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Abstract 
On the Fundamentals of Stochastic Spatial Modeling and 

Analysis of Wireless Networks and its Impact to Channel Losses 

 

 

Mouhamed Abdulla, Ph.D. 

Concordia University, 2012 

 

 

 With the rapid evolution of wireless networking, it becomes vital to ensure transmission 

reliability, enhanced connectivity, and efficient resource utilization. One possible pathway for 

gaining insight into these critical requirements would be to explore the spatial geometry of the 

network. However, tractably characterizing the actual position of nodes for large wireless 

networks (LWNs) is technically unfeasible. Thus, stochastical spatial modeling is commonly 

considered for emulating the random pattern of mobile users. As a result, the concept of random 

geometry is gaining attention in the field of cellular systems in order to analytically extract 

hidden features and properties useful for assessing the performance of networks. 

 Meanwhile, the large-scale fading between interacting nodes is the most fundamental 

element in radio communications, responsible for weakening the propagation, and thus 

worsening the service quality. Given the importance of channel losses in general, and the 

inevitability of random networks in real-life situations, it was then natural to merge these two 

paradigms together in order to obtain an improved stochastical model for the large-scale fading. 

Therefore, in exact closed-form notation, we generically derived the large-scale fading 

distributions between a reference base-station and an arbitrary node for uni-cellular (UCN), 

multi-cellular (MCN), and Gaussian random network models. In fact, we for the first time 

provided explicit formulations that considered at once: the lattice profile, the users’ random 

geometry, the spatial intensity, the effect of the far-field phenomenon, the path-loss behavior, 

and the stochastic impact of channel scatters. Overall, the results can be useful for analyzing and 

designing LWNs through the evaluation of performance indicators. 



iv 
 

 Moreover, we conceptualized a straightforward and flexible approach for random spatial 

inhomogeneity by proposing the area-specific deployment (ASD) principle, which takes into 

account the clustering tendency of users. In fact, the ASD method has the advantage of achieving 

a more realistic deployment based on limited planning inputs, while still preserving the 

stochastic character of users’ position. We then applied this inhomogeneous technique to 

different circumstances, and thus developed three spatial-level network simulator algorithms for: 

controlled/uncontrolled UCN, and MCN deployments. 

 

 

 

Keywords: Cellular Systems, Network Planning, Network Modeling, Spatial Deployment, 

Random Geometry, Stochastical Inference, Channel Propagation, Large-Scale 

Fading, Network Performance, Random Generation, and Monte Carlo Simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

 

 

 

 

 

 

This doctoral dissertation is dedicated to: 

 

 

My Mother: 

(Houda) 

All that I am today would have never happened if it were not 

for your affection, dedication, effort, and guidance. Mom, you 

are my heart, my genuine love, and my moral compass in life. 

My Brother: 

(Ahmed) 

You are my mentor, my role model, my best friend, and above 

all you are my oxygen. Bro, I love you more than words or 

actions can ever demonstrate. 

The Soul of My Father: 

(Prof./Dr. Abdul Baki Abdulla) 

It has been more than 20yrs that you have left us, yet my love, 

admiration, and respect for you has never faded because your 

legacy continues to inspire. I hope your sons will always make 

you proud. R.I.P. Dad. 

 

 

 



vi 
 

Acknowledgments 
 

Sir Isaac Newton was absolutely right when he famously said that If I have seen further, it is by 

standing on the shoulders of giants. And so, I am forever indebted to all the giants who were a 

source of inspiration and support during the course of my research work. 

 

 First of all, I would like to express my utmost gratitude to my advisor, Prof. Yousef R. 

Shayan, for his guidance, encouragements, patience, and wisdom. I am also very grateful for the 

external examiner Prof. Benoît Champagne from McGill University who agreed to participate 

and took the necessary time to read and assess my dissertation; his suggestions were 

considerably helpful in reorganizing and refining the structure of the dissertation. Also, I would 

like to thank my committee members: Prof. Ahmed Elhakeem, Prof. Walaa Hamouda, and Prof. 

Javad Dargahi, for their constructive insight in order to make the dissemination of my research 

results more lucid and informative. Moreover, I am grateful to Prof. Ali Ghrayeb, Prof. Reza 

Soleymani, and Prof. Rajamohan Ganesan for their feedback during earlier versions of this 

treatment. On the whole, I am more than fortunate to have had the opportunity to interact and 

learn from these highly regarded scholars. 

 

 Furthermore, I am very thankful to Pamela Fox, the ECE Coordinator for Graduate 

Programs, and Sharon Carey from the School of Graduate Studies. They were both phenomenal 

for untiredly answering my logistical questions while at the same time keeping a pleasant smile.   

 

 Last, but definitively not least, I would like to thank my mother and my brother for 

believing in me and for always being there when I needed them the most. To me, these two 

individual represent everything that is good in life. 

  

Mouhamed Abdulla 

Montréal, Québec, Canada 

 



vii 
 

Table of Contents 
 

List of Figures .................................................................................................................................. x
List of Tables ................................................................................................................................ xiii
List of Symbols .............................................................................................................................. xiv
List of Acronyms .......................................................................................................................... xxv
Chapter 1 - Introduction ................................................................................................................ 1

1.1 – Motivation .......................................................................................................................... 1
1.2 – Overview of Related Work.................................................................................................. 2
1.3 – Problem Statement and Objectives .................................................................................... 7

1.3.1 – Exact Expressions for Homogeneous Random Deployment ........................................ 7
1.3.2 – Explicit Large-Scale Fading Distributions.................................................................. 9
1.3.3 – Heterogeneous Spatial Deployment Algorithms ........................................................ 12

1.4 – Main Research Contributions .......................................................................................... 15
1.5 – Organization of the Dissertation ...................................................................................... 16

Chapter 2 - Essential Background of Cellular-Based Wireless Networking ............................. 18
2.1 – Introduction ...................................................................................................................... 18

2.1.1 – Objective .................................................................................................................... 18
2.1.2 – Organization .............................................................................................................. 18

2.2 – Network Modeling ............................................................................................................ 19
2.2.1 – Dissecting the Network Geometry ............................................................................. 19
2.2.2 – UCN Spatial Modeling .............................................................................................. 22
2.2.3 – MCN Spatial Modeling .............................................................................................. 24

2.3 – Propagation Modeling ..................................................................................................... 28
2.3.1 – Sources for Channel Corruption ............................................................................... 28
2.3.2 – Modeling Wireless Radiation .................................................................................... 28
2.3.3 – Modeling Channel Losses .......................................................................................... 31

2.4 – Overview of IEEE 802.20 ................................................................................................. 34
2.5 – Conclusion ........................................................................................................................ 37

Chapter 3 - Homogeneous Network Modeling and Large-Scale Fading Analysis ................... 38
3.1 – Introduction ...................................................................................................................... 38

3.1.1 – Objective .................................................................................................................... 38
3.1.2 – Organization .............................................................................................................. 39

3.2 – Characteristics of the Network Model ............................................................................. 39
3.2.1 – Uniform Network Geometry ...................................................................................... 39
3.2.2 – Geometrical Alternative for Simplifying Channel Analysis ...................................... 40

3.3 – Random Network Emulation for Channel Analysis.......................................................... 41
3.3.1 – Geometrical Analysis of the MCN Lattice ................................................................. 41
3.3.2 – Random Spatial Generation ...................................................................................... 44
3.3.3 – Measuring the Performance of Efficient Random Generation .................................. 51
3.3.4 – Geometrical Deployment on the Euclidian Plane for Channel Analysis .................. 63

3.4 – Large-Scale Fading Distribution Analysis ....................................................................... 66
3.4.1 – Spatial Density in Polar Notation ............................................................................. 66
3.4.2 – Characterizing Radial Distribution ........................................................................... 68



viii 
 

3.4.3 – RNG based on Radial Distribution ............................................................................ 70
3.4.4 – Distribution of the Average Path-Loss ...................................................................... 72
3.4.5 – Large-Scale Fading Distribution with Shadowing .................................................... 73
3.4.6 – Experimental Validation by MC Simulations ............................................................ 90

3.5 – Conclusion ........................................................................................................................ 94
Chapter 4 - Emulating Heterogeneous Deployment via Geometrical Stochastic Modeling ..... 97

4.1 – Introduction ...................................................................................................................... 97
4.1.1 – Objective .................................................................................................................... 97
4.1.2 – Organization .............................................................................................................. 98

4.2 – Stochastical Characteristics of a Versatile UCN Model .................................................. 98
4.2.1 – Exact Geometrical Expressions for Spatial Deployment .......................................... 98
4.2.2 – Experimental Analysis of the Spatial Density.......................................................... 104

4.3 – Channel-Loss Predictor for an Adaptable UCN Model ................................................. 111
4.3.1 – PDF of the Path-Loss .............................................................................................. 111
4.3.2 – PDF of the Large-Scale Fading .............................................................................. 112
4.3.3 – Analyzing the Domain and Range of the Large-Scale Fading PDF ....................... 116
4.3.4 – Analyzing and Estimating the Moments of the Large-Scale Fading PDF .............. 118
4.3.5 – MC Simulations and Discussions for the Channel-Loss PDF ................................. 121

4.4 – Deployment Strategy for Spatial Inhomogeneity ........................................................... 126
4.4.1 – Motivation and Background .................................................................................... 126
4.4.2 – ASD Technique for Generating Random Heterogeneous Networks ........................ 127
4.4.3 – UCN Algorithm for Heterogeneous Random Deployment ...................................... 129
4.4.4 – Automatic Emulation of Heterogeneous Random Networks ................................... 138

4.5 – Modeling a Large Multi-Cellular Spatial Network ........................................................ 151
4.5.1 – Motivation and Background .................................................................................... 151
4.5.2 – Exact Stochastic Generation in a Hexagonal Lattice .............................................. 152
4.5.3 – Exact Random Nodal Dispersion in Sectored Cells ................................................ 158
4.5.4 – Geometrical Transformation of a Random Network ............................................... 165
4.5.5 – MCN Algorithm for Heterogeneous Random Deployment ...................................... 171
4.5.6 – Formulating the Spatial Density for Heterogeneous Networks............................... 181

4.6 – Conclusion ...................................................................................................................... 186
Chapter 5 - Channel-Loss Predictor for Gaussianly Deployed Network ................................. 189

5.1 – Introduction .................................................................................................................... 189
5.1.1 – Objective .................................................................................................................. 189
5.1.2 – Organization ............................................................................................................ 190

5.2 – Gaussian Random Network Model ................................................................................. 190
5.2.1 – Motivation ................................................................................................................ 190
5.2.2 – Network Geometry ................................................................................................... 191
5.2.3 – Network Behavior .................................................................................................... 191

5.3 – Distribution of the Large-Scale Fading ......................................................................... 192
5.3.1 – Internodal Distance PDF ........................................................................................ 192
5.3.2 – Path-Loss PDF ........................................................................................................ 195
5.3.3 – Large-Scale Fading PDF ........................................................................................ 196

5.4 – Experimental Analysis and Results ................................................................................ 199
5.4.1 – Estimation Model ..................................................................................................... 199
5.4.2 – Internodal Random Generation ............................................................................... 201



ix 
 

5.4.3 – MC Simulations ....................................................................................................... 202
5.5 – Implications of the Large-Scale Fading Density............................................................ 206

5.5.1 – Power Consumption and Control ............................................................................ 206
5.5.2 – Outage Probability .................................................................................................. 207
5.5.3 – Detection Capability ................................................................................................ 208

5.6 – Conclusion ...................................................................................................................... 209
Chapter 6 - Conclusion and Future Work ................................................................................ 210

6.1 – Overall Synopsis ............................................................................................................. 210
6.2 – Future Directions ........................................................................................................... 213

References ................................................................................................................................... 215
Appendices .................................................................................................................................. 225

Appendix A – Deriving the Differentiation of ( )( )Q x A B−  ................................................ 225

Appendix B – A Hyperbolic Expression for ( ) ( )exp expa b±  .............................................. 226

 
 
 



x 
 

List of Figures 
 

Figure 1.1 – Spatial geometry for modeling pure and applied phenomena ................................... 1
Figure 1.2 – Spatial geometry for modeling wireless network applications .................................. 2
Figure 1.3 – Geometrical interpretation of several network deployment models .......................... 7
Figure 2.1 – Categorizing geometrical model features for network emulation ........................... 19
Figure 2.2 – All-direction antenna radiation models (3D) [49] .................................................. 23
Figure 2.3 – Impact of channel features on EM radiation pattern (2D) ...................................... 24
Figure 2.4 – A microcellular alternative for a large densely-populated macrocell network ....... 25
Figure 2.5 – Tendency of surface gaps among bordering cells .................................................... 26
Figure 2.6 – MCN modeling by means of tessellating structures ................................................. 26
Figure 2.7 – EM radiation boundaries ......................................................................................... 29
Figure 2.8 – Connecting and comparing the MBWA standard to other technologies ................. 35
Figure 3.1 – Homogeneously deployed random network ............................................................. 39
Figure 3.2 – Simplifying BS-to-MS channel analysis via geometrical partitioning ..................... 41
Figure 3.3 – Geometry of random network with far-field ............................................................ 42
Figure 3.4 – Deployment surface for large-scale fading analysis................................................ 43
Figure 3.5 – Marginal PDF for spatial geometry along the x-axis .............................................. 44
Figure 3.6 – Marginal CDF for spatial geometry along the x-axis.............................................. 45
Figure 3.7 – Graphical interpretation of the related functions for the ARM algorithm .............. 47
Figure 3.8 – ARM algorithm ......................................................................................................... 48
Figure 3.9 – Uniform random generation .................................................................................... 48
Figure 3.10 – Pseudocode for efficient random generation ......................................................... 49
Figure 3.11 – Marginal density of nodal geometry by means of random simulation ................... 50
Figure 3.12 – Acceptance rate for efficient random generation versus RCR ............................... 53
Figure 3.13 – Impact of RCR on the acceptance rate estimator variance ................................... 61
Figure 3.14 – Mean and variance of acceptance rate estimator over different RCR values ....... 63
Figure 3.15 – Pseudocode for y-based random deployment ........................................................ 64
Figure 3.16 – Spatial random network emulation as a function of network scale and RCR........ 65
Figure 3.17 – Visual support for deriving the deployment region in polar format ...................... 67
Figure 3.18 – Deployment surface in polar format with respect to the radius ............................ 67
Figure 3.19 – Deployment surface in polar format with respect to the angle .............................. 68
Figure 3.20 – Radial distribution for nodal geometry via stochastic simulation ......................... 69
Figure 3.21 – Efficient RNG acceptance rate based on radial and Cartesian analysis ............... 71
Figure 3.22 – Shadowing contribution for large-scale fading density analysis ........................... 76
Figure 3.23 – Gaussian random generation ................................................................................. 86
Figure 3.24 – Pseudocode for the generation of shadowing ........................................................ 86
Figure 3.25 – Generating 5,000 random realizations of channel shadowing .............................. 87
Figure 3.26 – Interpreting the confidence interval and extent of large-scale fading ................... 89
Figure 3.27 – Verifying the analytically derived formulation for large-scale fading PDF ......... 93
Figure 3.28 – Large-scale fading PDF for BS-to-MS over different cellular sizes ...................... 94
Figure 3.29 – MCN model feasible for various deployment applications and purposes ............. 96
Figure 4.1 – Spatial density function over a circular ring sector in Cartesian coordinates ........ 99
Figure 4.2 – Spatial density function over a circular ring sector in polar coordinates ............. 101



xi 
 

Figure 4.3 – Radial density by means of MC simulations for UCN deployment ........................ 103
Figure 4.4 – Pseudocode for random UCN spatial deployment ................................................. 104
Figure 4.5 – Versatility of UCN random network models .......................................................... 105
Figure 4.6 – A general bivariate histogram realization ............................................................. 106
Figure 4.7 – Footprint of a UCN model for spatial density estimation ...................................... 108
Figure 4.8 – Pseudocode for evaluating the average simulated histogram density ................... 109
Figure 4.9 – Authenticating the large-scale fading density analysis for a random UCN .......... 122
Figure 4.10 – Deployment surfaces for the spatial networks used in the simulations ............... 123
Figure 4.11 – Large-scale fading PDF over different widths of a circular ring ........................ 124
Figure 4.12 – Characterizing ASD by an arbitrary network model ........................................... 129
Figure 4.13 – Modeling the network plan of a heterogeneous UCN .......................................... 130
Figure 4.14 – Pseudocode for heterogeneous spatial deployment of controlled UCN plan ...... 134
Figure 4.15 – Example of a 6-sector network footprint .............................................................. 135
Figure 4.16 – Heterogeneous spatial deployment and density for a 6-sector UCN example .... 136
Figure 4.17 – Example of a 10-sector network footprint ............................................................ 136
Figure 4.18 – Heterogeneous spatial deployment and density for a 10-sector UCN example .. 137
Figure 4.19 – Uniform PMF and its corresponding PDF .......................................................... 140
Figure 4.20 – RNG from discrete uniform distribution .............................................................. 141
Figure 4.21 – Substantiating experimentally the random generation of discrete samples ........ 142
Figure 4.22 – Geometrical details for uncontrolled random realization of the UCN footprint . 145
Figure 4.23 – Pseudocode for heterogeneous spatial deployment of uncontrolled UCN plan .. 146
Figure 4.24 – Random instances of small-scale heterogeneous network deployment ............... 148
Figure 4.25 – Random instances of medium-scale heterogeneous network deployment ........... 149
Figure 4.26 – Random instances of large-scale heterogeneous network deployment ................ 150
Figure 4.27 – Deployment surface of the hexagonal lattice ....................................................... 153
Figure 4.28 – Marginal CDF for hexagonal random network geometry along the x-axis ........ 154
Figure 4.29 – Marginal PDF of nodal geometry for a hexagonal network along the x-axis ..... 155
Figure 4.30 – Pseudocode for spatial random deployment within a hexagonal lattice ............. 157
Figure 4.31 – Random hexagonal networks ............................................................................... 157
Figure 4.32 – Antenna radiation for unsectored and sectored cells .......................................... 158
Figure 4.33 – Deployment surface of the rhombus lattice.......................................................... 159
Figure 4.34 – Marginal PDF of nodal geometry for a rhombus network along the x-axis........ 161
Figure 4.35 – Random rhombus networks .................................................................................. 161
Figure 4.36 – Pseudocode for spatial random deployment within a rhombus lattice ................ 162
Figure 4.37 – Deployment surface of the triangular lattice ....................................................... 163
Figure 4.38 – Marginal PDF of nodal geometry for a triangular network along the x-axis ..... 164
Figure 4.39 – Random triangular networks ............................................................................... 164
Figure 4.40 – Pseudocode for spatial random deployment within a triangular lattice ............. 165
Figure 4.41 – Different perspectives for reflecting a random cluster ........................................ 165
Figure 4.42 – Applying rotation to a random cluster ................................................................. 166
Figure 4.43 – Random network emulation with cellular sectoring ............................................ 168
Figure 4.44 – Random networks as a function of different scaling values ................................. 169
Figure 4.45 – Applying translation to a random cluster ............................................................ 170
Figure 4.46 – Layout of a large MCN grid ................................................................................. 172
Figure 4.47 – Pseudocode for random heterogeneous MCN spatial deployment ...................... 176
Figure 4.48 – Network footprint for a complex non-homogeneous MCN example .................... 178



xii 
 

Figure 4.49 – Random heterogeneous spatial deployment for a 19-cell MCN example ............ 179
Figure 4.50 – Spatial densities of hexagonal-based random networks ...................................... 181
Figure 4.51 – Footprint of a hexagonal network for spatial density estimation ........................ 182
Figure 4.52 – Inhomogeneous spatial density estimation for a 19-cell MCN example .............. 183
Figure 5.1 – Aerial network deployment .................................................................................... 190
Figure 5.2 – Parameterizing the geographical spread and spatial intensity of the model ........ 192
Figure 5.3 – Truncated deployment surface ............................................................................... 193
Figure 5.4 – Analytical plots for the internodal distance distribution ....................................... 194
Figure 5.5 – Mapping truncated radius to the average path-loss .............................................. 195
Figure 5.6 – Illustrating density estimation from random samples ............................................ 199
Figure 5.7 – Internodal distribution through analysis and simulations ..................................... 202
Figure 5.8 – Pseudocode for estimating the large-scale fading distribution ............................. 203
Figure 5.9 – Substantiating analytical derivation using the IEEE 802.20 channel ................... 204
Figure 5.10 – Large-scale fading density functions over various spatial intensities ................. 206
 



xiii 
 

List of Tables 
 

Table 1.1 – Notable techniques for geometrical representation and modeling of a network ......... 6
Table 2.1 – Quantitative comparative analysis of tessellating patterns ....................................... 27
Table 2.2 – Specifications of the MBWA technology .................................................................... 36
Table 3.1 – Comparing estimation choices for the acceptance rate............................................. 57
Table 3.2 – MBWA channel model for urban macrocell .............................................................. 91
Table 4.1 – Contrasting spatial density estimation among theoretical and empirical values .... 110
Table 4.2 – MBWA channel model for suburban macrocell ....................................................... 121
Table 4.3 – Contrasting the statistical attributes associated with a random network ............... 124
Table 4.4 – On the specifications and characteristics of different wireless networks ................ 148
Table 4.5 – Simulation inputs used for generating a random inhomogeneous UCN ................. 150
Table 4.6 – Rate of nodal quantity and areal density per cellular sector .................................. 168
Table 4.7 – Comparing the emulation algorithms for uni- and multi-cellular networks ........... 180
Table 4.8 – Contrasting spatial density estimation for a hexagonal-based network.................. 182
Table 5.1 – MBWA channel model for urban microcell ............................................................. 202

