore, it is shown that the protocol adapts effectively to the presence of advantaged nodes in the network. This approach to joint routing and forwarding is shown to result in a much better and more robust network performance than minimum-hop routing

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Throughput Characterizations of Wireless Networks via Stochastic Geometry and Random Graph Theory

    Get PDF
    The shared medium of wireless communication networks presents many technical challenges that offer a rich modeling and design space across both physical and scheduling protocol layers. This dissertation is organized into tasks that characterize the throughput performance in such networks, with a secondary focus on the interference models employed therein. We examine the throughput ratio of greedy maximal scheduling (GMS) in wireless communication networks modeled as random graphs. A throughput ratio is a single-parameter characterization of the largest achievable fraction of the network capacity region. The throughput ratio of GMS is generally very difficult to obtain; however, it may be evaluated or bounded based on specific topology structures. We analyze the GMS throughput ratio in previously unexplored random graph families under the assumption of primary interference. Critical edge densities are shown to yield bounds on the range and expected GMS throughput ratio as the network grows large. We next focus on the increasing interest in the use of directional antennas to improve throughput in wireless networks. We propose a model for capturing the effects of antenna misdirection on coverage and throughput in large-scale directional networks within a stochastic geometry framework. We provide explicit expressions for communication outage as a function of network density and antenna beamwidth for idealized sector antenna patterns. These expressions are then employed in optimizations to maximize the spatial density of successful transmissions under ideal sector antennas. We supplement our analytical findings with numerical trends across more realistic antenna patterns. Finally, we characterize trade-offs between the protocol and physical interference models, each used in the prior tasks. A transmission is successful under the protocol model if the receiver is free of any single, significant interferer, while physical model feasibility accounts for multiple interference sources. The protocol model, parameterized by a guard zone radius, naturally forms a decision rule for estimating physical model feasibility. We combine binary hypothesis testing with stochastic geometry and characterize the guard zone achieving minimum protocol model prediction error. We conclude with guidelines for identifying environmental parameter regimes for which the protocol model is well suited as a proxy for the physical model.Ph.D., Electrical Engineering -- Drexel University, 201

    Performance Analysis for 5G cellular networks: Millimeter Wave and UAV Assisted Communications

    Get PDF
    Recent years have witnessed exponential growth in mobile data and traffic. Limited available spectrum in microwave (ÎĽ\muWave) bands does not seem to be capable of meeting this demand in the near future, motivating the move to new frequency bands. Therefore, operating with large available bandwidth at millimeter wave (mmWave) frequency bands, between 30 and 300 GHz, has become an appealing choice for the fifth generation (5G) cellular networks. In addition to mmWave cellular networks, the deployment of unmanned aerial vehicle (UAV) base stations (BSs), also known as drone BSs, has attracted considerable attention recently as a possible solution to meet the increasing data demand. UAV BSs are expected to be deployed in a variety of scenarios including public safety communications, data collection in Internet of Things (IoT) applications, disasters, accidents, and other emergencies and also temporary events requiring substantial network resources in the short-term. In these scenarios, UAVs can provide wireless connectivity rapidly. In this thesis, analytical frameworks are developed to analyze and evaluate the performance of mmWave cellular networks and UAV assisted cellular networks. First, the analysis of average symbol error probability (ASEP) in mmWave cellular networks with Poisson Point Process (PPP) distributed BSs is conducted using tools from stochastic geometry. Secondly, we analyze the energy efficiency of relay-assisted downlink mmWave cellular networks. Then, we provide an stochastic geometry framework to study heterogeneous downlink mmWave cellular networks consisting of KK tiers of randomly located BSs, assuming that each tier operates in a mmWave frequency band. We further study the uplink performance of the mmWave cellular networks by considering the coexistence of cellular and potential D2D user equipments (UEs) in the same band. In addition to mmWave cellular networks, the performance of UAV assisted cellular networks is also studied. Signal-to-interference-plus-noise ratio (SINR) coverage performance analysis for UAV assisted networks with clustered users is provided. Finally, we study the energy coverage performance of UAV energy harvesting networks with clustered users

    On the Fundamentals of Stochastic Spatial Modeling and Analysis of Wireless Networks and its Impact to Channel Losses

    Get PDF
    With the rapid evolution of wireless networking, it becomes vital to ensure transmission reliability, enhanced connectivity, and efficient resource utilization. One possible pathway for gaining insight into these critical requirements would be to explore the spatial geometry of the network. However, tractably characterizing the actual position of nodes for large wireless networks (LWNs) is technically unfeasible. Thus, stochastical spatial modeling is commonly considered for emulating the random pattern of mobile users. As a result, the concept of random geometry is gaining attention in the field of cellular systems in order to analytically extract hidden features and properties useful for assessing the performance of networks. Meanwhile, the large-scale fading between interacting nodes is the most fundamental element in radio communications, responsible for weakening the propagation, and thus worsening the service quality. Given the importance of channel losses in general, and the inevitability of random networks in real-life situations, it was then natural to merge these two paradigms together in order to obtain an improved stochastical model for the large-scale fading. Therefore, in exact closed-form notation, we generically derived the large-scale fading distributions between a reference base-station and an arbitrary node for uni-cellular (UCN), multi-cellular (MCN), and Gaussian random network models. In fact, we for the first time provided explicit formulations that considered at once: the lattice profile, the users’ random geometry, the spatial intensity, the effect of the far-field phenomenon, the path-loss behavior, and the stochastic impact of channel scatters. Overall, the results can be useful for analyzing and designing LWNs through the evaluation of performance indicators. Moreover, we conceptualized a straightforward and flexible approach for random spatial inhomogeneity by proposing the area-specific deployment (ASD) principle, which takes into account the clustering tendency of users. In fact, the ASD method has the advantage of achieving a more realistic deployment based on limited planning inputs, while still preserving the stochastic character of users’ position. We then applied this inhomogeneous technique to different circumstances, and thus developed three spatial-level network simulator algorithms for: controlled/uncontrolled UCN, and MCN deployments
    • …
    corecore