 

 

 

 

 

 

 



xiv 
 

List of Symbols 
 

Functions and Operators 

( ) ( ),A Ax x y1 ,1
 

1D and 2D indicator functions, where unity is the case when x A∈ ⊆  

and ( ) 2,x y A∈ ⊆  

( ), ,Binomial x n p
 

binomial probability mass function for getting x  successes in n  trials, 

where each successful event has probability p  

[ ],Ε
 

statistical expectation and averaging operators 

( )erf x
 

error function 

( )erfc x
 

complementary error function 

( ){ }inf
x A

f x
∈  

optimization operator that determines the infimum of the input function 

( )f x  over x A∈  

nI
 identity matrix of size n

 

( ),J r θ
 

2D Jacobian matrix in polar notation 

( ){ }max
x A

f x
∈  

optimization operator that determines the maximum of the input function 

( )f x  over x A∈  

( ){ }min
x A

f x
∈  

optimization operator that determines the minimum of the input function 

( )f x  over x A∈  

a bmod 
 

modulo operator used to obtain the remainder of the rational number a b  

( )2,m σN
 

Gaussian density function with mean m∈  and standard deviation 

σ ∗

+∈  

( ),N m ΣΣΣΣ
 

multivariate Gaussian density function with mean vector 
k∈m  and 

covariance matrix ,  k k k× ∗∈ ∈ΣΣΣΣ  

( )O
 

big-O notation for assessing the growth rate 



xv 
 

{ }r x DΡ ∈
 

probability measure for the input argument 

( )Q x
 

Q-function, which is a variation of the error function 

( )Rayleigh σ
 Rayleigh density function with parameter σ

∗

+∈  

( )sortsortedx x=
 

algorithm that sorts the input vector ,  2,3,kx k∈ =  in ascending 

order 

( ){ }sup
x A

f x
∈  

optimization operator that determines the supremum of the input function 

( )f x  over x A∈  

( )costT
 

worst case computational time complexity of an algorithm  

( ),a bU
 

continuous uniform density function bounded by [ ] 2,a b ∈  

( )1 2,D n nU
 

discrete uniform distribution function bounded by [ ] 2
1 2,n n ∈  

 

Geometrical Analysis 

1 2,α α  angular limits of a circular ring sector (rad) 

dβ  distribution index for achieving an inhomogeneous spatial network 

γ  largest number of sectors in a particular UCN layer 

iΔ  
width of the -thi deployment layer for automatic emulation of 

heterogeneous UCN (unit of length)  

LΔ  width of a circular ring (unit of length)

θ
 

angular coordinate for polar notation (rad) 

( )
( )
sec

1,2, ,,
1,2, , 1

L
i

i ni j
j n

θ =

= −

=ΘΘΘΘ
 clusters angular matrix for heterogeneous random deployment of a UCN 

μ
 cellular radius to the close-in distance ratio (RCR) 

0 , Aρ ρ
 

areal number density of a random network (no./unit of area) 

Gσ  spatial intensity of a Gaussian random network  



xvi 
 

φ
 cluster network rotation angle (rad) 

( ),l jφ
 

rotation angle of a random cluster for MCN modeling 

χ
 set of arguments for the infimum of ( )Xf x  

0 , NA A
 

surface area of a network lattice (unit of area) 

FFA  
deployment area that takes into consideration the effect of far-field for 

large-scale fading analysis (unit of area) 

GA
 

gap area created by adjacently positioned cells (unit of area) 

, ,H R TA A A  
random network deployment area for hexagonal, rhombus, and triangular 

lattice shapes (unit of area)   

RSA  deployment area of a network cluster for a circular ring sector (unit of area) 

dA  
infinitesimal area element 

BSd  separation distance between adjacent base-stations (unit of length)  

, P
FF FFD D  

support domain for the deployment surface with the impact of far-field in 

Cartesian and polar formats 

, ,H R TD D D  
support domain for the deployment surface over hexagonal, rhombus, and 

triangular lattice shapes 

, P
RS RSD D  

support domain for the deployment surface over a circular ring sector in 

Cartesian and polar formats 

TD  
truncated deployment surface support for a Gaussian network  

,X XYD D
 

1D and 2D domain of the marginal/joint probability density function 

, , ,i i i iD A n ρ
 

support domain, surface area, quantity of nodes, and number density of the 

-thi ASD sub-region 

( ),XYf x y
 

spatial density function of a network cluster in Cartesian coordinate system 

( ),T
XYf x y

 
truncated spatial density function of a network cluster 

( ) ( ),X Xf x F x
 

marginal probability density, and its cumulative distribution function for 

random network geometry along the x-axis 



xvii 
 

max
Xf  

maximum value of the marginal probability density function along the x-

axis 

( )ˆ|Y X xf y=  

conditional probability density function of a random network along the y-

axis 

( ),Rf rθ θ
 

joint polar probability density function of a random network 

( ) ( ),R Rf r F r
 

internodal distance density, and its cumulative distribution function 

( ) ( ),T T
R Rf r F r

 

truncated internodal distance density, and its cumulative distribution 

function 

max
Rf  

maximum value of the radial probability density function 

( )fθ θ  
angular probability density function of a random network  

,AP nodeh h  elevation above ground of the access point/nodal antenna (unit of length) 

( ),u vh k
 

centroid position of a cell with ( ),u v  indexing in a MCN grid 

,FF RSk k
 

intensity of the homogeneous spatial density for MCN and UCN models 

Lk  
-thLk UCN layer that contains the largest number of sectors 

L  predefined size of the cellular radius (unit of length) 

1 2,L L  inner and outer cell radii of a circular ring sector (unit of length) 

[ ] 1,2, ,
,

C
i i i n

u v
=

=L  cellular location matrix for heterogeneous MCN deployment 

0n
 

amount of random nodes enclosed by a network lattice or cluster 

avn  
average amount of nodes per deployment sector in an uncontrolled 

inhomogeneous UCN 

Cn  number of cells for inhomogeneous MCN deployment 

inn  
amount of random nodes deployed in the innermost layer of an 

automatically emulated inhomogeneous UCN  

Ln  number of layers for inhomogeneous UCN deployment 

maxLn −  
maximum arbitrary number of deployment layers possible for achieving 

spatial inhomogeneity 



xviii 
 

outn  
amount of random nodes deployed in the outer layers of an automatically 

emulated inhomogeneous UCN 

( )
sec
in  

number of sectors within the -thi layer considered for inhomogeneous 

UCN deployment 

sec-totaln  overall number of sectors considered in UCN and MCN deployment

( )
( )
sec

1,2, ,,
1,2, ,

L
i

i ni j
j n

n =

=

=ΝΝΝΝ  
matrix for heterogeneous UCN deployment that contains the amount of 

randomly positioned nodes in each cluster 

( ), 1,2, ,
1,2, ,2

Li j i n
j

p
γ

=
=

=ΡΡΡΡ  
matrix of the network plan used for heterogeneous random deployment of a 

UCN 

,i iP P
 

original and new position of a node within a random cluster

r  random sample of the interpoint distance (unit of length) 

ir  
spatial gap between a reference and the i ∗∈ arbitrary node (unit of 

length) 

( )
1,2, ,

,i i i n
r θ

=  
coordinates of a random cluster in polar format 

jr
 

rate of nodal quantity per cellular sector 

maxr
 

farthest internodal separation between a master and a slave within a square 

cell (unit of length) 

Tr
 

constant power transmission radius (unit of length) 

[ ] 1,2, , L
i i n

r
=

=R
 layers radii for heterogeneous random deployment of a UCN 

CR  rotation matrix for a random cluster 

, ,x ys s s
 

scaling factor of a random cluster 

is
 

number of sectors within the -thi cell considered for inhomogeneous MCN 

deployment 

[ ] 1,2, , C
i i n

s
=

=S
 sectors information array for MCN deployment 

CS
 

scaling matrix for a random cluster 



xix 
 

[ ]C h k=T
 

translation vector for a random cluster (unit of length)2 

( ),x y  spatial instance of a node over the deployment lattice 

( ),X Y  
random variables representing the geometrical coordinate pair of a source 

node 

( )
1,2 , ,

,i i i n
x y

=  
original coordinates of a random cluster 

( )
1,2 , ,

,i i i n
x y

=  coordinates of a random cluster following geometrical maneuvering 

 

Channel Propagation 

( ),α β
 

path-loss parameters for a particular link (dB) 

PLΔ  span of the domain for the large-scale fading density (dB)

S
dBWη

 
sensor sensitivity for detection 

0λ  
radiation wavelength of a transmitting source (unit of length) 

Λ
 

array of generic attributes for the large-scale fading distribution 

( )0 0 lμ μ=
 

evaluation limit for the large-scale fading density at the close-in distance 

( )L L lμ μ=
 

evaluation limit for the large-scale fading density at the cell border 

σΨ  
standard deviation of shadowing (dB) 

τ  variable of integration for large-scale fading distribution 

S dB−Ψ
 

shadowing element emulating in-field scatterers 

83 10c ≈ × speed of light in vacuum (m/s) 

d  
propagation distance away from a transmitting antenna (unit of length) 

0d  close-in distance for a directional antenna (unit of length) 

1 2 3, ,d d d
 

boundary values for the EM radiation regions of an antenna (unit of length) 

fd
 

Fraunhofer distance (unit of length) 

Sd
 

Fresnel distance (unit of length) 



xx 
 

AD  largest dimension of an antenna or its aperture width (unit of length) 

0f
 

operating frequency of a radiating emitter (Hz) 

( )0f τ
 

integrand for large-scale fading distribution 

( )f lΨ  distribution function of shadowing 

( ) ( ), , ,
PL PLL Lf l F lΛ Λ

 

generic probability density, and its cumulative distribution function for 

large-scale fading 

max

PLLf
 

maximum value of the probability density function for large-scale fading 

( )Wf w
 

density of the average decay 

l
 

random sample of large-scale fading between a reference and an arbitrary 

terminal (dB) 

maxl
 

argument that maximizes the probability density function for large-scale 

fading (dB) 

0 , Ll l
 

measures w.h.p. the lower and higher extremities of large-scale fading for 

an L-sized cell (dB) 

1 2
,L Ll l

 

measures w.h.p. the lower and higher extremities of large-scale fading for a 

circular ring lattice (dB) 

max
dBL

 
maximum channel-loss threshold 

( )PL dB
L r

 large-scale fading level 

( )PL dB
L r

 
average path-loss decay 

,
PL PLL Lm σ  mean and SD of the random variable for large-scale fading (dB) 

PLn
 

path-loss exponent 

outp
 

outage probability 

Sp
 

sensing capability for an arbitrary sensor 

DP
 

detection capability 

min
dBWP

 
minimum power tolerance at the receiver 



xxi 
 

T
dBWP

 
emitted radiation from a target point 

( )PLP l
 

sub-function of the large-scale fading density that isolates and collects the l 

based components together 

( )RX dBW
P r

 power intensity at the receiver with interspace r ∗

+∈  from the transmitter

0r  close-in distance for an omni-directional antenna (unit of length) 

0 , Lw w
 

average channel-loss at the close-in distance and the cell border (dB)

1 2
,L Lw w

 
average channel-loss at inner and outer cell radii of a circular network (dB) 

( )w r
 

random variable for the average path-loss (dB)

 

Random Generation and Monte Carlo Estimation 

( ) ( ), ,B Bx x yδ δ
 

1D and 2D fundamental histogram bin positioned at the origin of a 

Cartesian coordinate system 

( )X xδ
 

comparison probability density function of ( )Xf x  used for the ARM 

algorithm 

BΔ  
dimension of an equally spaced bivariate histogram grid (unit of length)

Aε  
percentage error of the spatial density among analysis and simulation

θ̂
 

randomly generated angular sample (rad)

min max
,σ σμ μ

 

minimum and maximum RCR values for the acceptance rate estimator 

variance 

Iμ  

RCR value at the intersection point between Cartesian and radial RNG 

acceptance rate 

optμ
 

optimum RCR value for random generation 

C
iπ  cumulative occurrence for the -thi bin 

O
iπ  number of occurrence for the -thi bin 

( )b xπ
 

arbitrary bounding function of ( )Xf x  used for the ARM algorithm 



xxii 
 

ˆ
jψ
 

-thj  random instance of shadowing (dB)
 

A
 

event that a random sample is accepted 

A⊆Ω
 arbitrary event A  in sample space Ω  

binA
 

bin areal surface of a bivariate histogram (units2/bin area) 

icdf
 estimated cumulative distribution function value measured at the -thi bin 

iD
 domain for the -thi bin 

( )
PLLf l

 
numerical probability density estimation of ( ),

P LLf l Λ  

( ),XYf x y
 

numerical probability density estimation for spatial inhomogeneous 

deployment of ( ),XYf x y  

( )Zf z
 

representative density function used for estimation analysis 

( )Zf z
 

numerical probability density estimation of ( )Zf z  

( ) ( )
1

ˆT
RF u

−

 

an experimentally generated instance of the interspace range (unit of 

length) 

( ) ( )
1 ˆXF u
−

 

inverse cumulative distribution function that generates a random 

geometrical instance along the x-axis (unit of length) 

( )0ˆ, , , GG u r L σ
 

interdependence of elements for random generation of the internodal 

distance 

( ),i jh
 

number of occurrence for the ( ), -thi j bin (no./bin area) 

analytical simulation,XY XYh h
 

average bivariate histogram density obtained analytically and using MC 

simulation (no./bin area) 

( ),H x y
 spatial density histogram for a randomly deployed network

( ),ASDH x y
 spatial density histogram for heterogeneous ASD deployment

min,k k  constants that enlarge ( )X xδ  

il  
center position of the -thi histogram bin for large-scale fading (dB) 



xxiii 
 

ˆ ˆ,j jl l
 

-thj  random instance for the average path-loss and large-scale fading 

between a reference and an arbitrary node (dB)

ˆ ˆ,L Hl l
 

lower and higher extremities of the argument for the estimated density of 

large-scale fading (dB) 

BlΔ  

width of each histogram bin for estimating the density of large-scale fading 

(dB) 

ˆ
PLL

 

random variable for the large-scale fading level associated with ( )
PLLf l  

(dB) 

,
PL PLL Lm σ

 

empirical mean and standard deviation of the random variable for large-

scale fading computed from MC samples (dB) 

,
S SN Nm σ

 mean and standard deviation of random variable SN
 

,
A Ap pm σ

 mean and standard deviation of estimator Ap
 

,
A Ap pm σ

 sample mean and standard deviation that estimates 
Apm  and 

Apσ  

Bn
 

quantity of histogram bars considered for density estimation 

,B X B Yn n− −  
resolution of a bivariate histogram 

ˆ jn
 

-thj  random instance from a standard Gaussian density function 

Rn
 number of i.i.d. MC realizations used for estimating the statistics of Ap

 

Sn
 

amount of i.i.d. randomly generated: samples, or nodes geometrical 

positions.  

S in −  

number of accepted samples for the -thi instance out of Rn used for 

approximating the statistics of Ap   

XYn
 

amount of 2D bins over the deployment surface having a nonzero 

occurrence number 

SN
 random variable representing the number of accepted samples  

Tn
 

total number of randomly generated instances 



xxiv 
 

{ }PrAp A= ⊂ Ω  probability for accepting a randomly generated sample 

Ap  MC estimator for the acceptance probability of samples 

A ip −  
MC estimator of the acceptance probability for the -thi instance out of Rn

used for approximating the statistics of Ap   

ipdf
 estimated density function value measured numerically at the -thi bin 

R  event that a random sample is rejected

r̂
 

analytical notation for a sample of the interspace magnitude (unit of length) 

ˆjr
 

-thj  random instance of the interspace between AP and a node (unit of 

length)

ˆ ˆ,u v
 

sample occurrence generated from a standard uniform distribution 

( )0,1U    

ˆ ju
 

-thj  random instance of the cumulative distribution function 

( )ˆ ˆ,x y
 

geometrical occurrence generated from ( )Xf x  and ( )ˆ|Y X xf y=  for the 

coordinate pair of a random node (unit of length)2
  

( ),i jx y
 center position of the ( ), -thi j bivariate bin (unit of length)2 

[ ] [ ], ,L H L Hx x y y×
 

deployment surface (unit of length)2 

,B Bx yΔ Δ
 

dimensions of a bivariate histogram bin (unit of length)2

iz
 

center position of the -thi bin 

,L Hz z
 

lower and higher extremities of the density domain 

BzΔ
 width of each histogram bin 

Sz
 vector in Sn

of i.i.d. randomly generated samples 

( )Z Z A D= ∈
 random variable in D  associated to an arbitrary event A  

 



xxv 
 

List of Acronyms
 

1D one-dimensional line model  

2D two-dimensional surface model 

3D three-dimensional space model 

4G 4th generation mobile system 

6LoWPAN IPv6 over low-power WPAN 

a.k.a. also known as 

AP access point 

ARM acceptance rejection method 

a.s. almost surely 

ASD area-specific deployment 

BPP binomial point process 

bps bits per second 

BS base-station 

CDF cumulative distribution function 

CDMA code division multiple-access 

CI confidence interval 

cm centimeter 

dB decibels 

DC detection capability 

E electric field 

EIRP effective isotropic radiated power 

EM electromagnetic radiation 

ERF error function 

ERFC complementary error function 

FR frequency reuse 

GHz gigahertz 

GLONASS global navigation satellite system 

GPS global positioning system 



xxvi 
 

GSM global system for mobile communications 

H magnetic field 

HA horizontal asymptote 

HART highway addressable remote transducer protocol 

HD high definition 

ICDF inverse cumulative distribution function 

IEEE institute of electrical and electronics engineers 

i.i.d. independent and identically distributed random variables 

inf infimum 

IP internet protocol 

IPv6 internet protocol version 6 

ITM inverse transformation method 

kHz kilohertz 

LOS line-of-sight 

LR-UWB low-rate UWB 

LR-WPAN low-rate WPAN 

LSF large-scale fading 

LTE long term evolution 

LWN large wireless network 

MAC media access control protocol 

max. maximum 

MBWA mobile broadband wireless access 

MC Monte Carlo 

MCN multi-cellular network 

min. minimum 

MiWi microchip wireless networking protocol 

mm millimeter band 

mod modulo operator 

MS mobile-station 

MSC mobile switching center 

mW milliwatts 



xxvii 
 

NFC near field communication 

NLOS non line-of-sight 

OP outage probability 

OSI open systems interconnection model 

P2MP point-to-multipoint 

PC power control 

PDF probability density function 

PHY physical layer protocol 

PL path-loss 

PMF probability mass function 

PPP Poisson point process 

PR pseudorandom number 

QoS quality of service 

RCR cellular radius to the close-in distance ratio 

RF radio frequency 

RNG random number generation 

RPGM reference point group mobility 

RTT round trip time 

RV random variable 

Rx receiver 

SD standard deviation 

SINR signal to interference plus noise ratio 

SNR signal to noise ratio 

sup supremum 

Tx transmitter 

UCN uni-cellular network 

UMTS universal mobile telecommunications system 

UWB ultra wideband  

w.h.p. with high probability 

Wi-Fi wireless fidelity over IEEE 802.11 WLAN standard 

WiMAX worldwide interoperability for microwave access 



xxviii 
 

WirelessHART wireless sensor network based on HART 

WLAN wireless local area network 

WLOS weak line-of-sight 

WMAN wireless metropolitan area network 

WMN wireless mesh network 

WPAN wireless personal area network 

WSN wireless sensor network 

WWAN wireless wide area network 

  



1 
 

Chapter 1 

Introduction 
 

 

1.1 – Motivation 
In an effort to better gain comprehension of various pure and applied phenomena, it is quite 

conventional by theoreticians to mimic these realities through mathematical models. In fact, 

many of our surrounding scientific disciplines, although they may significantly differ in 

magnitude, have to a large extent comparable geometrical construct. And they are often 

reproduced in spatial coordinates by seemingly simple points or versatile-size orbs. 

 For instance, as manifested in Figure 1.1, these elements represent in chemistry atoms 

and molecules; in physics they model particles; in astrology they signify galaxies and stars; in 

material science they suggest pore bubbles; and in biology they denote cells; etc [1], [2]. Indeed, 

the broad common denominator in all these disciplines is the spatial modeling and analysis of 

geometrical structures where the point patterns will carry an exclusive connotation with 

distinctive characteristics for the targeted subject matter. 

 

 

Figure 1.1 – Spatial geometry for modeling pure and applied phenomena 

 

 Analogously, this modeling approach may be extended to the concept of wireless 

information networks [3]. Namely, in telecommunications theory, these spatial dots indicate the 

physical location where a mobile-station (MS) or terminal is positioned. Thus, as visualized by 

Figure 1.2, the notion of spatial geometry is essential and practical for a number of professionals 
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including engineering designers and deployment planners modeling a host of network situations, 

ranging from: cellular network, relay network, wireless mesh network (WMN), wireless sensor 

network (WSN), femtocells, and all interoperable combinations of these realizations for setting-

up heterogeneous internetworking. Furthermore, such practice should equally be of interest for 

any type of commercial radio communication purposes used to convey: audio telephony, data 

connectivity, mobile-IP, HD-video streaming, and interactive applications. 

 

 
Figure 1.2 – Spatial geometry for modeling wireless network applications 

 

 Granted, there are so many wireless networking aspects, from diverse viewpoints, which 

are worthy of extensive investigation through modeling and analysis. However, above all it 

should be stressed that the geometry of wireless nodes is a topic that directly affects the lower 

levels of the open systems interconnection (OSI) model, and in particular the link layer of the 

network architecture. In fact, the principle of spatial distribution substantially impacts critical 

system parameters and communication factors, and is thus insightful for studying the various 

characteristics and performance of interacting nodes within a large wireless network (LWN) [4]. 

 

1.2 – Overview of Related Work 
As of yet, we have briefly motivated the importance of terminals spatial location for radio 

communications. In this part, we want to discuss some of the necessary mechanisms and 

revelations surrounding feasible network replication. Therefore, related past work of relevance to 

spatial geometry will be reviewed. 

 Generally speaking, there are different ways for representing and modeling the spatial 

position of nodes. Indeed, widely available technology-assisted localization methods such as 

GPS, GALILEO and GLONASS are perhaps the best equipments for proving this sort of 
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observation [5], [6]. Despite the obvious benefit of instant data acquisition, these different 

positioning instruments introduce a number of noteworthy concerns: 

• The added overhead and system complexity to the nodes will introduce further design 

challenges. 

• The manufacturing cost of integrating the localization feature for large quantities of 

terminals will result in an expensive outcome. 

• Incorporating this energy-hungry capability will accelerate the depletion of the power 

supply. 

• The accuracy for civilian usage is still not to the level required for high-precision 

positioning. 

• The satellite signal access is weak and non-reliable in regions such as: heavily buildup 

cities, forested land, canyons, etc [7]. 

• Although the above issues are true for all wireless items, yet they are even more 

significant for WSN due to the already limited size and life-expectancy of sensor points. 

 

 Next, in situations where handheld mobile devices are carried by users, human behavioral 

analysis through social patterns and inclinations is an interesting possibility for spatial prediction 

[8], [9]. In general, behavior is driven by physical conditions, emotional states, cognitive 

capabilities, and social status [10]. This is only an elementary description; fully understanding 

the population’s conducts and preferences is rather complex for proper modeling. Moreover, 

social trends and tendencies require for the most part vast effort and resources due to the need for 

long and intense observations. Furthermore, the spatial realization obtained through this 

approach is exclusively valid in the area of study, and is generally unfeasible for replication to 

other network projects due to the non-generic nature of the method. 

 Because of technical intricacy, restricted resources, and high-cost for collecting empirical 

datasets, spatial modeling via analytical means has been considered as a widely practiced 

mechanism for inference. As a result, diverse models have been proposed for emulating the 

geometry of a network in order to explore its features. 

 Indeed, for the simplest case, it is possible to consider a deterministic deployment 

approach where the systems emplacement is known in advance [11], [12]. In fact, such 

preassigned nodal structure is mainly suitable for fixed antennas such as static sensor networks 
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for say habitat and environmental monitoring, and is unpractical for quasi-stationary nodes and 

fully mobile devices. 

 Additionally, a number of researchers have proposed various deployment algorithms that 

optimize a particular objective. For instance, the network could strategically be controlled or 

self-organized so as to meet a certain requirement, such as improved: coverage [13], detection 

capability [14], latency and energy consumption [15], to name a few. Of course, such spatial 

formation techniques are principally appropriate for WSNs, and are unfitting for a variety of 

handheld networks due to the unconstrained nature of users’ position. 

 As a consequence, universal deployment procedures are needed for mobile-based spatial 

constellations so as to pragmatically emulate a network of portable units. For this purpose, 

stochastic modeling is convenient because it ensures impartiality and it introduces the prospect 

of likelihood during the generation of arbitrary positions. Accordingly, the outcome of this 

approach produce what is typically referred to as random networks. As a matter of fact, in this 

situation, the created random spatial models are analytically formulated. Specifically, some 

distribution functions are suggested based merely on conjectures [16], [17]. Although such 

stochastic techniques provide theoretical elucidations, these models may also be feasible, if they 

do indeed represent the spatial pattern of users. 

 Beyond this, the homogeneous distribution is perhaps the most commonly adopted 

technique for random emulation because of its unvarying nature and inherent canonical features 

[18]–[30]. From a practical outlook, such simplistic spatial model is generally realistic when the 

deployment surface has similar attributes, say in: surroundings, topographical landscape, 

atmospheric conditions, etc. If these physical properties are steady, then users’ preference over 

certain regions of the overall deployment site will be eliminated, thus guaranteeing a uniform 

distribution. Evidently, in real-life situations, this particular scenario is rarely realized. 

Nonetheless, the random uniform network is still reasonable and tolerated for preliminary 

analysis especially when the geometrical construct is uncertain or completely unknown. 

 Apart from uniform generation, non-homogeneous modeling is also conducted as an 

interestingly appropriate approach for random deployment of mobile systems. In view of this, 

some investigators have applied the so-called principle of thinning, which depends on the 

location of neighboring terminals [31], [32]. Basically, an inhomogeneous spatial distribution is 

synthetically realized by deleting nodes from a uniformly deployed pattern. 
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 Other contributions have focused on higher nodal concentration near the borders of a cell 

so as to examine edge related aspects of a contour [25]–[28], [33]–[35]. For such heterogeneous 

deployment, it is noteworthy to indicate that if multihop cellular communications is in effect, 

then the fewer mobile relay nodes that are closer to the base-station (BS) will have a higher 

traffic load than those near the margin of the cell border. This factor will then cause these center-

based network nodes to rapidly drain their energy sources, thus lowering the already sparse 

volume of active terminals, which further exacerbates the bottleneck effect. In these situations, 

one possible avenue for mitigating this elevated traffic demand would be to apply load-

balancing. Otherwise, to overcome this traffic surplus, a higher density of active nodes can be 

conceived in the vicinity surrounding the BS as opposed to the edges. In other words, a center-

focused deployment can be considered using a particular distribution profile. Due to these 

potential aspects and the like, some spatial models have been theoretically adjusted to produce 

edge or center-focused deployments via a simple tunable variable [34], [35]. 

 In addition to the above probabilistic emplacement techniques, the Gaussian geometry is 

distinctively an interesting heterogeneous model because both the geographical spread and the 

intensity of terminals position are flexible. Indeed, the dual purpose of this network deployment 

model can be controlled by its standard deviation (SD) [36]. Therefore, this random structure can 

be utilized for emulating various multi-pattern user-carried devices in a cellular architecture 

[24]–[26], [35]–[39]. Also, the Gaussian network has been considered in topology control of 

sensor networks [40], and for multihop connectivity [41]. 

 Pursuing this further, besides cellular-based network usage, random geometry has been 

extensively considered for modeling airborne nodal deployment with practicality in rural 

monitoring, disaster areas such as earthquakes, and for mission critical networks. Indeed, it turns 

out, that in-flight node scattering is effectively emulated by the Gaussian probability density 

function (PDF) [42]–[45]. In other words, if a set of nodes are intended to be positioned about a 

specific location P (say a pre-deployed information processing point), once dropped, they are 

expected to be anywhere in a cloud around P due to factors such as: wind, speed, height, etc [42]. 

Hence, based on the central limit theorem the nodal constellation will follow a normal PDF [43]. 

 So far, we noted a number of emulation directions taken to model the spatial position of 

wireless nodes. To be exact, these emplacement techniques are varied and their corresponding 

geometrical information can be acquired using different pathways which can range from: 
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technology, social and analytical means. We also pointed out, the drawbacks and limitations of 

each of these methods as compared to actual real-world deployments. For a quick recapitulation, 

Table 1.1 outlines a summary of the most prominent geometrical modeling approaches. 

 

Table 1.1 – Notable techniques for geometrical representation and modeling of a network 

technology-assisted system overhead, manufacturing cost,
instant data acquisition

localization resources, accuracy, access

realistic positioning
social patterns

methods key advantages drawbacks and limitations

( )

 based complexity of empirical observation, 

on behavioral analysis time-consuming,  non-generic approach

 spatial allocation valid for fixed/
deterministic modeling

i.e. no need for random generation

a priori static systems

and is unsuitable for portable units

optimizes a particular adequate for WSNs and is
strategic deployment

performance metric inappropriate for unconstrained networks

analyt
conjectured networks

ically formulated for hypothesized models that do not

generating arbitrary positions necessarily echo users' spatial profile

simplicity of setup, reasonable
random homogeneous

assumption when pattern is unk

practically sound provided the deployment

nown surface has similar physical attributes

heterogeneous modeling, valid for center-focused deployment
Gaussian distribution

tunable geometry and airborne nodal emulation

 

 Overall, as it can be noticed from this survey, random emulation is generally preferred for 

analysis and for generating tractable results. And from previous contributions, we identified that 

the two commonly employed stochastic postulations are founded on the homogeneous structure 

and the Gaussian spatial pattern. As a consequence, this dissertation will in part focus and 

analyze in detail these two network models. 

 In light of this, in order to visualize the deployment principle, we demonstrate in Figure 

1.3 different geometrical distribution models of 1,000 nodes. The first network follows a 

position-defined layout organized in an orderly fashion. It is important to note that the terminals 

need not be equally spaced as depicted in the image; this is only an example that further 

emphasizes the a priori nature of the deterministic assumption. The second network emplaces 

the same amount of nodes in a square grid based on the random uniform density. And the third 

utilizes the Gaussian distribution for the purpose of generating random coordinates over an 

equivalent deployment surface. 
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Deterministic Random Homogeneous Gaussian Pattern
 

 

 

 

 

 

 

 

 

Figure 1.3 – Geometrical interpretation of several network deployment models 

 

1.3 – Problem Statement and Objectives 
Altogether, we may disaggregate the notion of random networks into three interconnected steps. 

The first step consists on spatially emulating a wireless network. Then, the objective of the 

second step is to extract valuable and interesting analytical observations from the realized 

network model. And the last step focuses on using and analyzing the deduced results to better 

comprehend the behavior and characteristics of the network. With these insights, the geometrical 

structure can then be planned and designed based on technical variations and appropriate 

parameter selections so as to improve the network performance and its quality of service (QoS). 

 Empowered with this high-level outlook, our central goal here is to develop and advance 

the understanding of LWNs by examining various unexplored fundamentals of communications 

and network modeling. Overall, as it will be articulated in the upcoming subsections, the major 

research results reported in this dissertation can be concentrated into four principal topics. 

 

1.3.1 – Exact Expressions for Homogeneous Random Deployment 

Before being able to identify interesting network properties, it is vitally necessary to reproduce 

the nodal graph. However, this task is far from being trivial and is rather quite involved. From 

the previous section, we recognized that there are typical approaches for terminal positioning 

based on location instruments and observational patterns. Given the fact that these methods are 

costly, complex and time-consuming, network designers have been inclined to consider 
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geometrical modeling as a rational substitute. Clearly, it should be emphasized that in order to 

generate a LWN it is natural to deploy arbitrarily located nodes in a terrain through the use of 

random network modeling. Indeed, randomly assigned positions ameliorate the model because it 

makes the network more real; thus, it is the preferred choice for geometrical emulation.  

 Specifically, homogeneous random networks are useful to theorize when no particular 

information about the deployment spatial pattern exits. In fact, over the past few decades, since 

the booming of wireless networking, many researchers have looked at the effect of such 

homogeneous spatial distribution [18]–[30]. However, despite the extensive use of this random 

model type, at its current state, the deployment approach raises a number of important concerns: 

 

• There are no exact and definitive stochastic expressions for random generation in 

different lattice structures. 

 

• The realized spatial models are incompatible for accurately deriving and analyzing the 

channel-loss distribution between a reference point and a randomly located node. 

 

• The geometrical models are not flexible, and thus they cannot be used to produce random 

positions in various deployment surfaces without relying on heuristic workarounds, 

which are counterproductive because they are computationally inefficient, but more 

importantly they completely dissolve the wanted randomness. 

 

 Because of these critical reasons, analytical research work is required so as to explicitly 

derive appropriate and generic formulations for exact random deployment. Once derived, the 

adaptable results will ensure a more efficient random generation as opposed to synthetic 

sampling. In other words, because of unbiased randomness, every generated sample will be of 

use during the emulation process. In addition to emulation efficiency, the desired randomness 

will as well be preserved for the versatile networks. Also, the obtained results will have 

cascading benefits for channel-loss analysis, and for developing inhomogeneous deployment 

algorithms. Overall, to verify and demonstrate the validity and accuracy of the derivation for the 

different network cases, the theoretical findings will be accompanied by a number of stochastical 

simulations. 
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1.3.2 – Explicit Large-Scale Fading Distributions 

Now that we have explained the necessity to obtain exact expressions for generating random 

networks, at this level, we are interested to look into the effect of such configurations on channel 

losses. In fact, in wireless communications, channel losses are an important contributor for 

weakening and corrupting the propagation of the information signal. Most notably, losses or 

fading measurements can be split into three complementary components: path-loss (PL), 

shadowing, and small-scale fading. The combination of PL and shadowing is commonly referred 

to as large-scale fading, and in some instances this dominant loss may simply be specified as PL. 

 Indeed, the physical gap among interacting wireless nodes straightforwardly influences 

the fidelity and quality of the communications. Above all, this is due to large-scale fading 

because it is essentially a measure that quantifies the power loss in the channel as the 

electromagnetic (EM) wave travels from the transmitter to the receiver. Therefore, there is a 

clear interdependence between the transmission geometry and PL. As a case in point, the 

Bluetooth technology uses the PL indicator in order to determine which among detectable 

devices is closer; namely, the nearby terminal that has the lowest PL value [46]. 

 Moreover, having the large-scale fading element for a specific wireless channel during 

system analysis and design can directly lead us to other vital factors, along with: power 

consumption, connectivity, outage probability, detection capability, interference characterization, 

transmission capacity, energy-aware information routing, multihop access scheme, cooperative 

communications, localization techniques, etc. Altogether, we notice that Euclidian geometry 

affects PL, and knowing PL gives valuable information to the many items listed above. Thus, the 

channel access of a wireless network is a significant topic of research because of its impact to a 

host of metrics and applications. As a consequence, we want in this research contribution to 

focus on understanding the large-scale fading behavior for random-based LWNs. 

 Since the network geometry of wireless radios is spatially modeled based on stochastic 

configurations, then the practical approach for profiling the channel attenuation among 

communicating units would be to predict the PL by means of distribution functions. To be 

precise, for a given network model, we basically want to determine the PL density between a 

reference access point (AP) and an arbitrarily deployed unit for downlink applications. By and 

large, the only evident way to estimate the large-scale fading PDF for a random network relies 

on exhaustive computationally intense Monte Carlo (MC) simulations. Of course, this is an 
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unsophisticated method because during analysis and design, as parameters of the network or the 

propagation channel changes, then the entire random experimentation has to be repeated. 

Alternatively, this computational inefficiency can be replaced by the use of stochastic analysis in 

order to tractably characterize the channel behavior. 

 As a result, because of feasibility and efficiency concerns, the objective of this research is 

to analytically derive generic and exact closed-form distribution expressions for the large-scale 

fading over various random network models between a centrally excited cell and a mobile 

device. Granted, due to the random nature of shadowing, the distribution of the received power 

level or the PL has been previously shown for a deterministic separation from BS-to-MS as a 

prerequisite for quantifying the outage probability [47]–[51]. Because of the inevitability of 

random networks in real-life situations, the aim in this dissertation is to broaden and ameliorate 

this elementary model by overlaying the essential paradigm of stochastic geometry. 

 To be specific, we first intend to derive the large-scale fading PDF for a MCN layout. 

Basically, in this model, the geolocation of arbitrary units will be independent and identically 

distributed (i.i.d.) subject to the random homogeneous deployment. As for the cellular structure, 

it will be based on a modified version of the hexagonal lattice such that the impact of the far-

field region is exclusively accounted for within the deployment surface. In fact, this geometrical 

accuracy will be executed for two important reasons: 

 

1. It will ensure that the derived large-scale fading density function rigorously models the 

laws of EM propagation. 

 

2. It will make the final density result more universal so that it can be applied for all types 

of MCN deployments ranging from: femtocells, picocells, microcells, and macrocells. 

 

 On the whole, the MCN formulation for the large-scale fading PDF will gather various 

network and channel properties. To be exact, it will by design consider: the lattice profile, users’ 

geometry, the effect of the far-field phenomenon, the PL behavior, and the stochastic impact of 

channel scatterers. Because of this comprehensive approach, the anticipated distribution notation 

will precisely characterize the channel-loss while remaining fully generic and compatible for 

different network parameters and channel environments. 
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 Furthermore, we also want to determine the exact closed-form large-scale fading density 

between a reference and a random node valid for all possible permutations of the UCN 

deployment. In fact, we aim to derive this predictive stochastical formulation as generic as 

analytically possible, such that once we have this result we can then personalize it not only for 

the particular technology and channel status, but also for flexibly versatile random network 

models. Actually, our expected result will profoundly generalize the analysis reported in [19], 

which basically found the PL density for uniformly deployed nodes in a fixed circular lattice. In 

other words, our analytical notation will support spatial adaptability for various disk-based 

surface regions, along with multi-width rings and circular sectors. Also, in the analysis of the 

probabilistic distribution, we will specifically include the necessary impact of the far-field, which 

was completely overlooked in the formerly noted contribution. Meanwhile, in order to gain 

greater insight into the channel-loss behavior, we also want to obtain statistical expressions that 

estimate the moments of the distribution function for the large-scale fading. After obtaining all 

these analytical findings, as a last step, we are also interested to study and observe the interplay 

among the diversity of the deployment regions on the PL density function. 

 In addition to homogeneous random networks, as motivated earlier, Gaussianly 

distributed nodes are regularly employed for emulating: cellular architectures [24]–[26], [35]–

[39]; and airborne deployments [42]–[45]. Given the importance of propagation in general, and 

the specific relevance of this geometry for different deployment events, it then becomes 

instinctively natural to put these concepts together and attempt to characterize the behavior of the 

channel-loss for the entire random network. Thus, once again, the objective for this flexible 

network model would be to obtain an exact closed-form mathematical notation for the large-

scale fading PDF in support of reusability purposes and analysis. In fact, we should emphasize 

that such result would be interesting to formulate because this convenient network model has the 

unique advantage of being tuned for the particular spatial deployment intensity and coverage by 

a simple modification to the SD variable of the Gaussian density function. Eventually, we aim at 

ensuring that the exact analytical result for the large-scale fading PDF remains completely 

generic and adaptable to the various channel conditions, and wireless technologies. But in 

particular, we also want to guarantee its suitability for the different spatial intensities of the 

Gaussian random pattern. Moreover, in the derivation we will add yet another degree of 

generalization by performing the analysis on a truncated Gaussian distribution. Namely, with this 
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change, the formula will explicitly incorporate the far-field region, and also it will confine the 

spatial deployment to a predefined cellular radius L ∗

+∈ , which adds to the leveraging appeal 

of the result during design. Furthermore, to better comprehend this distinct deployment model, 

we then intend to examine the impact of the PL density for a fix cellular size over variable spatial 

intensities. 

 Taken together, all the above exact and generic analytical derivations will be verified and 

their accuracy will be demonstrated by considering realistic operational parameters that 

characterize the channel. Even though parameters from any centralized networking technology 

can be used, nevertheless, we intend to carry out computational MC simulations using channel 

specifications from the relatively novel IEEE 802.20 protocol, also known as MBWA [52]. 

 

1.3.3 – Heterogeneous Spatial Deployment Algorithms

In general, we want to duplicate via models real-world wireless networks, and then draw 

important fundamentals from these characterizations in order to build smarter protocols. In fact, 

reliably emulating the network footprint is a very complicated task that requires extensive and 

often costly scrutiny. Indeed, some fairly acceptable conjectures have been adopted in literature 

to alleviate the burden of spatial emulation. Notably, the random homogeneous model is a 

conceivable assertion for stochastical inference, particularly when users’ spatial pattern is 

lacking [18]–[30]. However, due to their social fabric, mobile carrying end-users tend to gather 

with a higher likelihood in some preferred locations as opposed to an equalized arrangement; 

thus implying the inevitability of heterogeneous distributions. 

 As a counter reaction for this need, various inhomogeneous spatial deployment models 

have been suggested. For instance, the principle of thinning can be applied as one possible 

approach [31], [32]. Another technique enables heterogeneity through different adaptation of 

edge or center-focused deployments [25]–[28], [33]–[35]. As an additional alternative, the 

Gaussian constellation is utilized for controlled non-homogeneous modeling so as to produce 

denser deployments around a reference point [24]–[26], [35]–[45]. Although, as noted before, 

these varied models are relevant in certain instances, on the whole, such methods do not 

necessarily echo the actual geometry of a network configuration over a particular deployment 

site. Hence, the indicated analytical heterogeneous emulations, and the like described in Table 
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1.1, will inaccurately reflect important technical issues of relevance to network planning and 

design. 

 As a consequence of the above, it becomes imperative to find new practices for 

inhomogeneous random deployment. Intrigued by this challenge, in this dissertation, we intend 

to contrive spatial mechanisms for constructing adaptable networks that can realistically map 

users’ trends while still preserving the random character of deployments. Moreover, we want 

these bona fide heterogeneous models to require limited a priori input parameters from designers 

so as to ensure their ease of configuration for an array of network planning projects. To this end, 

while bearing in mind that reflective network emulation is usually very complex to realize, we 

nonetheless aim to specifically tackle this deployment objective by probing the essential 

underpinning of nodal clustering. As a matter of fact, users’ spatial structures are mainly shaped 

and characterized by natural and manmade topographical land-cover features and environments. 

Thus, our solution to this complicated inhomogeneous undertaking would be to conceptualize a 

random deployment approach such that users tendency to cluster based on terrain limitations is 

exclusively taken into account. 

 To be precise, we will propose a simple inhomogeneous algorithm model known as area-

specific deployment (ASD) for achieving targeted deployment. This devised spatial 

heterogeneity method is actually governed by the systematic principle of divide and conquer. 

Namely, instead of solving the entire task at once, we break it into smaller more manageable 

pieces, solve each separately, and then apply the superposition principle to aggregate the various 

results in order to formulate an explanation to the original challenging problem. In essence, for a 

specific deployment region of interest, the approach is based first on identifying various non-

overlapping spatial clusters founded in part on landform features. In fact, each of these sub-

regions will have a particular areal number density defined by the ratio of the enclosed nodal 

scale over its surface area. Then we consider geometrical analysis for selective deployment, 

where for every one of these cluster formations, we unbiasedly generate the desired quantity of 

arbitrary i.i.d. positions by means of the random homogeneous deployment. Finally, we 

synthesize the dismembered sectors in order to reconstruct a contiguous random network that has 

a more pragmatic heterogeneous spatial profile. 

 After providing a rigorous high-level understating of the ASD method, we then intend to 

apply it for various inhomogeneous deployment settings so as to be of practice during the quality 
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assessment of a network. Specifically, we first aim to develop a UCN algorithm for modeling a 

heterogeneous random deployment. In particular, the random homogeneous disk model has been 

considered for characterizing UCN cells and clusters. Motivated by this, as opposed to signifying 

BS radiation coverage, we will only consider a sector of an onion-like circular ring to represent 

the deployment surface terrain. Using this generically flexible region as a fundamental building 

block, we could then plan the overall footprint of a UCN as a combination of multiple circular-

based sectors having each a specific: layer position, width, angular boundary, and nodal scale. In 

fact, the deployment plan can be stipulated based on minimal social observations of the project 

site, or by means of plausible assumptions founded as a function of the network: location, size, 

and purpose. Meanwhile, before assembling the algorithm together, we would have to derive the 

appropriate and generic expressions for exact random nodal generation in a circular ring sector. 

Based on the obtained results, we then coherently create a simulator tool that enables multi-

density random deployment within each of the identified cluster formations in order to realize a 

non-homogeneous spatial distribution. Next, we will apply this conceptualized deployment 

method to multi-sector network examples to show how this technique achieves a more reflective 

inhomogeneous geometry with less effort, while maintaining users’ arbitrary nature. 

 As explained above, for controlled deployment, the designer plans the network by 

specifying the quantity, size and position of sectors, in addition to the amount of nodes in every 

sub-region. However, there might be events where there is an interest to generate an 

inhomogeneous random structure without necessarily specifying the particulars of the network. 

For these uncontrolled arbitrary patterns, a feasible simulator tool should be created. Indeed, we 

have set proper design guidelines that we will attempt to put forward for this objective. Namely, 

once built, the emulation model should automatically generate a heterogeneous deployment in a 

simple manner, whilst exhibiting compatibility to multi-scale networks. Therefore, we intend to 

elaborate on the notion for formulating an uncontrolled UCN footprint, develop the 

corresponding algorithm, and analyze the performance of the inhomogeneous emulation. After 

deriving this sophisticated deployment algorithm, we intend to test and demonstrate its arbitrary 

behavior for small, medium, and large networks through MC realizations. In general, the 

anticipated uncontrolled algorithm will by itself do most of the network deployment decisions. 

Only few basic inputs will be required to initialize this procedure, such as: the cellular size and 

the network scale. Given that the set of a priori entries is way smaller than the controlled option; 
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it thus implies that if less information about the network is known, or if we are simply interested 

in generating an arbitrary structure, then this uncontrolled algorithm should be favored. 

 In addition to the above heterogeneous UCN algorithms, we are also interested to apply 

the ASD principle in order to formulate an approach for random MCN deployment. In fact, for 

modeling this MCN objective, tessellating grids would be needed to represent the EM coverage 

of the BS. Moreover, although the cause for UCN clustering will be based on terrain features; yet 

due to its geometrical nature, the source for MCN clustering will be founded as a function of BS 

positions and sectoring capability resulted by use of directional antennas. Thus, since the 

hexagonal lattice is the most suitable tessellating choice, we will hence need to provide a 

definitive framework for exact and unbiased random deployment in diverse unsectored and 

sectored hexagonal-based structures as primary elements for constructing an inhomogeneous 

MCN. Then, we aim at deriving the appropriate notations for geometrically navigating over a 

large honeycomb network grid. Next, these findings could be merged in order to create a 

modular subroutine that generically supports a complex heterogeneous MCN with varying: size, 

capacity, density, and sectoring capability. Furthermore, we will also demonstrate the 

inhomogeneous algorithm via stochastic simulation of a particular MCN deployment project. 

Practically speaking, this expected MCN deployment algorithm tool will generally be convenient 

for modeling a large urban-based mobile network. Also, this emulation mechanism will be 

informative in exploring various QoS metrics for the network performance of a complex MCN 

architecture. 

 For computational purposes, we further aim at formulating an explicit ASD-based 

expression for estimating the geometrical density relevant to the presented three spatial-level 

inhomogeneous algorithms, namely: controlled/uncontrolled UCN and MCN deployments. 

 

1.4 – Main Research Contributions 
In the previous section, we brought forth the improvements and needs essential in the area of 

network geometry, and we meticulously discussed the main purpose and objectives of our 

investigation. Overall, following careful, complex and extensive analysis, various genuine 

research results are reported in this dissertation, but among them the most prominent key 

contributions can specifically be summarized as follows: 

 



16 
 

• We first elaborated and formulated an optimal approach for stochastic position generation 

in a MCN layout tailored for channel-loss analysis. Then, we derived the corresponding 

exact closed-form large-scale fading PDF between a reference and a random node. 

• We obtained an explicit stochastic expression for random deployment in a flexibly 

versatile UCN lattice and analyzed the results. We then generically derived the exact 

closed-form large-scale fading PDF for this adaptable random network model. 

• We conceptualized a new approach for heterogeneous deployment identified as ASD. We 

then applied this principle to diverse emulation situations, and thus developed three 

inhomogeneous algorithms for: controlled/uncontrolled UCN and MCN deployments. 

• We obtained an exact closed-form notation for the large-scale fading PDF for a 

generically truncated Gaussian random network model over a centralized communication. 

We then demonstrated various theoretical implications of the channel-loss densities. 

 

It is important to highlight that the research formulated throughout this dissertation provides 

novel and generic fundamental results that are applicable to the concept of cellular-based 

networking while being independent of a particular technology. However, whenever relevant, we 

utilized specifications from the emerging IEEE 802.20 standard in order to demonstrate and 

verify the derived outcomes. 

 

1.5 – Organization of the Dissertation 
In Sections 1.3 and 1.4 we indicated the essence of this research; however, as we move forward 

in solving these technical objectives, a number of intermediary findings will be necessary, and 

hence will according be studied.  

 The rest of this dissertation is organized as follows. In Chapter 2, we will expand our 

insight into the essentials of cellular-based wireless networking by focusing on two fundamental 

aspects. First, we will provide a comprehensive overview for emulating the geometry of LWNs; 

then, we will specifically concentrate on the spatial modeling for UCN and MCN deployments. 

Second, we will explain the foundation for wireless propagation modeling, which will be a useful 

primer because an important portion of this treatment is devoted to the derivation of tractable 

channel-loss predictors. Moreover, main features of the MBWA standard will be discussed.  
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 Next, in Chapter 3, we will lay the groundwork for the propagation analysis by fusing the 

fundamentals of spatial homogeneity and lattice geometry. This will be followed by a 

formulation for efficient random deployment personalized specifically for channel-loss analysis. 

After, the exact closed-form stochastical method for forecasting the large-scale fading between a 

reference and a random node over a MCN model will be detailed, and the practicality of the 

results will be demonstrated. 

 Thereafter, in Chapter 4, we will derive the expressions for a flexible UCN deployment, 

useful for producing various network realizations including the generation of random positions in 

an annulus, which is convenient for studying edge related aspects. Then, for this versatile 

random network, we will analytically derive the exact large-scale fading PDF, which is a 

predictor for the amount of power expected to be lost between a reference AP and a randomly 

deployed user. Next, given that different deployment techniques are not necessarily sound for 

modeling an inhomogeneous network, we will then describe the ASD principle, which is a novel 

emulation approach that takes into account users’ clustering tendency. Using this approach, we 

will then derive systematic stochastic models for controlled and uncontrolled inhomogeneous 

deployment algorithms that can be utilized for UCN deployment projects to achieve a more 

realistic nodal distribution, whilst requiring basic information of users’ patterns. After that, exact 

random homogeneous generation in unsectored and sectored MCN models will be deduced, and 

geometrical maneuvering tools will be derived. With these results, the ASD methodology is then 

applied in order to develop an additional heterogeneous algorithm for MCN deployment. 

 Pursuing this further, in Chapter 5, we will describe the properties of the Gaussian 

random network, which has various deployment implications, precisely for cellular systems, and 

for effectively modeling the emplacement of an airdropped network. Then, we will explicitly 

derive the large-scale fading distribution by an exact closed-form expression. In addition, we will 

show different ways the channel-loss PDFs derived in this chapter and the previous can be 

utilized for theoretically assessing various integrity measures. 

 Finally, in Chapter 6, we will conclude this dissertation by providing a synopsis of the 

major research highlights. We will also show how this type of research opens the door for 

diverse interesting extensions in order to further complement our presented scholarship. 
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Chapter 2 

Essential Background of Cellular-Based 

Wireless Networking 
 

 

2.1 – Introduction 

2.1.1 – Objective 

As it will be evident from subsequent chapters, this dissertation will mainly concentrate on the 

fundamentals of cellular communications by focusing our attention to two critical components; 

namely: the network geometry and the channel propagation. Thus, for context and foundation 

purposes, it becomes necessary to briefly review the essentials of: 
 

• Network Modeling: Because it will serve as a background for emulating a stochastic 

spatial pattern aimed for different network deployment situations. 
 

• Propagation Modeling: Because it will be useful as a basic primer for rigorously 

characterizing channel-loss predictors for random LWNs. 

 

2.1.2 – Organization 

The rest of this chapter is organized as follows. First, in order to expand our insight into wireless 

networking, we will begin in Section 2.2 by explaining a comprehensive approach for modeling 

the spatial geometry. This will be done by dissecting the spatial features of a LWN. Then, we 

will discuss and explicitly quantify the best approach for UCN and MCN deployment modeling. 

Afterward, in Section 2.3, we will provide an overview for characterizing the wireless 

propagation by describing: the causes for channel corruption, the various radiation boundaries, 

and channel-loss modeling. Next, in Section 2.4, we will briefly motivate the major highlights of 

the relatively recent MBWA standard, and identify its pertinent transmission models. Finally, 

Section 2.5 will close the chapter. 
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2.2 – Network Modeling 

2.2.1 – Dissecting the Network Geometry 

For the purpose of planning, designing and analyzing a LWN, geometrical network realization is 

fundamental. However, the underpinning of spatial network emulation is not unified, and so the 

purpose of this section is to briefly explain the different modalities of modeling in an 

interconnected complementary way. 

 Evidently, in order to constitute at once a complete wireless structure, it is more intuitive 

to breakdown the modeling task and gradually integrate the different components so as to tailor a 

particular network pattern. Hence, in Figure 2.1, we outline a coherent hierarchy for constructing 

a network. As it can be seen, the various peculiarities and specifications of spatial constellations 

are carefully and methodically organized so as to simplify the generation of a geometrical 

topology. Namely, the elements that will effectively express the essence of a network can 

broadly be dissected into a horizontally associated set of sub-branches designated by: spatial 

layouts, dimensions, lattice structures, internodal linkage, and mobility. 

2

3

k

 

Figure 2.1 – Categorizing geometrical model features for network emulation 
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 Granted, from this arrangement, we can clearly recognize that the diverse relations 

among these parameters are symbiotic. But indeed, this formation is double-sided, because on 

one hand, it suitably converges the items together, but on the other hand, it further deepens the 

emulation complexity. 

 Undoubtedly, among these attributes, the spatial layout is indeed the most decisive factor. 

And as discussed in the previous chapter, there are different geometry models. Yet, often the 

terminologies used to characterize a particular configuration vary from one source to the other. 

Thus, we find it necessary to classify and scrutinize the spatial distribution models as shown in 

the above taxonomy so as to remove this technical ambiguity and also to clarify the type of nodal 

deployment we intend to investigate in this contribution. 

 From this endeavor, we notice many possible categorizations, and most importantly are 

those rendered through stochastic emplacement. In fact, random networks can either be 

constructed using planar distribution functions [18]–[26], [35]–[45]; or through point process 

techniques [53]–[56]. In principle, these applied stochastic methods explore the same problem 

from different analytical references and frameworks. Technically speaking, discrete spatial 

coordinates can be generated from a continuous and differentiable planar density function that 

models the geometrical behavior of a network over the defined surface region. After, the desired 

number of independent samples can be extracted from this joint distribution. Alternatively, if the 

network scale is known beforehand, then point processes can be utilized to deploy these preset 

nodes over the designate metric space. So basically, the difference between the approaches is that 

on one hand, the network is unconditional because the nodal distribution is known irrespective of 

the scale; whereas on the other hand, the conditional emulation produces a finite structure. 

 As an example, a random configuration can be achieved based on independent uniform 

distribution, or by means of the homogeneous Poisson point process (PPP). Although the 

mathematical toolkit among the approaches is somewhat different, yet the final spatial rendering 

of the network for a specific amount of random nodes is indistinguishable. Thus, the term 

uniform and homogeneous may be used interchangeably without necessarily being associated 

with a particular stochastic approach. 

 Moreover, random inhomogeneous deployment may also be realized using other non-

formulated means subject for instance to social and traffic trends. Besides these methods, spatial 

assortments founded on a particular deployment algorithm can be conceived. 
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 Having pieced these different network deployments options together, we essentially can 

begin the modeling task by selecting the basic geometrical descriptions and properties, and 

progressively add features to it. For instance, the nodal positions can be distributed on a 2D 

Euclidian plane, or more realistically over a 3D space. For mathematical intrigue, the modeling 

may also be extended to higher k  dimensional orders, e.g. [57]. Furthermore, as it will be 

explored and analyzed in the next subsections, the lattice structure of the network is also diverse 

and could take different geometrical shapes. Precisely, for a UCN, the grid over which the nodes 

superimpose can be modeled by a circular format. As for tessellating constructs, they are more 

appropriate for modeling large MCN architectures. 

 Additionally, in terms of the objects and building blocks of the network model, they can 

actually be used to signify different systems and platforms. Specifically, within a certain network 

cell, there are in general two fundamental elements: a reference point and multiple nodes. The 

reference could range on a case-by-case basis from BSs, to local aggregators or sinks; and 

spatially emplaced nodes could be MSs, sensor units, or even actuators1. Then, based on the 

particular connectivity scheme, these units either act as a transmitter, receiver, or a relay point. 

And the geometry of the internodal linkage from source-to-destination could vary from all 

possible combinations of fix and arbitrary locations. For instance, over a centralized 

connectivity, a randomly positioned node exchanges information data between a fixed cellular 

tower; and in an infrastructure-free network, ad hoc connectivity is enabled among arbitrarily 

deployed terminals. 

 Now that we have a holistic view for spatially generating a wireless network, we may 

further upgrade the model by including the mobility aspect. Certainly, this would add further 

realism to the emulation, but would in return intensify the difficulty of the analysis. For the 

simplest case, a motionless model may be assumed for a variety of fixed networks. It can for 

instance be of practice for centralized networks such as fixed WiMAX that provides broadband 

wireless connectivity to urban-based infrastructures ranging from: office buildings, residential 

areas, and other commercial properties. It may also characterize decentralized WSN and WMN 

networks assembled respectively by immovable sensors and rooftop mesh schemes. 

                                                 
1 In this context, actuators are active nodes that perform mechanical operations after being triggered by onboard 
sensors (e.g. small robots). 
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 Beyond these networks, some transportable units exhibit a quasi-stationary behavior. 

Indoor WLAN is a relevant case where equipments such as notebooks and tablets are typically 

active when subscribers are stationary in a particular location. For example, in a campus setting, 

during different times of the day, users could either be connected while in classes, library, 

cafeteria, etc. Although these information terminals are mobile, yet due to the nature of their 

connectivity, they could for analysis purposes be considered as immobile units. 

 As for fully movable devices, various mobility models can be used for mapping a 

network structure. The broad idea of these models is to change users’ spatial pattern with time. 

One approach would be to consider deterministic motion in such a way that forces nodes to move 

in a predefined path. However, random direction and speed is generally more appropriate for 

representing the mobility of uncontrolled wireless terminals. Essentially, there are two forms of 

random motion, either group or entity mobility models [58]. For group mobility (e.g. RPGM), 

each cluster has a leader that determines the motional behavior for the entire group. On the other 

hand, in the case of entity mobility, the motion of a node is independent from other terminals 

within the network. In this scenario, there exist many models; most notably among them are 

random waypoint, random walk and Brownian motion. Specifically, random waypoint enables 

pause times between every change in direction and speed; and when the pause times are 

eliminated then the waypoint model transforms into the random walk mobility. Also, when the 

movement distances are relatively small, then the random walk mobility becomes similar to a 

Brownian motion. Overall, these different random mobility options are memoryless. In contrast, 

the so-called Gauss-Markov mobility is a memory model because at each interval the next 

position is calculated based on the current location [59]. 

 On the whole, the larger context of Figure 2.1 aims at looking at each of the network 

attributes separately, and then the desired network can be customized by combining the specific 

characteristics. Thus, the categorization presented here will ultimately facilitate and help put into 

perspective the geometrical research reported in this dissertation, and hopefully it will also steer 

and incite future spatial-level research directions. 

 

2.2.2 – UCN Spatial Modeling 

There are various antennas available for the effective EM emission, where each has a distinct 

radiation pattern and coverage, serving a particular wireless application. When the radiation is 
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intended to radially propagate with a constant power in all-directions seen from a top-view on a 

surface away from the transmitter, it is then referred to as an omni-directional antenna. 

Otherwise, the antenna is directional, meaning that it radiates over a certain coverage space and 

not in others. For analytical convenience, the so-called isotropic antenna has been 

mathematically conceived to idealistically model an omni-directional emitter. Although the 

radiation of an isotropic antenna is realistically unachievable, theoretically it stretches outward in 

a perfect spherical way; whereas an omni-directional antenna has a toroidal-like shape with a 

small inner opening as illustrated in Figure 2.2. 

 

isotropic pattern omni-directional pattern 

  

Figure 2.2 – All-direction antenna radiation models (3D) [49]

 

 Irrespective of whether the model pattern is isotropic or omni-directional, when projected 

on a Euclidian plane, the extent of the EM propagation will result in a perfect circular contour 

where the BS is located at its centroid. However, practically speaking, the radiation shape will 

actually be irregular in format due to external agents such as channel losses caused by terrain 

features, manmade obstacles, and atmospheric attenuation [60]. 

 Figure 2.3 visually depicts the actual and ideal radiation profile for an emitting tower 

station serving mobiles via centralized connectivity. As noted in the diagram, the power of the 

signal strength decays as the wave travels away from the BS. In principle, the cellular adjustment 

from the actual to the ideal is performed in order to facilitate various cellular-based technical 

analyses. Also, it will enable the spatial emulation of random networks. In other words, the 

geometrical construction of a network contained by an unpredictable lattice shape is 

mathematically demanding and likely inconceivable. On the other hand, spatially positioning an 

LWN in a well-defined cellular structure may analytically be realized via stochastical techniques.  
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Figure 2.3 – Impact of channel features on EM radiation pattern (2D) 

 

2.2.3 – MCN Spatial Modeling 

From the previous part, we systematically recognized that despite the difference in radiation 

modeling and the impact of various channel deteriorations, the circular cell remains the most 

natural realization over a Euclidian surface. However, in the event where a wireless network is 

expected to supply connectivity service to a vast geographical territory that contains a high-

density of subscribers, a single macrocellular choice will not yield the best experience for 

providers and users alike. As an alternative, smaller multi-cellular option known as microcells 

are preferred for a number of reasons, most notably because: 

• Shrinking the cell size is an effective way for increasing the information throughput of 

bandwidth-demanding wireless users [48], [61]. 

• Mobile terminals will consume less transmission power given their closer proximity to 

the BS; thus ensure a longer system operation. 

• PL level will be smaller, resulting in an MS with better fidelity due to a higher value of 

SNR/SINR. 

• The notion of frequency reuse will be implementable following a tolerable spatial-

separation; hence, additional mobile subscribers can be accommodated active 

connectivity. 

• Although to a lesser degree, yet transmission latency will also diminish, which may prove 

to be a necessary delivery requirement especially for delay-sensitive multimedia 

applications. 
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• The electronic systems of the BSs will be more affordable given their demand for low-

power emissions. 

 

 However, in addition to these benefits, there are several challenges that require 

exceptional attention when numerous microcells are considered; the most prominent elements 

are: 

• The need for robust handoff capability in order to appropriately minimize the dropping 

rate probability. 

• Dynamic network planning and management so as to ensure appropriate resource 

allocation and effective power control. 

• Degradation due to intercellular interference. 

• Infrastructure installation and maintenance cost of strategically distributed BSs. 

 

 Figure 2.4 illustrates the adaptation of a large UCN into smaller MCN. As shown in the 

depiction, the subnetworks will have smaller transmission radii that are managed by low-power 

BSs. For a particular geographical area, these cells are jointly handled by a nearby mobile 

switching center (MSC), where the data path that connects the subnetworks to the MSC 

backbone is known as the backhaul links. Specifically, there are three possible ways for 

implementing the backhaul connection, either via: radio, telephone line or fiber optics. In this 

organization, the MSC is the intermediary that routes back and forth a network interconnection 

with the rest of the world. 

 

 

Figure 2.4 – A microcellular alternative for a large densely-populated macrocell network 
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 In the model of Figure 2.4, the MCN realization produces an overlapping of subnetworks; 

thus complicating theoretical evaluation and analysis of such large access schemes. One way to 

overcome this burden would be to de-correlate the spatial overlap. However, this will occur at 

the expense of neglected surfaces. In Figure 2.5 we demonstrate the size of this gap as a function 

of adjacent cells, where Tr
∗

+∈  is the constant power transmission radius of a BS, and 

GA ∗

+∈  is the marked area bounded by contiguously positioned cells. As suggested from the 

network models, the surface level of the created gap increases as the number of cells augments. 

 

Tr 060
0108 0120

090

 

( ) 2

2

3 2

0.161 

G T

T

A r

r

π= −

≈

( ) 2

2

4

0.858 

G T

T

A r

r

π= −

≈
 

( ) 2

2

25 10 5 3 2

2.170 

G T

T

A r

r

π= + −

≈
 

( ) 2

2

2 3 3

4.109 

G T

T

A r

r

π= −

≈
 

Figure 2.5 – Tendency of surface gaps among bordering cells 
  

 Indeed, having coverage holes in the model obviously defeats the notion of pervasive 

connectivity. Consequently, the better option for this architecture would be to consider non-

intersecting structures. In effect, as exemplified by Figure 2.6, there are three possible models 

that exhibit tessellating traits which suit the purpose for MCN deployment. 

 

 

Figure 2.6 – MCN modeling by means of tessellating structures 
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 Evidently, literatures in cellular theory have suitably argued the benefits of the hexagonal 

cell as the foremost tessellating form because of its closer resemblance to the circular contour. 

Though visually this observation is persuasive, yet we find it technically intriguing to quantify 

the actual extent of the hexagonal advantage. Following geometrical analysis for the identified 

tessellating forms, in Table 2.1, the definitive results to this concern are explicitly reported. 

 

Table 2.1 – Quantitative comparative analysis of tessellating patterns 
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 As it can be noticed form the above table, the numerical values of the dashed areas are 

congruent with their respective illustrations. In fact, the triangular geometry demonstrates the 

largest terrain margin when compared to the ideal constant power disk model. The second largest 

surface variance is exhibited by the square lattice. As for the hexagonal cell, it produces the 

smallest difference. Indeed from conventional wisdom, we know that the more a cellular shape 

has edges, the closer its resemblance to the circular cell. Meanwhile, we also interchanged the 

role of the reference structure for assessing the surface measure. Irrespective of the approach we 

scrutinize this problem; the hexagonal lattice remains the best possible tessellating choice by a 

comfortable margin; thus legitimizing it as the standard shape for MCN modeling and analysis. 

 Roughly speaking, as the lattice changes from a triangular profile, to a square, and 

subsequently to a hexagonal shape, the surface discrepancy drops by approximately 1 2 . 

Overall, this is a remark which may serve as a quick rule of thumb during network analysis. 

 

2.3 – Propagation Modeling 

2.3.1 – Sources for Channel Corruption 

On the whole, information communicated between a transmitter and a receiver will be impacted 

by: the propagation channel, the Doppler shift due to mobility, the effect of interference, the 

additive white Gaussian noise, and the phase deviation due to synchronization issues. 

 Specifically, the behavior of the propagation channel is a key element for defining the 

attributes of a particular communication link. In wireless networking, the channel can actually be 

categorized for underwater access, terrestrial communications, and satellite transmission. In fact, 

for each of these cases the channel is faced with a certain drawback. For example, in the case of 

satellite broadcast, due to the large gap between an earthbound node and the outer-space orbit, 

the propagation delay will be high. As for terrestrial networking, fading is resulted because of the 

abundance of scatterers. And for underwater interconnection, it will combine the shortcomings of 

the other two cases, thus an elevated latency and poor channel quality will result. 

 

2.3.2 – Modeling Wireless Radiation 

For terrestrial communications, as the EM wave propagates form a radiating source, the behavior 

of the emitted energy will vary as a function of the distance away from the transmitting antenna. 
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Essentially, as shown in Figure 2.7, the radiation can be broken-down into multiple regions 

having exceptional characteristics [47], [50]. 

 

0d = 1 0 2d λ π= 2
2 04S Ad d D λ≤ =

∞

2
0 3 02f Ad D d dλ= ≤ ≤

 

Figure 2.7 – EM radiation boundaries 

  

Before describing the features of each of these regions, for context, it is valuable to comment on 

some aspects relating to the EM radiation model: 

 

1. It is worth noting that although the illustration above shows a directional antenna, the 

principle is as well applicative with an omni-directional radiator, where these regions will 

surround the transmitter unit in a circular-ring layout. 
 

2. It should be remarked that there is a lack of universal agreement for the radiation 

boundary values 
3

1 2 3 ,, ,d d d + ∗∈  in available literature. Therefore, diverse 

communication organizations and sources may define them differently. 
 

3. Nonetheless, rough non-firm estimates of the boundaries have been conceived in order to 

facilitate analytical evaluation. Normally, the mathematical model of boundary values for 

these regions will depend on: 

o the operating frequency: 0f ∗

+∈ . 

o the close-in distance of the emitter: 0d ∗

+∈ . 

o the largest dimension of an antenna or its aperture width: AD ∗

+∈ . 
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 In what follows, we will briefly explain the most notable properties of the four regions 

shown in Figure 2.7: 

 

• 1st Region – Reactive Near-Field: 10 d d≤ ≤  

This region is extremely close to the antenna surface. Say, as premised throughout this 

dissertation, that the carrier frequency is set to 0 1.9 GHzf = , then the associated 

wavelength is 0 0.16 mλ ≈  because 0 0c fλ = , where 
83 10  m sc ≈ ×  is the speed 

of light in vacuum. This means that the span of the region is approximately 2.5 cm 

away from the antenna. Within this small gap, the relationship between the electric field 

(E) and the magnetic field (H) is too complex to predict; namely the EM fields are not 

orthogonal to each other. 

 

• 2nd Region – Radiative Near-Field: 1 2d d d≤ ≤  

In order to assess the amount of power decay in the channel of this region, we need to 

fully predict the behavior of the EM radiation and the polarization which describes the 

relationship among the E and H fields. In general, EM waves have four possible 

polarization types: horizontal, vertical, circular, and elliptical. Incidentally, in this 

interspace, all these polarizations can be present at once. Although more predictable than 

the reactive near-filed region, yet conceiving a channel-loss model under such conditions 

remains analytically demanding because the radiation pattern is significantly sporadic. 

 

• 3rd Region – Transition Zone: 2 3d d d≤ ≤  

In this Fresnel region, near-field and far-field characteristics are jointly manifested; thus 

challenges of mathematical formulation and tractability remains. 

 

• 4th Region – Far-Field Region: 3d d≤ <∞  

Evidently, in the Fraunhofer region, a unique polarization type is in effect, i.e. the EM 

fields are orthogonal to each other. As a result, the channel attenuation can be forecasted 

by analytical models as the wave energy is gradually propagated away from the antenna.  
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 In any case, as a practical rule of thumb, the distinction between near-field and far-field 

can be made in a straightforward way by comparing the propagation distance d
 to the 

transmission wavelength: 

0near-field region:  d λ                                                 (2.1) 

0far-field region:  d λ                                                  (2.2) 

 

 On the whole, in this subsection, we demonstrated the unpredictability of the propagation 

channel extending from the antenna surface up until the far-field mark. Once the radiation wave 

reaches the close-in distance 0d , then feasible fading models may be utilized in order to 

adequately anticipate the power lost over the wireless medium. 

 

2.3.3 – Modeling Channel Losses 

Indeed, when the EM wave is emitted from source to destination, the transmitted information 

signal is deteriorated due to fading. In fact, the effect of fading can actually be split into a 

dominant and a weaker component. The dominant part is identified as large-scale fading, and it 

usually comprises of average PL and random shadowing2. As for the weaker part, it is known as 

small-scale fading, and it represents the multipath propagation. 

 In general, over a specific communication environment, the extent of the channel-loss can 

be measured empirically using a power-meter or a measuring-receiver through a gradual 

progression away from the transmitter about the beam-width of an antenna. For small-scale 

fading, shadowing, and PL, the probing interval accuracies are respectively somewhere in the 

vicinity of 0λΔ ≈ , 040λ , and 01000λ  meters. 

 Ideally, analytical modeling for the propagation behavior should take into account all 

these channel losses together. However, in the larger scheme of things, the influence of small-

scale multipath fluctuation is minor and at times negligible when compared to the overall energy 

loss. Thus, ignoring small-scale fading exclusively for power parameterization aspects is 

generally tolerated. Besides, removing this feature and considering only the more significant and 

                                                 
2 Without loss of generality, large-scale fading and PL may be utilized interchangeably. In fact, when the PL 
terminology is used, though implicit, it often insinuates the inclusion of shadowing. 
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noticeable large-scale attenuation is expected to simplify the perplexed analysis anticipated in 

forthcoming chapters. 

 In general, whether for short-range picocell coverage or long-range macrocellular 

applications, the large-scale fading model will usually depend on a particular set of attributes as 

shown by: 

( )0 0 ;   ;   ;   ;   ;   ;   ;   ;  PL AP node PL SL f r r h h C F n= Θ Ψ

                                       

(2.3) 

 

Of course, the actual model for each communication type will specifically be tailored to the 

particular application. This means that the model expression for the large-scale fading will 

behave in unique manner for the targeted channel. However, after entering some of the 

distinctive channel and geometry details, such as C  and F , and provided the elevation values 

for the AP and node are set to some preassigned values, then no matter the model selected, it will 

typically reduce to a simple distance-dependency expression. 

 In fact, the received power between two interconnected nodes is given by 

( ) ( )RX PLP r EIRP L r=  over 
∗ ∗

+ + , EIRP ∗

+∀ ∈  radiated power, where the large-scale 

channel attenuation is expressed by ( ) ( ): 1PL PLL r L r∗

+∃ ∈ > . Furthermore, it is shown (say 

[47]) that the large-scale fading for mobile cellular communications is modeled by: 

 

( ) ( ) ( ) ( )0 0
PLn

PL PL S PL SL r L r L r r r= ⋅Ψ = ⋅ ⋅Ψ                              (2.4) 

 

where the average decay is given through ( ) ( ) ( ) ( )2
0 , 0, : 1PL PL PL PLL r L r L r L r+ ∗∃ ∈ ≥ >  for 

2
0 , 0, :r r r r+ ∗∀ ∈ ≤  denoting respectively the close-in distance and the internodal gap; 
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: 1PL PLn n∗

+∈ >  is the PL exponent; and 
1010 S dB

S
−Ψ ∗

+Ψ = ∈  is the shadowing element 

that analytically emulates in-field scatterers through a log-normal distribution: 

( )20,S dB S σ− ΨΨ ∼N , where σ
∗

Ψ +∈  is the associated SD in dB (and it is a.s. that 

1 dBσΨ > ). Alternatively, the model of (2.4) may be changed into decibel notation as follows: 

 

( ) ( )

( ) ( )

( ) ( ) ( )

0

0 10 0

0 10 0 10

                                           

                     10 log

                               10 log 10 log

PL PL S dBdB dB

PL PL S dBdB

PL PL PL S dBdB

L r L r r r

L r n r r

L r n r n r

−

−

−

= +Ψ ≥

= + +Ψ

= − + +Ψ

         (2.5) 

 

 The large-scale fading model of (2.5) can actually be reorganized and remapped to (2.6), 

where the close-in contribution along with its average channel-loss are included in α , and PLn  

which depends on the propagation environment, such as the existence of line-of-sight (LOS) or 

otherwise, is integrated in β ; and the PL dual ( ),α β  are elements in 
2

,+ ∗ . 

 

( ) ( ) ( )10 0

shadowingaverage PL

  log         PL PL S dB S dBdB dB
L r L r r r rα β− −= +Ψ = + + Ψ ≥              (2.6) 

 

 Therefore, whether for cellular communications or else, the large-scale fading may 

reliably be represented by the following simple formulation, where the particular propagation 

features are incorporated in α  and β . Besides, mapping via simpler variables has the 

exceptional advantage for facilitating analytical manipulations. Overall, from the above model, 

we realize that: 

• The dominant power loss between two nodes, which is centrally dependent on the 

interspace magnitude, is composed of PL and shadowing. 

• The wireless channel attenuation among vertices adheres to an inverse power law. 

• The shadowing component is interpreted by a log-normal distribution. 

• Because of its negligible impact on the overall power loss, the small-scale fading 

fluctuation is relaxed. 
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2.4 – Overview of IEEE 802.20 
Throughout the course of this dissertation, whenever needed for computational verifications, we 

will utilize actual parameters from IEEE 802.20. Thus, we find it necessary to briefly discuss 

some of the particulars of this relatively recent 4G standard. 

 Evidently, the cellular concept for mobile systems started few decades ago; however, its 

importance is even more significant as we migrate to next generation networks. In the time of 

this writing, such advanced technologies are mainly characterized by: LTE, WiMAX, and 

MBWA. In particular, as it can be seen by Figure 2.8, the MBWA standard is essentially the 

missing link between WMAN and WWAN networks. Namely, the unique fact that it combines 

the advantages of both topologies is the leading motive for this architecture. 

 Specifically, in June 2008, IEEE 802.20 or MBWA mobile technology was approved by 

the IEEE Standard Association Board. Soon after, in August 2008, the first active MBWA 

standard was published [62]. In essence, the aim of this protocol is to fill the current demand gap 

of increased mobility of up to 250 km/hr and a spectral efficiency of at least 1 bps/Hz/cell [63]. 

As for IEEE 802.16e-2005, it has a data rate that could practically reach 10 Mbps over 2 km 

under NLOS; but can only support radios with vehicular speed of 60+ km/h [64]. On the other 

hand, currently operable cellular systems, irrespective of whether they are founded on the global 

system for mobile communications (GSM) or code division multiple-access (CDMA), offer 

substantially higher mobility at the cost of low bandwidth. Therefore, it was natural to combine 

these advantages to form the essence of the IEEE 802.20 technology. 

 Additionally, when compared to other mobile systems, such as: EDGE, UMTS, 

CDMA2000 1xRTT and 1xEV; MBWA has the highest spectral efficiency [63]. And this 

criterion is needed because it will exploit the licensed channel BW more adequately; hence 

resulting in a cost-effective approach for providers and consumers alike. 

 Further, the IEEE 802.20 specification only defines the lower physical (PHY) and media 

access control (MAC) layers of the OSI model; thus granting vast compatibility with an array of 

systems through the upper network levels. Also, it has low latency with a frame round trip time 

(RTT) of at most 10 ms [63]. And in fact, there is a direct relation between latency and 

performance [65], which may be traded among each other to enhance the real-time experience 

and to satisfy the service delivery. Application wise, MBWA is specifically optimized for 
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mobile-IP connectivity. Furthermore, because the system has a short RTT, it may also be used 

for telephony purposes such as voice over IP (VoIP) exchanges. 

 

 

Figure 2.8 – Connecting and comparing the MBWA standard to other technologies
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 Overall, IEEE 802.20 is a technology that has many benefits; nonetheless, because it is a 

novel system, BS infrastructure cost is inevitable. Though, it is worth noting that in some 

circumstances, it may be possible to reuse existing cellular towers. In Table 2.2, a summary of 

the key MBWA properties is shown. 

 Meanwhile, the anticipated large-scale fading distribution functions that will be derived 

for MCN, UCN, and Gaussian random network models in subsequent chapters will be as generic 

as analytically possible. Nonetheless, to verify the veracity of these theoretical derivations, MC 

simulations will be applied. Thus, for these computational purposes, we will utilize channel 

specifications from the MBWA standard. Also, using actual channel parameters will further 

harmonize and connect fundamentally derived results to practice. In particular, the IEEE 802.20 

technology supports three different channel environments, which will all be utilized during 

simulations; and they are as follows: 

• Urban Macrocell based on the COST-231 Hata-Model – Tables 3.2 

• Suburban Macrocell based on the COST-231 Hata-Model – Tables 4.2. 

• Urban Microcell based on the COST-231 Walfisch-Ikegami-Model – Table 5.1. 

 

As indicated, the particular parameters for each of these propagation models can be found by 

referring to the indicated tables found respectively in Chapters 3, 4, and 5. 

 

Table 2.2 – Specifications of the MBWA technology 
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2.5 – Conclusion 
In this chapter we reviewed some of the essentials of network geometry and propagation 

modeling. In particular, we showed a coherent and comprehensive approach for building a 

spatial structure for a LWN pattern. Then, we focused specifically on the modeling approach 

aimed for UCN and MCN spatial deployments. Next, we discussed the main causes for channel 

corruption, the fundamentals of radio propagation, and the means for modeling transmission 

losses. We then provided the necessary details for analytically expressing the characteristics of 

the large-scale fading behavior for general wireless channels and cellular systems. 

 Finally, we briefly introduced the features of IEEE 802.20 cellular technology, where its 

commercialization is managed by the industry consortium known as iBurst Association. In fact, 

under their umbrella, the MBWA network has been successfully deployed in several countries 

around the globe. Precisely, this protocol has promising potentials for providers and subscribers 

because of mobility, spectral efficiency, low latency, long-range, and it is specifically optimized 

for mobile-IP connection and VoIP applications. In fact, we provided this overview because the 

channel features of this standard will regularly be utilized in subsequent chapters during 

computational analysis and verifications. 

 Overall, the discussed topics will be instrumental for modeling a random network and 

deriving fundamental results from it. Namely, the presented foundation of the network geometry 

will become handy during the derivations for exact random homogenous deployments, and for 

conceptualizing inhomogeneous spatial algorithms aimed for UCN and MCN models. Likewise, 

the primer for modeling the large-scale fading will be exploited in order to profile the expected 

amount of power loss between a reference AP and a random node over different network 

geometries. 
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Chapter 3 

Homogeneous Network Modeling and 

Large-Scale Fading Analysis 
 

 

3.1 – Introduction 

3.1.1 – Objective 

Many decades have passed since the conception of the cellular network; however, despite the 

years and accumulated experience, there still remain numerous technical facets that have not 

been investigated thoroughly. The most notable among them is the paradigm of spatial random 

networks. In principle, within this context, it is desired to overlay nodes geometrical position 

onto the traditional fundamentals and understanding of mobile systems, where the broad motive 

is to analytically extract critical network-based observations, such as the likelihood of coverage. 

 For wireless communications, large-scale fading is indeed the most overarching factor for 

ensuring connectivity between a BS and an MS. In fact, due to its prerequisite for a host of 

network metrics including outage probability, the density function for the PL or the received 

power level have been previously shown for a fixed predetermined separation between an MS 

and a BS [47]–[51]. The aim in this chapter is to reconsider this analytical problem by 

generalizing the channel-loss distribution between any homogeneously-based random positioned 

node and a reference BS. Evidently, this PDF can typically be obtained experimentally based on 

MC simulations. However there are two leading reasons why this approach is inconvenient: 

 

1. Random simulation is an inefficient computationally expensive approach. 

2. The obtained result is analytically intractable. 

 

These factors are further testaments for the necessity to obtain an explicit, generic and rigorous 

theoretical derivation for the large-scale fading density. 
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3.1.2 – Organization 

The rest of this chapter is organized as follows. In Section 3.2, we will set the stage for network 

analysis by jointly assimilating the fundamental characteristics of spatial homogeneity and lattice 

geometry. Then, in Section 3.3, the random network emulation geared specifically for MCN 

channel analysis will be detailed. Afterward, in Section 3.4, the large-scale fading PDF analysis 

will be developed, and the exact closed-form stochastic result will be verified using MC 

experimentations. Finally, Section 3.5 will close the chapter and a number of possible directions 

for using and extending the reported formulation will be mentioned. 

 

3.2 – Characteristics of the Network Model 

3.2.1 – Uniform Network Geometry 

In order to understand the behavior of wireless networks, emulation by means of mathematical 

modeling is indispensible. Of course, there are various approaches and conjectures used for 

reconstructing a network constellation. Despite these techniques, the random homogeneous 

assumption has been considered extensively in analytical research, e.g. [18]–[30]. Essentially, 

the definition of a homogeneous network indicates a steady number density throughout the 

deployment field; i.e. the number of mobile terminals per unit of area is fixed. 

 As depicted in Figure 3.1, if we consider 0A ∗

+∈  to be the surface area of a particular 

network lattice, and 0n ∗∈  to represent the amount of random nodes or scale of the 

architecture, then the homogeneous areal density will be given by 0 0 0n Aρ . 

 

 

0A

0n

 

Figure 3.1 – Homogeneously deployed random network 
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 When no major information about the considered network exists, then this spatial 

realization is simple, conceivable and quick to theorize and model. Only the surface structure and 

its size are needed for the analysis. As for the network scale, following analytical derivation, it 

could dynamically be determined by the deployment designer. This is one important convenience 

of planar distributions in contrast to point processes. 

 From a practical standpoint, this distribution model is accurate provided the terrain has no 

biases. In other words, the network surface must entirely be flat or equalized in format with no 

landforms or structures. Put differently, the land must have similar attributes, such as in: 

environment, topographical quality, temperature, etc. Whether in rural or urban setting, the 

occurrence of such a case for a LWN is for the most part uncommon. Nonetheless, the simplistic 

condition of the model enforces its analytical appeal and surpasses this drawback. 

 

3.2.2 – Geometrical Alternative for Simplifying Channel Analysis 

The major objective of this chapter is to obtain the large-scale fading distribution function 

between a homogeneously distributed random node and a reference service provider over a MCN 

model. In order to do this, the emulation of the random network must entirely be characterized. 

Exclusively in this subsection, we will discuss geometrical changes to the emulated network 

lattice so that the associated channel-loss derivation is simplified. 

 First of all, from visual inspection, it is clearly possible to dismember the hexagonal cell 

into smaller repetitive forms. The original cell could for instance be recreated by joining three 

rhombus lattices or six equilateral triangles. In fact, the equilateral triangle is the most 

elementary portion of this cell model. Thus, considering this sub-pattern for BS-to-MS internodal 

analysis will substantially alleviate the derivation complexity of the large-scale fading 

distribution. In fact, this is true because geometrically speaking the analysis only depends on the 

reference to mobile separation, and is unaffected by the sectors rotation angle. 

 Also, for so-called infinite networks, the planar distribution function is definitely the 

most essential component in contrast to the quantity of nodes. Yet regarding the number of 

nodes, for each emulation case, its value is set a posteriori to the analysis, where the spatial 

position of every node will accordingly be generated from the density function. In fact, this is the 

key difference between point process techniques and planar distributions, where the former 

conditionally require the quantity of points before deployment and the latter does not. 
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Figure 3.2 – Simplifying BS-to-MS channel analysis via geometrical partitioning 

 

 Overall, we want to highlight that for centralized channel-loss analysis, the partitioned 

random homogeneous network shown in Figure 3.2 will exhibit the same stochastic outcome as 

the original hexagonal structure at the benefit of a simpler derivation. Moreover, for uniform 

planar deployment, the areal density of the random network will not affect the channel analysis. 

 

3.3 – Random Network Emulation for Channel Analysis

3.3.1 – Geometrical Analysis of the MCN Lattice 

The characteristics described previously, namely: nodal homogeneity, lattice geometry, and far-

field radiation phenomenon, must collectively be incorporated in the spatial properties of the 

random network. In principle, this integration has a dual purpose: 

 

1. It will be used to stochastically model the random lattice and effectively derive the PL 

density function for the entire network between a reference and an arbitrary terminal. 
 

2. It will be employed to emulate actual random pattern instances, and numerically verify by 

means of MC simulations the precision of the anticipated large-scale fading formulation. 

 

 To proceed, in Figure 3.3 the hexagonal cell is represented with the far-field region. In 

this surface model, the cellular size L  and the far-field limit 0r  are the essential elements that 

define the entire geometry of the network structure. 
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3 2L

0r

 

Figure 3.3 – Geometry of random network with far-field 

 

 For notational convenience, we will define a parameter for the cellular radius to the 

close-in distance ratio (RCR): 

 

0 0: :L r L rμ∗ ∗

+ +∀ ∈ ∃ ∈                                       (3.1) 

 

 From the above rendering, we can determine the support range for the RCR indicator 

such that the layout of the lattice is preserved. In particular, values along the x and y-axes reveal 

that: 

 

{ } { } { } { } { }0 02 3 2 2 2 3 2r L r L μ μ μ μ∗

+< ∩ < = > ∩ > = ∈ >            (3.2) 

 

Therefore, from (3.2) we notice that the geometry of Figure 3.3 holds provided the RCR is larger 

than two. But generally speaking, for mobile communications, the actual RCR is somewhere in 

the order of ten or greater, i.e. 10μ > .  

 Now, as motivated in Subsection 3.2.2, it is analytically rational to only look at a 

triangular sector for the analysis. Therefore, we decimate the cell model of Figure 3.3 into the 

subpart shown in Figure 3.4. Within this deployment surface, the various dimensions and 

variable relations of the lattice are accordingly displayed. 
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Figure 3.4 – Deployment surface for large-scale fading analysis 

 

 For homogeneous random positioning, the size of the deployment area is an integral part 

of the analysis. The surface with the effect of far-field is thus given by: 

 

( )2 2 2 2
0 03 4 6 3 3 2 12FFA L r L rπ π= − = −                                (3.3) 

 

 From (3.3), we obtain an expression in Cartesian coordinate notation for the spatial 

density function of a network cluster: 

 

( ) ( ) ( )2 2 2
0, 1 12 3 3 2 ,XY FF FF FFf x y A L r k x y Dπ += = − = ∈ ⊂              (3.4) 

 

Evidently, the homogeneous hypothesis has resulted in a steady distribution throughout the 

support area. For manipulation purposes, the intensity of the spatial density will be, as shown in 

(3.4), assigned to FFk ∗

+∈ . As for the support domain of the deployment surface, with the 

impact of the Fraunhofer distance, it is given by: 

 

( )
( )

[ ]

[ ]

( ) [ ]

2 22
0 0 0

2
0 , 0

0

3 :  2,, ;

, : 3 :  , 2 ;

2 3 :  2,

FF

r x y x x r rx y

D r L y x x r L

r L y L x x L L

+

+ ∗

− ≤ ≤ ∈∈

= ∈ ≤ ∈

< ≤ − ∈
                   (3.5) 
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 From (3.4) and (3.5), the marginal probability density for the nodal geometry along the x-

axis can be determined by (3.6). The graphical representation of this PDF is accordingly 

displayed in Figure 3.5. 

 

( ) ( )
( )

( ) ( )

( ) ( ) ( )

2 2
0 0 0

,

0

3 2
,

3 2 3 2

1

1 1FF
X XY FFx y D

x r x r x r
f x f x y dy k

x r x L L x L x L
∈

− − ⋅ ≤ ≤
= =

+ ⋅ ≤ ≤ + − ⋅ ≤ ≤
       

(3.6) 

0r0 2r

( )Xf x

2L L

03 FFr k⋅ ⋅

3 2FFL k⋅ ⋅

x

 
Figure 3.5 – Marginal PDF for spatial geometry along the x-axis 

 

3.3.2 – Random Spatial Generation 

At present, in order to efficiently generate random instances of x, the inverse CDF (ICDF) must 

be obtained; which consequently means that we first need to derive the CDF of (3.6). Following 

some analysis, we obtain: 

 

( ) ( ) ( )

( )( ){ } ( )

{ } ( )

{ } ( )

2 2 2 2 2
0 0 0 0 0 0

2 2
0 0

2 2 2
0

r

3 2 arcsin 2 12 2

                     3 2 6 2

              3 3 2 3 4 6 2

1

1

1

x

X Xx

FF

F x X x f x dx

x x r x r x r r r x r

k x r r x L

L x x L r L x L

π

π

π

=−∞
=Ρ ≤ =

− − + + ⋅ ≤ ≤

= + − ⋅ ≤ ≤

+ ⋅ − − − ⋅ ≤ ≤

(3.7) 
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 In Figure 3.6 the derived marginal CDF is plotted, where each part is accordingly 

delineated. For completeness purposes, we also identified the CDF marks as a function of RCR. 
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Figure 3.6 – Marginal CDF for spatial geometry along the x-axis 

 

 The most efficient way to randomly generate arbitrary instances would be to consider the 

inverse transformation method (ITM). As described in the arrows of Figure 3.6, the geometrical 

samples x̂  are obtained through the ICDF. In particular, ( ) ( )
1 ˆXF u
−

 is computed by the use 

of random arbitrary samples generated from a standard uniform distribution. Altogether, random 

values are thus obtained by: 

 

( ) ( )( ){ } ( )
1ˆ ˆ 0,1X Xx F u f x
−

= U                                        (3.8) 

 

 In regard to the û  in (3.8), it should be noted that most high-level computer simulation 

languages have a built-in pseudorandom (PR) sequence generated from a standard uniform 

distribution. Specifically, these values are obtained either through the multiplicative congruential 

algorithm or Marsaglia’s generator. MATLAB® uses the latter with some modification to 

produce a very long PR sequence of length 
1492 4492 1.370 10≈ ×  [66]. 
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 Although the method in (3.8) is the most efficient technique for random generation, the 

precondition in this approach requires the availability of the ICDF expression in closed-form 

notation. In the case of (3.7), it should be noticeable that it is in fact impossible to represent 

ICDF in an explicit way. As an alternative, the acceptance rejection method (ARM) can be used 

for random number generation (RNG) [67]. Granted, this iterative approach is suboptimal when 

compared to the ITM technique; nonetheless, in this section we will show an approach for 

modifying the ARM algorithm in order to maximize its performance. 

 Consider the distribution function ( ) :X Xf x D +
, where the domain of the 

density is ,XD x xα β , and its associated extremities are given by: 

 

minxα χ ∈                                                         (3.9) 

maxxβ χ ∈                                                      (3.10) 

such that: 

( )( ){ } ( )arg inf 0Xf x xχ ≡ > ⊂ ∈                                     (3.11) 

 

Then, based on the ARM procedure, we would need to determine some continuous arbitrary 

bounding function, say ( ) :b Xx Dπ +
, that covers the domain of ( )Xf x , while 

( ) ( )b Xx f xπ ≥ . Moreover, this bounding function is expected to be an augmented version to 

some valid comparison PDF ( ) :X Xx Dδ +
. In fact, the most generic and simplest way 

would be to consider the uniform case for the comparison density, namely: 

 

( ) ( ),X Xx x xα βδ =U                                                   (3.12) 

 

And thus, the bounding function can be realized by: 

 

( ) ( ) : 1b Xx k x k kπ δ ∗

+= ∃ ∈ ≥                                        (3.13) 
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 To further facilitate our understanding of these concepts, in Figure 3.7 we provided a 

graphical representation of the various functions needed for analyzing the ARM procedure. The 

likelihood for accepting a randomly generated sample is specified by the area below ( )Xf x . In 

contrast, the remaining sector between ( )b xπ  and ( )Xf x  constitutes the rejection region of 

generated samples. 

xα xβ
x

( )Xf x

max
Xf

( )X xδ

( ) ( )b Xx k xπ δ=

 

Figure 3.7 – Graphical interpretation of the related functions for the ARM algorithm 

 

 In order to maximize the rate for the acceptance of arbitrary samples, we could in essence 

minimize the rejection region shown in Figure 3.7. This could for instance be leveraged by 

adjusting the growth constant k  to mink , such that min 1k k> ≥ . To get this element, we 

need to identify the maximum value of the PDF: 

 

( ){ }max maxX X
x

f f x ∗

+
∈

∈                                               (3.14) 

 

Then, we perform the following association: 

 

( ){ } maxinf b X
k

x fπ
∗
+∈

=                                                    (3.15) 

From (3.15) we realize that: 

 

( ) ( ) ( )max max max
min ,X X X X Xk f x f x x f x xα β β αδ= = = −U                     (3.16) 
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 In Figure 3.8, the general approach for random generation based on the ARM algorithm 

is according displayed. The performance of this quasi-optimum sampling method could be 

enhanced by combining the above analysis. 

 

( ) ( )
( ) ( ){ }

- Random Sampling based on the ARM Approach

ˆ ˆ1: Generate: 0,1  and 

ˆ ˆ ˆ2: 1  

ˆ ˆ3:     :   (i.e. random sample is accepted)

4: Repeat the algorithm until the desired numbe

X

X b

u v x

u f v v

x v

δ

π< ≤

=

U
Algorithm 1  

if  then

r of samples is obtained.

 

Figure 3.8 – ARM algorithm 

 

 In particular, ( )ˆ Xv xδ  is generated by the stochastic transformation of Figure 3.9. 

This outcome can in fact be proved by: 

 

( ) ( ) ( ){ } ( )0,1 ,     X X Xx d x x x x dx x xα β α α βδ = + − =U U               (3.17) 

 

( )ˆx w x xα β α+ −

transformation

( )ˆ Xv xδ( )ˆ 0,1Xw U
 

Figure 3.9 – Uniform random generation 

 

 Now, as expressed in the above algorithm, a decision for the suitability of a sample 

depends on the ( ) ( )ˆ ˆX bf v vπ  ratio, which may further be elaborated by (3.12), (3.13), and 

(3.16): 

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )
maxmax

min

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ,
X X X X X

b X X XX X

f v f v f v f v f v

v k v k v ff x x x xβ α α β
π δ δ

= < = =
− U          (3.18) 

 

From (3.18), we therefore note that it is not necessary to verify the ( ) ( )ˆ ˆ 1X bf v vπ ≤  

condition indicated in the algorithm of Figure 3.8, because ( ) m axˆX Xf v f≤  is always factual. If 

we apply (3.18) to the PDF of (3.6), we then get: 
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( ) ( )( ) ( )

( ) ( ) ( )

2 2
0 0 0

max

0

ˆ ˆ ˆ3 2ˆ
2

ˆ ˆ ˆ ˆ    2 1 . 2

X

X

v r v L r v rf v

f v L r v L v L L v L

− − ⋅ ≤ ≤
=

+ ⋅ ≤ ≤ + − ≤ ≤

1

1 1
           (3.19) 

 

 After taking the analysis detailed above into account, we then obtain the RNG algorithm 

for ( )ˆ Xx f x  in Figure 3.10 that ensures an efficient approach for generating Sn  samples. 

  

{ }

0

- Random Deployment with Far-Field Radiation along the -axis

 1: Require: 

 2: Initialize: 0 0

 3:  

          : 1 4:

ˆ          Generate two i.i.d. RVs:  5:
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i n

i n

n n
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= =
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= +
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− − >

= +

if  then

if then

U
U

( )

{ }
{ }

0

0

ˆ ˆRandom sample is accepted: :

11:                      

ˆ12:           2  

ˆ ˆ13:                      2  

14:                          : 1

15:                      

i Xx v f x

r v L

v u L

i i

=
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end if
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=
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i S A S T

x v f x

x i n p n n

=
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Figure 3.10 – Pseudocode for efficient random generation 
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 In Figure 3.11, the PDF along the x-axis is shown for two different values of RCR 

obtained by means of analysis and via MC simulation. The specifications for the simulation are 

as follows: 

• For utilization in the density function, the cellular radius is normalized to 1 unit, and thus 

the close-in range is given by 0 1r μ= . 

• The random simulation is accomplished after getting 15, 000Sn =  valid samples. 

• Then, based on these samples an 150Bn =  bin histogram is constructed. 

• Finally, the histogram is appropriately scaled to reflect the PDF. 

 

 We should also remark that as the amount of accepted samples increase, the fluctuation 

of the MC plot will lessen and will closely follow the theoretical relationship. However, as a 

consequence of this approach, the most evident drawback is a growth of the microprocessor 

average running time. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 – Marginal density of nodal geometry by means of random simulation 
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3.3.3 – Measuring the Performance of Efficient Random Generation 

In the previous subsection, we detailed an approach for efficient random generation. In this part, 

we are interested to quantify the performance of the obtained RNG. To begin, we want to 

determine an expression for the acceptance rate Ap  of a randomly generated sample. In fact, 

this objective can be facilitated by the logic depicted in Figure 3.7, where the event of accepting 

a sample is a subset in the universal space { },A RΩ = . Consequently, the acceptance rate can 

be represented by: 

 

{ } ( ) ( ) ( )

( )min min

Pr 1

                                    1 , 1

A X b Xx x x

Xx

p A f x dx x dx k x dx

k x x dx kα β

π δ
∞ ∞ ∞

=−∞ =−∞ =−∞

∞

=−∞

= ⊂Ω = =

= =U          (3.20) 

 

Applying (3.16) to the PDF of (3.6) changes the acceptance rate to: 

 

( ) ( )

( )
( )

( )
( )

2 2 2 2
0 0

max
00 0

3 3 2 2 3 31 2
23 2 6 3 2

A

X FF

L r L r
p

L L rf x x L k L r L L rβ α

π π− −
= = = =

−− ⋅ − −    (3.21) 

 

Then, the result of (3.21) can be transformed as a function of the RCR: 

 

( )
( )

( )

( )
( )

2 2 2 2
0 0

2
0 0

2 3 3 2 3 3
     2

2 2 1A A

L r r
p p

L L r r

π μ π
μ μ

μ μ

− −
= = = >

− −           (3.22) 

 

 We could at present scrutinize the validity of the above expression in different ways. 

First, from the denominator we note that 0;1 2μ ≠ . Second, the probability measure is valid 

provided: 

 

( ): : 0 1    2A A AA p p p μ μ+∀ ⊂Ω ∃ ∈ ≤ = ≤ >                          (3.23) 
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In other words, for 0Ap ≥ , we get that 2 2 3 3μ π≥ , or that: 

 

{ } { }2 3 3 2 3 3μ π μ π≤− ∪ ≥                                     (3.24) 

 

Also, for 1Ap ≤ , we remark that: 

 

( ) 2 2 3 3 0g μ μ μ π− + ≥                                           (3.25) 

 

And the discriminant for this quadratic equation is given by: 

 

1 8 3 3 3.84g πΔ = − ≈−                                               (3.26) 

 

Because 0gΔ < , there are no possible roots in . Further, the vertex for the expression in 

(3.25) is positioned at the following coordinates: 

 

( )( ) ( ) ( );  1 2 ; 2 3 3 1 4 0.5 ; 0.96V Vgμ μ π= − ≈                        (3.27) 

 

This vertex is therefore in the first quadrant of the Cartesian coordinate system and ( )g μ  is 

concave upward, thus (3.25) holds for all μ ∈ . Overall, all the identified support values are 

indeed coherent with the requirement that 2μ > , which in part justifies the authenticity of 

(3.22).  

 In order to gain additional understanding of the acceptance rate behavior as a function of 

the RCR, in Figure 3.12 we show the corresponding theoretical and experimental plots. To be 

precise, the MC simulation is detailed as follows: 
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• The RCR is swept from 2.1 20μ = →  in steps of 0.1, where for each μ  value Sn  

accepted samples are sought. 

• In this endeavor, the experimental acceptance rate Ap  for different RCR is numerically 

estimated and accordingly plotted. More on this estimation will be explained later on. 

• We performed the simulation for 1, 000Sn =  and 10, 000Sn =  in order to show the 

impact of different sampling values on the acceptance rate accuracy. As Sn  augments, 

MC obtained estimates closely envelope the theoretical plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 – Acceptance rate for efficient random generation versus RCR 
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 At this point, the natural intrigue is to analytically obtain the optimum RCR value that 

maximizes ( )Ap μ . Therefore, we commence by taking the derivative of (3.22): 

 

( ) ( )
( )

( ) ( ){ }

2

22

2 3 3
            2

2 1

                             8 3 3 2 3 3 2 1

Adp d

d d

μ πμ
μ

μ μ μ μ

μ π μ π μ μ

−
= >

−

= − + ⋅ − −
                (3.28) 

 

If we set (3.28) to zero, we then find: 

 

2 8 3 3 2 3 3 0opt optμ π μ π− + ⋅ − =                                      (3.29) 

 

The discriminant of (3.29) is given by: 

 

( )8 8 3 3 27 18.56 0opt π πΔ = − ≈ >                                     (3.30) 

 

thus resulting in two real roots. However, one of these feasible solutions is outside 2μ > ; 

hence, the optimum RCR value for random generation is unique and given by: 

 

( )4 2 8 3 34
4.57

23 3 3 3

opt

opt

π π ππ
μ

+ −Δ
= + = ≈                        (3.31) 

 

 Conceptually, the efficient random generation approach is further improved when 

optμ μ= , which essentially ensures an acceptance rate of ~52.9%. This analytical 

quantification clearly agrees with the plots of Figure 3.12. 
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 Pursuing this further, it is also worthwhile to characterize the acceptance rate as the RCR 

increases. This can be evaluated by: 

 

( ) ( ) ( ) ( )2lim lim 2 3 3 2 1 lim2 4 1 0.5Ap
μ μ μ

μ μ π μ μ μ μ
→∞ →∞ →∞

= − − = − =         (3.32) 

 

In fact, 0.5Ap =  is a horizontal asymptote (HA) of the ( )Ap μ  relationship, because from 

long division we notice that: 

 

( )
( )

( )

( )
( )

2 2 3 3 4 3 31
     2

2 1 2 2 2 1Ap
μ π μ π

μ μ
μ μ μ μ

− −
= = + >

− −                  (3.33) 

  

 Although this asymptote is not evident in Figure 3.12, but from (3.32) and (3.33) we 

explicitly recognize that the acceptance rate approaches ~50% as the RCR progressively 

increases. All things considered, we realize that the analytical RNG acceptance rate of the 

algorithm in Figure 3.10 is confined by: 

 

( ) ( )0.47 0.53     2,Ap μ μ< < ∈ ∞                                      (3.34) 

 

 In (3.22) we theoretically derived an expression for the acceptance rate. Conversely, we 

may also define a MC estimator for the acceptance probability of samples denoted by: 

 

: 0 1A Ap p+∃ ∈ ≤ ≤                                                   (3.35) 

 

where this measure is numerically assessed by: 

 

A S Tp n n=                                                           (3.36) 
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such that Sn  represents the number of accepted samples and Tn  is the total number of 

randomly generated instances for a particular simulation realization with values defined by: 

 

: :T S S Tn n n n∗∀ ∈ ∃ ∈ ≤                                             (3.37) 

 

 The estimator of (3.36) can practically be utilized for MC simulations in two different 

ways. On one hand, Sn  is preset before the beginning of the simulation as considered in the 

algorithm of Figure 3.10 and the results of Figure 3.12. On the other hand, Tn  can be 

designated in advance, and as the MC simulation progresses, the amount of Sn  is tracked for 

acceptance rate calculation. 

 For the sake of comparison, it is interesting to evaluate the computational complexity for 

estimating the acceptance rate based on these two different possible approaches. Specifically, if 

we assume that Sn  is deterministic, then the while-loop of Figure 3.10 will be invoked Tn  

times. However, the algorithm growth rate must be a function of its input arguments; thus 

rationalizing the logic for the following manipulations: 

 

( )( ) ( ) ( ) ( )( )

( )

( )
( )
( )

( )( )

0 0 0 0 0 01

0 0 0 02 2

0 02 2

,

4 3 32 1
               2

2 3 3 2 3 3

                         lim , lim 

Tn

cost S T S Ai

S S

cost S S

O T n O c c O c c n O c c n p

O c c n O c c n

O T n O c c n
μ μ

μ μ

μ πμ μ

μ π μ π

μ

=
= + = + ≈ +

−−
= + ⋅ = + ⋅ −

− −

= + ⋅{ }( )

( ) ( )0 0

2 1 2

                                      2 S SO c c n O n

μ−

= +  

(3.38) 

  

 In contrast, if Tn  is fixed, then the algorithm of Figure 3.10 is slightly modified. These 

changes can be summarized as follows: 



57 
 

• Line 1: instead of Sn , we rather require Tn
 as an input to the algorithm. 

• Line 2: as a replacement for Tn , we initialize Sn  to zero and we discard i . 

• Line 3: the while-loop is changed to a for-loop over Tn
 values. 

• Line 4: the update for Tn
 is completely removed. 

• Lines 9, 14, 19: the code appearing on these lines is changed to : 1S Sn n= + . 

• Lines 10, 15, 20: the index i  should be changed to Sn . 

 

Taking these changes into account alters the complexity of the algorithm to: 

 

( )( ) ( ),cost T TO T n O nμ                                                (3.39) 

 

 To facilitate the comparison amongst the estimations, in Table 3.1 we display the 

peculiarities for each of these methods. Granted, the 1st approach is more appropriate due to its 

failsafe nature for a priori setting of the desired number of accepted samples. Nonetheless, if we 

consider the 2nd option, further statistical examination of the estimator becomes simpler; this 

principle will be shown in the steps that follow.  

 

Table 3.1 – Comparing estimation choices for the acceptance rate 

{ } ( )
( )

st

nd

estimation stopping criterion algorithm cost key advantage

1  approach deterministic random guaranteed RNG

2  approach random deterministic 1, 2, , simpler statistics

S T

S S

T T

n n

i n O n

i n O n

<

=

while 

for 
 

 

 To emphasize, a randomly generated sample may either be accepted (A) or rejected (R). 

In other words, we only have two possible outcomes that are mutually exclusive events in 

{ },A RΩ = , therefore: 

( ) ( ) ( ) 0p A R p A A p∩ = ∩ = ∅ =                                      (3.40) 
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Also, the probability for each related event is: 

 

( ) Ap A p=                                                            (3.41) 

( ) 1 Ap R p= −                                                         (3.42) 

 

 Assuming that the experiment is performed Tn  times and the simulation trials are 

uncorrelated, then the binomial probability mass function (PMF) can be utilized such that SN  is 

a random variable (RV) representing the number of accepted samples: 

 

( ) ( ) ( ), , Pr 1 0,1,2, ,T SS
n nT n

S S T A S S A A S T
S

n
N Binomial n n p N n p p n n

n
−

= = = − =

 

(3.43) 

 To be specific, the PMF in (3.43) is used for getting Sn  successes in Tn  trials, where 

each successful event has probability Ap . The important correspondence in this realization 

among the sample acceptance and the binomial distribution are as follows: 

 

             A S Saccepting a randomly generated sample success event A p N n↔ ↔ ↔ ↔ =  

(3.44) 

The mean and variance of SN  are given by: 

 

[ ] ( )
0

 , ,T

S S

n

N S S S T A T An
m N n Binomial n n p n p

=
= Ε = =                       (3.45) 

( ) ( ) ( ) ( )
2 22

0
, , 1T

S S SS

n

N S N S N S T A T A An
N m n m Binomial n n p n p pσ

=
=Ε − = − = −   (3.46) 

  

 The statistics for the estimator in (3.36) can be obtained as a function of (3.45) and 

(3.46). The result of these elaborations produces the following:  
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T A T A
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=Ε =Ε =Ε =

= =                                 (3.47) 

 

( ) ( ) ( )
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A S S

p A p S T p S T p T

S T p T S N T N T

T A A T A A T

p m N n m N n m n

N n m n N m n n

n p p n p p n

σ

σ

=Ε − =Ε − =Ε −

=Ε − =Ε − =

= − = −

              (3.48) 

 

 In particular, the outcome of (3.47) indicates that the acceptance rate estimator is 

unbiased. Further, this estimator is consistent as: 

 

( )2lim  lim  1 0
A

T T
p A A Tn n

p p nσ
→∞ →∞

= − =                                      (3.49) 

 

 In other words, (3.49) implies that the estimation for Ap  becomes more deterministic as 

the number of total samples increase; but by (3.39) this will intensify the running time 

complexity of the estimation. For completeness purposes, substituting (3.22) into the mean of 

(3.47) highlights the RCR dependence on this measure: 

 

( ) ( )
A Ap p Am m pμ μ= =                                                 (3.50) 

 

 Likewise, as demonstrated by (3.51), the spread of the estimator in (3.48) is adjustable by 

two variables: the RCR and Tn . In fact, in order to facilitate its analysis, we wrote this second 

order statistical expression in different mathematical formats, such as: factorization, 

polynomials, long division, and for limit evaluation. From long division or its limit, we detect a 

HA at ( )2 , 1 4
Ap T Tn nσ ∞ = . 
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( ) ( )( ){ }
2

2             1 1 4 3 3 2 1 4 Tnμ π μ μ= − − −

(3.51) 

 

 In general, we want to minimize the variance of (3.51) as much as possible. In (3.49), we 

showed the effect of Tn  on the variance. Now, we are interested to optimize this statistical 

value by understanding its impact on μ . To do this, we could locate the feasible stationary 

points of (3.51) via the following partial derivative: 
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4 3 3 4 3 3 4 3 3, 1
1

4 2 1 2 2 1 2 1

4 3 3
                               8 3 3 2 3 3

2 1
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T T
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n

n n

n

μ π μ π μ πσ μ

μ μ μ μ μ μ μ μ

μ π
μ π μ π

μ μ

′
− − − −∂ ∂

= − =
∂ ∂ − − −

− −
= − + ⋅ −

−

      

(3.52) 

 

Setting (3.52) to zero, we get the following stationary points: 

 

max
4 3 3 2.42σμ π= ≈                                                    (3.53) 

 

( )
min

4 2 8 3 3
4.57

3 3
σ

π π π
μ

+ −
= ≈                                     (3.54) 
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 In Figure 3.13, we plotted the estimator variance as a function of the RCR such that the 

effect of Tn  is normalized. From this graph, the maximum and minimum of the curve are 

appropriately recognized. Clearly, our objective is to reduce the variance, thus the value of (3.54) 

is more relevant. It is interesting to mention from (3.31) and (3.54) that selecting 4.57μ ≈
 has 

a dual statistical advantage: 

 

• It maximizes the acceptance rate of random sampling. 

• It minimizes the acceptance rate estimator variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 – Impact of RCR on the acceptance rate estimator variance 

 

 In (3.50) and (3.51) the first and second order statics of the acceptance rate estimator 

were analytically determined. These measures themselves may also be estimated by averaging it 

over Rn ∗∈  MC realizations which results into: 
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n n

p A i S ii i
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2 2 2 2
2 2 21 1 1

1 1 1R R R

A A

n n n

p A i p S i S ii i i
R R T R T

p m n n
n n n n n

σ − − −= = =
= − = −

             (3.56) 

 

such that A ip −  and S in −  are respectively the estimator of the acceptance probability and the 

number of accepted samples for the -thi  instance. It is in fact expected that as the total number 

of random instances and the number of realizations per instance are jointly increased, then the 

sample statistics will converge to the analytical equivalents in (3.50) and (3.51); in other words: 

 

lim lim  
A A

T R
p p

n n
m m

→∞ →∞
=                                                   (3.57) 

 

2 2lim lim  
A A

T R
p p

n n
σ σ

→∞ →∞
=                                                   (3.58) 

 

 To demonstrate this reality and to verify the analytical derivation, in Figure 3.14 the 

stochastic simulation was conducted. In particular, in order to understand the behavior of the MC 

estimator as a function of the total number of random instances, we performed the MC 

simulation by varying Tn  from 1 to 500 samples. Then, for each Tn  value, the experiment is 

repeated with 50Rn =  times to suitably approximate the statistics of the estimator. Further, to 

illustrate the interdependence of the RCR on the statistical measures, the simulation is 

reproduced for different μ  values. Indeed, as Tn  and Rn  concurrently increase, the MC and 

analytical results are in close agreement. Also, the three variance plots seem relatively identical 

because the growth of Tn  overshadows the impact of μ ; but to be exact, 4.57μ ≈  minimizes 

the variance more rapidly. Overall, the obtained graphical findings are indeed justifying the 

quality and accuracy of the estimator and the efficiency of random generation. 
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Figure 3.14 – Mean and variance of acceptance rate estimator over different RCR values

 

3.3.4 – Geometrical Deployment on the Euclidian Plane for Channel Analysis 

Deployment along the x-axis was treated in the previous subsections. In this part, we will extend 

the derivation by analyzing the spatial emplacement along the y-axis in order to generate a 

random coordinate on the Euclidian plane. To do this, we require the conditional PDF which we 

obtain by: 
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( ) ( ) ( )ˆ| ˆ ˆ,Y X x XY Xf y f x y f x= =                                           (3.59) 

 

 Applying (3.4), (3.5), and (3.6) alongside the deployment support of Figure 3.4 to the 

PDF expression of (3.59) produces the notation in (3.60). In essence, depending on a particular 

range for x̂ , the related PDF is then considered in the expression of (3.60) for randomly 

emulating the y-component of an arbitrary node. 
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Y X x Y

Y

r x x r x r

f y x r x L

L x L x L
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− ≤ ≤

= ≤ ≤

− ≤ ≤

U

U

U
                          (3.60) 

 

 Based on this analysis, the spatial dispersion can at present be characterized by the 

algorithm of Figure 3.15.  
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Figure 3.15 – Pseudocode for y-based random deployment 
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 The deployment complexity for the optimum spatial random generation can be assessed 

by integrating the algorithms of Figure 3.10 and Figure 3.15 together: 

 

( ) ( ) ( ) ( ) ( )2S S S S S SO n O n O n n O n O n+ = + =                           (3.61) 

 

 From a geometrical dispersion point of view, the quantity of Sn  in (3.61) translates into 

the amount of random nodes emplaced within the lattice structure. In other words, the 

deployment of Sn  random terminals has a computational cost of ( )SO n  provided 2μ . 

 Finally, to demonstrate from a deployment perspective the analysis reported in this 

section, we simulated in Figure 3.16 the random geometry for different nodal capacity and RCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 – Spatial random network emulation as a function of network scale and RCR 
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3.4 – Large-Scale Fading Distribution Analysis 

3.4.1 – Spatial Density in Polar Notation 

The spatial behavior was elaborated in the previous section. This was done as groundwork for: 

general network emulation, formulation of the large-scale fading density and to numerically 

verify the authenticity of the analysis. In this part, we are interested to move forward by 

describing the stochastic characteristics of the channel-loss between an arbitrary node and a 

reference located at the origin of the service area. 

 Given the nature of this problem, it is a wise option to perform the stochastic analysis in 

polar notation as opposed to the Cartesian coordinate format. That is, the joint density of (3.4) 

should be modified by the use of: 

 

( ) ( ) ( ) ( ) 2
cos
sin

, ,   ,   , P
x rR XY FF
y r

f r f x y J r r Dθθ
θ

θ θ θ= +
=

= ⋅ ∈ ⊂              (3.62) 

 

where the Jacobian matrix is given by: 

 

( )
cos sin

,
sin cos

x r x r
J r r

y r y r

θ θ θ
θ

θ θ θ

∂ ∂ ∂ ∂ −
= = =
∂ ∂ ∂ ∂                          (3.63) 

 

Consequently, the above alteration changes the geometrical PDF to: 

 

( )
( )

( )
2 2

0

12
,   ,

3 3 2

P
R FF FF

r
f r k r r D

L r
θ θ θ

π

⋅
= = ⋅ ∈

−                     (3.64) 

 

 The challenge now is to explicitly identify the associated polar-based domain 
P
F FD . This 

task can in fact be facilitated by the scrutiny of Figure 3.17. In this illustration, the marked blue 

triangle can be applied as an approach for expressing the radius of the coverage. From the law of 

sines we notice that: 
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Figure 3.17 – Visual support for deriving the deployment region in polar format 

 

( ) ( )sin 3 sin 2 3

r L

π π θ
=

−                                             (3.65) 

 

After arranging the terms of (3.65), we get the notation in (3.66) for the support surface. Its 

associated illustration is shown in Figure 3.18. 

 

( ) ( )0 3 2sin 2 3    0 3r r r Lθ π θ θ π≤ ≤ = − ≤ ≤                     (3.66) 

 

( ) 2: , P
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6π 3π
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( )r θ

0
 

Figure 3.18 – Deployment surface in polar format with respect to the radius 
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 If on the other hand we solve for the angle in (3.66), we then obtain the support region 

depicted in Figure 3.19. The mathematical equivalent of this figure is give by (3.67). 

 

0r 3 2L L
r

6π

3π

( ) ( )2 3 arcsin 3 2r L rθ π= −

( ) ( )arcsin 3 2 3r L rθ π= −

( ) 2: , P
FFSupport r Dθ +∈ ⊂

θ

 

Figure 3.19 – Deployment surface in polar format with respect to the angle 
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        (3.67) 

 

3.4.2 – Characterizing Radial Distribution 

From (3.64) and (3.67), we could now derive the radial distribution: 

 

( ) ( )
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( ){ } ( )

( ){ } ( ){ } ( )
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2 2
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2 2
0

,  

              4 3 3 2 3 2
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  (3.68) 
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 Furthermore, we find it intriguing to substantiate the radial PDF via MC experimentation. 

The simulation results are shown in Figure 3.20, where the theoretical plots for a unity cell are 

accordingly graphed over two RCR values. The outputs are also complemented through 

stochastic simulation of random samples. In principle, for a particular μ  value, the spatial 

position of 25, 000Sn =  random nodes is obtained in a manner similar to that carried in Figure 

3.16. Then, the measure from the arbitrary node to the BS is computed by: 

 

2 2ˆ ˆ ˆ   1,2, ,i i i Sr x y i n= + =                                         (3.69) 

 

Based on the obtained radial data, an 250Bn =  bin histogram is constructed. Finally, the 

histogram occurrence for each bin is scaled for the purpose of obtaining a PDF curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 – Radial distribution for nodal geometry via stochastic simulation 
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3.4.3 – RNG based on Radial Distribution 

Having ( )Rf r  leads us to appropriately remark that in order to verify the anticipated 

analytical formulation for large-scale fading density, random MC data can also be generated 

straight from the radial distribution in addition to the Cartesian-based RNG analysis described in 

Section 3.3. To contrast the computational suitability of this generation option, we thus need to 

identify the RNG attributes of ( )Rf r . For this reason, the CDF of (3.68) is required. 

Following some analysis, the expression for the CDF is obtained by: 
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π
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π
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+ − +

        (3.70) 

 

 From (3.70), we notice that the most efficient random generation founded on the ITM 

technique may not be applicable given that a closed-form ICDF is unattainable. As a 

workaround, despite being a suboptimal option for RNG, the modified version of the ARM 

procedure can still be considered for enhancing the generation performance of the radial 

probability distribution. 

 In particular, in (3.16) and (3.20) we characterized the utmost acceptance rate for the 

modified iterative algorithm. Applying this probability measure for the radial PDF of (3.68), we 

then determine that: 
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(3.71) 
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Furthermore, the HA of (3.71) can be developed by: 

 

( ) ( ) ( )2lim lim3 1 2 3 3 2 1 1 3 2 0.48Ap
μ μ

μ π μ π μ π
→∞ →∞

= − − = ≈                (3.72) 

 

 Additionally, it is insightful to find the intersection point for the RNG acceptance rate 

among the Cartesian and radial notations expressed accordingly in (3.22) and (3.71). In other 

words, if both statements are set equal to each other, then after solving for the RCR we get: 

 

( ) ( )2 3 2 3 11.59Iμ π π= − − ≈                                          (3.73) 

 

 For comparison purposes, in Figure 3.21, we graph the acceptance rate for both of these 

random generation approaches. As shown, the acceptance rate for the radial distribution is 

monotonically decreasing, whereas the Cartesian alternative is not monotonic at all. Also from 

these plots, the intersection point Iμ  can clearly be identified. Moreover, in (3.32) and (3.72), 

the acceptance rate for an RCR that tends to infinity was assessed; essentially, these results 

reveal that Cartesian-based RNG is more performant as μ  extends beyond Iμ . 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 – Efficient RNG acceptance rate based on radial and Cartesian analysis 
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 Empowered from Figure 3.21, the optimum RNG approach can thus be improved by 

partitioning the RCR range such that the ( )Ap μ  is maximized. Implementing this task, leads 

us to observe the following principle for efficient random generation: 

 

2  

 
I

I

radial RNG

Cartesian RNG

μ μ

μ μ

< ≤ ↔

> ↔                                        (3.74) 

 

3.4.4 – Distribution of the Average Path-Loss 

As discussed in Chapter 2, for analytical suitability, the channel-loss expression may be mapped 

to the simpler notation of (3.75), where the average PL for an L  sized cellular network at a 

generic internodal gap is modeled by: 

 

( ) ( ) ( )10 0log     0PL dB
w r L r r r r Lα β≡ = + < ≤ ≤                       (3.75) 

 

In fact, this function is described by ( ) [ ] { }0 0: , Lw r r L w w w ∗

+≤ ≤ ⊂ , such that the 

radial PDF of (3.68) has three breakpoints with extremities 0 , Lw w  and the intermediate value 

Iw , which can be associated with the following average channel measures: 
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Furthermore, the inverse of (3.75), which will be required in upcoming parts, is provided by: 

 

( ) ( )
010     0w

Lr w w w wα β−
= < ≤ ≤                                    (3.77) 
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 Following the above explanation, the objective here is to characterize the distribution of 

the average PL overlaying the randomness of nodal geometry; in other words we want to obtain: 

 

( )( ) ( ) ( )R PL WdB
w w r f r L r f w= ≡                                  (3.78) 

 

Thus, this stochastic transformation translates into these steps: 

 

( ) ( )( ) ( )
( )

( )( ) ( ) ( )

( ) ( )
( )

( )

( ){ }
( )

( )
( )

( )

( )
( )

( )
( )( ){ }

10

02 2
0

2 2
0

10

0
2

2 2
0

10 ln 10

4
3 2

3 3 2
ln 10

 10
8 3arcsin 3 2

3 2
3 3 2

4 ln 10
   10

6arcsin 3 2 10 23 3 2

1

1

1

w

w

w
W R Rr r w r

w

r

I
w

w

f w f r r w dw r dr f r

r
r r L

L r

r L r
L r L

L r

w w w

LL r

α β

α β

α β

α β

α β

α β

β

π

π

πβ

π

π

πβ π

−

−

−

= =

−

=

−

−

= = =

⋅ ≤ ≤
−

= ⋅
−

+ ⋅ ≤ ≤
−

⋅ ≤ ≤⋅
= ⋅

+ ⋅ −− ( )1 I Lw w w⋅ ≤ ≤

 

 

(3.79) 

 

Although omitted here, yet, the veracity of the above density function can actually be 

demonstrated via a number of mathematical manipulations. 

 

3.4.5 – Large-Scale Fading Distribution with Shadowing 

In this part of the dissertation, we will supplement the PDF for the average power loss by 

introducing the impact of shadowing. In fact, this critical component stochastically characterizes 

the implication of scatterers in the propagation channel; thus, incorporating it in the PL model is 

of paramount importance. 

 Basically, shadowing is accounted for by merely adding a RV S dB−Ψ  that has a log-

normal distribution to the average PL. It is imperative to note that the randomness of shadowing 
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and the average PL are statistically uncorrelated. Therefore, the overall large-scale fading PDF, 

namely ( )
PLLf l , is obtained by convolving the mentioned density functions; this is shown by: 

 

( ) ( ){ } ( ) ( ) ( ) ( )0 PLPL PL S dB L WdB dB
L r L r r r L f l f f l− Ψ= +Ψ ⋅ ≤ ≤ = ∗1          (3.80) 

 

 Overall, the large-scale fading PDF of (3.80) that we seek to develop will jointly integrate 

various wireless networking fundamentals together; to be precise, these essential concepts are: 

• Lattice structure of the network configuration. 

• Users’ nodal geometry. 

• Effect of far-field phenomenon. 

• Path-loss predictive behavior. 

• Impact of shadowing due to channel scatterers. 

 

 As shown in (3.81), in order to facilitate the formulation process in later stages, the 

integrand of the convolution is denoted by ( )0f τ : 

 

( ) ( ) ( ) ( )0PLL Wf l f f l d f d l
τ τ

τ τ τ τ τ
∞ ∞

∗

Ψ +
=−∞ =−∞

= − ∈                (3.81) 

 

 Specifically, the shadowing feature in (3.81) is designated by ( )f l τΨ − , and this 

element can indeed be reorganized as follows: 

 

( ) ( )( )f l f lτ τΨ Ψ− = − −                                              (3.82) 

 

In other words, this expression can be solved in three successive steps: 

1. Characterize: ( )f τΨ  

2. Obtain the reversal of the input: ( ) ( )A fτ τΨ −  
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3. Perform a translation by l: ( ) ( ) ( )( ) ( )B A l f l f lτ τ τ τΨ Ψ− = − − = −  

 

 As remarked earlier, the shadowing entity is assessed by a zero-mean log-normal 

distribution with SD σΨ  measured in dB: 

 

( ) ( )20,S dB Sf τ σ− Ψ ΨΨ =N                                         (3.83) 

 

where ( )2,X m σN  is a general Gaussian density function with mean m ∈  and SD 

σ ∗

+∈  defined as: 

 

( ) ( ){ }22 21
, exp 2

2
XX m x m xσ σ

π σ
= − − ∈

⋅
N                 (3.84) 

 

After applying (3.84) into (3.83), we obtain: 

 

( ) { }2 21
exp 2

2
f τ τ σ τ

π σ
Ψ Ψ

Ψ

= − ∈
⋅

                              (3.85) 

 

 The next step would be to perform a reversal of the input variable; however, this will not 

change the notation of (3.85) because: 

 

( ) ( )f fτ τΨ Ψ− =                                                     (3.86) 

 

After, the expression in (3.86) is translated to the right by l ∗

+∈ : 

 

( ) ( ){ }2 21
exp 2

2
f l lτ τ σ τ

π σ
Ψ Ψ

Ψ

− = − − ∈
⋅

                       (3.87) 
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 Alternatively, we may rewrite (3.87) more compactly as in (3.88). For further 

clarification, this result is also shown graphically in Figure 3.22. 

 

( ) ( )2, ,  Sf l l lτ σ τ ∗

Ψ Ψ +− = ∈ ∈N                                (3.88) 

 

( )f l τΨ −

l ∗
+∈

τ

1 2π σΨ⋅

 

Figure 3.22 – Shadowing contribution for large-scale fading density analysis 

 

 In (3.81), the ( ) [ ]0: ,W Lf w wτ +
 part can be attained by (3.79) following an 

exchange of w  by τ ; for convenience this task is performed here as follows: 

 

( )
( )

( )
( )

( ) ( )
( )( ) ( )

02

2 2
0

24 ln 10
10

 6arcsin 3 2 103 3 2

I I L

W

I L

w w w w
f

L w wL r

τ α β

τ α β

π τ π τ
τ

τβ π

−

−

⋅ ≤ ≤ − ⋅ ≤ ≤⋅
= ⋅

+ ⋅ ⋅ ≤ ≤−

1 1

1  

(3.89) 

 

 In view of the multiplication between (3.88) and (3.89), the integrand of the large-scale 

fading will have a domain which is limited by: 

 

{ } { } { }0 00 L Lw w w wτ τ τ τ∗

+∈ ∩ < ≤ ≤ = ∈ ≤ ≤                       (3.90) 

 

As for the integrand, it is derived as follows: 

 



77 
 

 

( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ){ }

( ) ( )
( )( ) ( )

2
0

22 2

2 2
0

0

,

2 2 ln 10
                10 exp 2

3 3 2

2
                                

               6arcsin 3 2 10

1 1

1

W W S

I I L

I L

f f f l f l

l
L r

w w w w

L w w

τ α β

τ α β

τ τ τ τ σ

τ σ
π π βσ

π τ π τ

τ

Ψ Ψ

−

Ψ

Ψ

−

= − =

= ⋅ ⋅ − −
−

⋅ ≤ ≤ − ⋅ ≤ ≤
×

+ ⋅ ⋅ ≤ ≤

N

      (3.91) 

 

In (3.91), the base-10 part could be adjusted as follows: 

 

( ) ( ){ } ( ){ }2 2 2 2 2 210 10 10 10 exp ln 10 10 exp 2 ln 10τ α β α β τ β α β τ β α β τ β− − − −= = = ⋅       (3.92) 

 

 Now, we substitute (3.92) into (3.91) in order to merge the exponential parts that contain 

the τ  variable together so as to obtain: 

 

( )
( )

( )
( ) ( ){ }

( )

( ) ( )
( )( ) ( )

2
2 2

0 2 2
0

0

2 2 ln 10 10
exp 2ln 10 2

3 3 2

2
                             

               6arcsin 3 2 10

q

I I L

I L

f l
L r

w w w w

L w w

τ
α β

τ α β

τ τ β τ σ
π π βσ

π τ π τ

τ

−

Ψ

Ψ

−

⋅
= ⋅ − −

−

⋅ ≤ ≤ − ⋅ ≤ ≤
×

+ ⋅ ⋅ ≤ ≤

1 1

1

       (3.93) 

 

 Next, we could further arrange (3.93) by completing the square of the quadratic function 

( )q τ  inside the exponential. Put differently, we want an equality of this form to hold: 

 

( ) ( )
2 2q a h k a b cτ τ τ τ= − + = + +                                      (3.94) 

 

If we work the details of (3.94), we then recognize that: 
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2h b a= −                                                            (3.95) 

2 4k c b a= −                                                         (3.96) 

 

 In fact, the above ( ),h k  pair is actually the coordinates of the vertex for the parabola 

described in (3.94). To determine the equivalent parameters for ( ), ,a b c  in (3.94), we need to 

expand the quadratic notation ( )q τ  inside the exponential of (3.93): 

 

( ) ( ) ( )
( ) 2

2 2 2
2 2 2

2 ln 101
2 ln 10 2

2 2
a cb

l l
q lτ τ β τ σ τ τ

σ β σ σΨ

Ψ Ψ Ψ

− −
= − − = + + +

 
     (3.97) 

 

 The desired vertex coordinates can at present be computed by inserting the information 

identified in (3.97) into (3.95) and (3.96). Following some arithmetical manipulations, we get: 

 

( ) 22ln 10
h l

σ

β
Ψ= +                                                 (3.98) 

 

( ) ( )
2

2 ln 10 2 ln 10l
k

σ

β β
Ψ⋅ ⋅

= +                                    (3.99) 

 

After, the exponential of (3.94) can be realized by: 

 

( ){ } ( ){ } { } ( ){ }2 2
exp exp exp expq a h k k a hτ τ τ= − + = ⋅ −               (3.100) 

 

 Inserting (3.99) into the first part of the outcome in (3.100), namely 
ke  component, and 

then simplifying the obtained expression develops into: 
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{ }
( ) ( )

( ) ( ) ( )

2

2 2

2

2 ln 10 2 ln 10
exp exp

2 ln 10 2 ln 10 2 ln 10
           exp exp 10 expl

l
k

l β

σ

β β

σ σ

β β β

Ψ

Ψ Ψ⋅

⋅ ⋅
= +

⋅ ⋅
= ⋅ = ⋅

 

(3.101) 

 

 After, substituting from (3.97) the equivalent for a , the h  from (3.98), and the result 

of (3.101) into (3.100), we obtain: 

 

( ){ }
( ) ( )

2 2
2

2
2

2 ln 10 2 ln 101
exp 10 exp exp

2
lq lβ σ σ

τ τ
β σ β

Ψ Ψ⋅

Ψ

−
= ⋅ ⋅ ⋅ − +  

(3.102) 

 

Going back to the integrand in (3.93) and plugging (3.102), we the find that: 

 

( )
( ) ( )

( )
( )

( )

( )

22

0 2 2
0

2
2

2

0

2 2 ln 10 10 2 ln 10
exp

3 3 2

2ln 101
                       exp

2

2
                                     

l

I

f
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l

w w

α β σ
τ

βπ π β σ

σ
τ

σ β

π τ π

−

Ψ

Ψ

Ψ

Ψ

⋅
= ⋅

− ⋅

−
× ⋅ − +

⋅ ≤ ≤ − ⋅
×

1 ( )
( )( ) ( )       6arcsin 3 2 10

I L

I L

w w

L w wτ α β

τ

τ−

≤ ≤

+ ⋅ ⋅ ≤ ≤

1

1

    
(3.103)

 

 

 At present, the integrand of (3.103) is adequately ordered for the purpose of being 

integrated over the τ  variable. To make the integration process more systematic, the τ  

independent expression, where for clarity purposes is contained by square brackets in (3.103), 

can be assigned to: 
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( )0, , , , ,K K l r Lα β σΨ=                                              (3.104) 

 

 Pursuing this further, the τ  dependent statement can be split into three parts. Taken 

together, (3.103) can now be arranged as follows: 

 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1
0 0

2
0 0

3
0

         

                  

I

I L

I L

f w w

f K f w w

f w w

τ τ

τ τ τ

τ τ

⋅ ≤ ≤

= + ⋅ ≤ ≤

+ ⋅ ≤ ≤

1

1

1
                    (3.105) 

 

 If we apply the integration of (3.81) to the notation in (3.105), we converge to (3.106). 

Moreover, as it can be noticed in (3.106), each large-scale fading density part is designated by a 

particular identifier. 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

0

2 31

0

1 2 3
0 0 0

      

                    

PL

I L L

I I

LSF LSFLSF

LSF

L

w w w

w w w

I l I lI l

I l

f l f d l

K f d f d f d

τ

τ τ τ

τ τ

τ τ τ τ τ τ

∞
∗

+
=−∞

= = =

= ∈

= + + +
          (3.106) 

 

After pursuing the first integration, we notice that: 

 

( ) ( ) ( ) ( ) ( ){ }( ){ }
0 0

21 1 2 2
0 exp 2ln 10 2

I Iw w

LSF w w
I l f d l d

τ τ
τ τ π τ σ β σ τΨ Ψ

= =
= = − − +      (3.107) 

 

We could change (3.107) to a simpler entry by using the following transformation: 

 

( )
( ){ }( )22 ln 10l

z z
τ σ β

τ
σ

Ψ

Ψ

− +
= =                                   (3.108) 
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 In fact, as it will be shown later on, we will use the transformation of (3.108) to the three 

integration components described in (3.106). Therefore, the limits of these integrations must be 

readjusted in order to reflect this modification. The association between the limits of τ  and z  

are thus given by: 

 

( ){ }( )
( ){ }( )
( ){ }( )

2
0

0 0
2 3

2

2ln 10

2ln 10

2ln 10

I I I

L L
L

w l
w z

w w z z w l

w z
w l

σ β σ

σ β σ

σ β σ

Ψ Ψ

Ψ Ψ

Ψ Ψ

− +

= ⇔ = = − + ∈

− +
           (3.109) 

 

Returning to (3.107), if we now solve for τ  in (3.108), we notice that: 

 

( ) ( ) 22 ln 10z z lτ τ σ σ βΨ Ψ= = + +                                    (3.110) 

 

and the derivative of (3.110) is obviously d dzτ σ Ψ= . Inserting (3.110), its derivative, and the 

related limits from (3.109) into the formulation of (3.107) becomes: 

 

( ) ( ) ( )
0

1 2exp 2
Iz

LSF z z
I l z dzπ σΨ

=
= ⋅ −                                     (3.111) 

 

 To further simplify and represent (3.111) in an elegant manner, we need to define the so-

called Q-function, ( ) [ ]: 0,1Q x , such that: 

 

( ) ( ) ( )21
0,1 exp 2

2z x z x
Q x dz z dz

π

∞ ∞

= =
= = −N                        (3.112) 

 

 In fact, it can be shown that the Q-function is related to the error function (ERF) and the 

complementary error function (ERFC) by the following relationship: 
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( ) ( ) ( ){ }2 2 1 2 2Q x erfc x erf x= = −                            (3.113) 

 

 Granted, the integration in (3.112) is performed over the { }z x z∈ ≤ < ∞  set; if on 

the other hand the set is limited between two fixed values, say { }1 2x x x x∈ ≤ ≤ , then we 

observe that: 

 

( ) ( ) ( )

( ) ( ) ( ){ } ( ){ }

2

1 1 2

1 2

2 1
1 2

0,1 0,1 0,1

                                  

x

x x x x x x

x x

x x x x

dx dx dx

Q x Q x Q x Q x

∞ ∞

= = =

= =

= −

= − = = −

N N N

         (3.114) 

 

or we could rewrite (3.114) as: 

 

( ) ( ){ }2 2

11

2exp 2  2
x x

x xx x
x dx Q xπ

==
− = −                                 (3.115) 

 

Coming back to (3.111), we could specify the result via the use of (3.115) by: 

 

( ) ( ) ( ){ }
0

1 2 Iz

LSF z z
I l Q zπ π σΨ =

= − ⋅ ⋅                                      (3.116) 

 

 Moving to the second integration of (3.106), we can readily solve it because by (3.103) it 

is similar to 
( ) ( )1
LSFI l  shown in (3.111), except π  should be changed to 2π−  and the limits 

of integration ought to be within [ ],I Lz z ; thus after doing these alterations we obtain: 

 

( ) ( ) ( ){ }2 2 2 L

I

z

LSF z z
I l Q zπ π σΨ =

= ⋅ ⋅                                      (3.117) 

 

At this point, we could get an intermediate result by adding (3.116) and (3.117) together:  
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( ) ( ) ( ) ( ) ( ){ } ( ){ }

( ){ } ( ){ }{ }
( ) ( ){ } ( ) ( ){ }{ }

( ) ( ) ( ){ }

0

0

1 2

0

0

2 2 2

                  2 2

                           2 2

                                        2 3 2

I L

I

L I

I

z z

LSF LSF z z z z

z z

z z z z

L I I

I L

I l I l Q z Q z

Q z Q z

Q z Q z Q z Q z

Q z Q z Q z

π π σ π π σ

π π σ

π π σ

π π σ

Ψ Ψ= =

Ψ = =

Ψ

Ψ

+ = − ⋅ ⋅ + ⋅ ⋅

= ⋅ −

= ⋅ − − −

= ⋅ − +

          (3.118) 

 

 Finally, moving to the third large-scale fading density integration defined in (3.106), it is 

manifested by: 

 

( ) ( ) ( ) ( )

( )
( )

3 3
0

2
2

2

2ln 101 3
              6 exp arcsin

2 2 10

L

I

L

I

w

LSF w

w

w

I l f d

L
l d

τ

τ α βτ

τ τ

σ
τ τ

σ β

=

Ψ

−=
Ψ

=

−
= ⋅ − + ⋅

⋅
   (3.119) 

 

 If we start by applying the transformation of (3.110) to the base-10 entity inside the 

arcsine of (3.119), we find that: 

 

( )

( )

( )( ) ( )( )

( ) ( ){ }

2 2 2

2

2 2

2ln 10 2ln 10

2ln 10

2ln 10

1 10 1 10 1 10 10

                                                   10 10

z l lz

z l

lz

σ σ β α β β β α σ βτ α β σ β

τ σ σ β

β α σ βσ β

Ψ Ψ ΨΨ

Ψ Ψ

ΨΨ

+ + − ⋅ − ⋅ +−

= + +

− +−

= = ⋅

=
 

(3.120) 

 

Overall, with the help of (3.120), the transformation of (3.110) changes (3.119) to: 

 

( ) ( ) ( )
( ) ( ){ }2 2

3 2

2ln 10

3
6 exp 2 arcsin 10

2 10

L

I

z z
LSF lz z

L
I l z dzσ β

β α σ β
σ Ψ

Ψ

−

Ψ − +=
= ⋅ − ⋅ ⋅

⋅
     (3.121) 

 

If we combine the intermediate result of (3.118) and (3.121) together, we then get: 
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( )

( ) ( ) ( ){ }

( )
( ) ( ){ }2 2

0

2

2ln 10

2 3 2

3 10
  6 exp 2 arcsin

2 10

L

I

I L

z
zLSF

lz z

Q z Q z Q z

I l L
z dz

σ β

β α σ β

π π

σ Ψ

Ψ

−
Ψ

− +=

⋅ − +

= ⋅
+ − ⋅

⋅

         (3.122) 

 

 In the expression of (3.122), the utilized variables { }0 , ,I Lz z z  were defined in (3.109) 

as a function of { }0 , ,I Lw w w . Likewise, the w  parameters were identified in (3.76). Ideally, 

these two cascading transformations can be merged together in a compact arrangement: 

 

( ) ( ){ }( )
( ) ( ){ }( )

( ) ( )

2
0, , 0, , 0

2
10 0

2

10

2ln 10     , ,

                          log 2ln 10     , 3 2,

21
                              log ln 10

                        

I L I L I Lz z l w l w w w w

r l r r L L

l r

σ β σ

α β σ β σ

σ
α β

σ β

Ψ Ψ

Ψ Ψ

Ψ

Ψ

= = − + ↔ =

= + − + ↔ =

= − + −

( )
( ) ( )

( )( ) ( ){ }
( )( ){ }

2

2

2

ln 10 2

ln 10 2

21
          ln ln 10

ln 10

1
                                      ln ln 10

1
                                          ln 10

l r

l r

l r

β σ β

β σ β

σβ
α

σ β

α
σ

α
σ

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

= − + −

= − + −

= − +

     

(3.123) 

 

 If we observe all the items that constitute the PDF of the large-scale fading, namely: 

(3.104), (3.122) and (3.123), we remark that these mathematical statements are fundamentally 

dependent on { } 6
,,l + ∗Λ ∈ , such that: 

 

{ } 5
0 ,, , , ,r Lα β σΨ + ∗Λ = ∈                                            (3.124) 

 

is an array of parameters that demonstrates the generic nature of the analytical derivation. 
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 Moreover, as a reminder from (3.80), the l  entry represents a random sample of the 

large-scale fading between a reference and an arbitrary terminal. Indeed, due to the log-normal 

nature of shadowing, this variable is expected to be in ; yet from a practical standpoint it is 

a.s. element in 
∗

+ . For further precision, the range for this RV can additionally be narrowed-

down. Again, from (3.80), we know that large-scale fading is composed of the average PL and 

shadowing: 

( ) ( )PL PL S dBdB dB
L r L r −= + Ψ                                          (3.125) 

 

 The lower extremity of (3.125) is analyzed in (3.126). As noticeable, the optimization of 

the large-scale fading level is split because the contribution from the average PL and shadowing 

are independent of each other, where their characteristics are respectively provided in (3.75) and 

(3.83). 

 

( )
( ){ }

( )
( ){ }

( ){ } { }

( ){ } { }

( )

2 2
, ,

0
, ,
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10 0

min min

          min min

                    min log min

                              log min

PL PL S dBdB dBr r

PL S dBdBr

S dB
r

S dB S

l L r L r

L r

r

r

σ σ

σ

σ

σ

α β

α β

Ψ + ∗ Ψ + ∗

∗ ∗
+ Ψ +

∗ ∗
+ Ψ +

∗
Ψ +

−
∈ ∈

−
∈ ∈

−
∈ ∈

−
∈

= +Ψ

= + Ψ

= + + Ψ

= + + Ψ N ( ){ }20,σΨ

               (3.126) 

 

 By the same token, the higher extremity of the large-scale measure for an L  size 

cellular network model is obtained through: 

 

( )
( ){ } ( ) ( ){ }2

,

2
10

,
max log max 0,L PL S dB SdBr

l L r L
σ σ

α β σ
∗

Ψ + ∗ Ψ +

− Ψ
∈ ∈

= + + Ψ N       (3.127) 

 

 In particular, the optimization for the shadowing entity, which is modeled by a zero-mean 

Gaussian distribution, is still needed in order to complete the results of (3.126) and (3.127). To 

do this, we will stochastically emulate the impact of shadowing. However, for this purpose we 
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need to elaborate on the approach for generating values from a general ( )2,m σN  

distribution function. 

 Indeed, several software packages, including MATLAB®, are capable based on the 

ziggurat algorithm to generate random values from the standard normal distribution. Then, these 

standard samples could be changed to the desired Gaussian density function ( )2,X m σN , 

such that: 

: : 0,1 2x m σ πσ∗

+∀ ∈ ∃ ∈ ∃ ∈                             (3.128) 

 

 In fact, this stochastic modification could be achieved using the transformation shown in 

the block diagram of Figure 3.23. 

 

ˆm nσ+ ⋅( )
( )

ˆ 0,1

N

N

f n

n

=

N ( )
( )

2ˆ ,

X

X

f x

x m σ

=

N

 

Figure 3.23 – Gaussian random generation 

 

 Empowered with the above, we could now randomly generate shadowing instances using 

the simple algorithm of Figure 3.24.  

 

( )

( )

{ }

2

- RNG of Channel Shadowing     

 1: Require: 

 2: 1, 2, ,  

ˆ 3:      Generate a RV: 0,1

ˆ ˆ 4:      Compute: 0,

 5:

ˆ 6: Return: ;  : 1, 2, ,

S

S

i

i i S

i S

n

i n

n

n

i i n

σ

ψ σ σ

ψ

∗ ∗
Ψ +

Ψ Ψ

∈ ∈

=

=

=

Algorithm 4  

for do

end for

N

N

 

Figure 3.24 – Pseudocode for the generation of shadowing 



87 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-40

-30

-20

-10

0

10

20

30

40

i-th random instance

sh
ad

ow
in

g 
 -

  Ψ
S-

dB

σ
Ψ

 = 10 dB

σ
Ψ

2σ
Ψ

3σ
Ψ

-σ
Ψ

-2σ
Ψ

-3σ
Ψ

|Ψ
S-dB

| ≤ σ
Ψ
→3428/5000≈0.6856;  |Ψ

S-dB
| ≤ 2σ

Ψ
→4766/5000≈0.9532;  |Ψ

S-dB
| ≤ 3σ

Ψ
→4984/5000≈0.9968

 Say, we generate some 5, 000Sn =  random samples of shadowing having an SD of 

10 dB, which is typically considered for the channel environments of IEEE 802.20 [52]. When 

we plot the shadowing levels as random realization of dots on a graph against indices of 

instances, we then obtain the output of Figure 3.25. As manifested in the simulation result, the 

shadowing is partitioned into different layers via multiples of SD: 

 

1, 2,S dB j jσ− ΨΨ = ⋅ =                                           (3.129) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.25 – Generating 5,000 random realizations of channel shadowing 

  

 In the above MC experiment, the probabilities for random samples contained in a 

particular interval were estimated. From this example, the most significant observation stem 

from the fact that a negligible of only 16 out of 5,000 random samples were located outside three 

SDs. Statistically speaking, a more precise estimation of these probabilities for the associated 

confidence intervals (CI) reveal that: 
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S dB

S dB

S dB

σ

σ

σ

− Ψ

− Ψ

− Ψ

Ψ ≤ →

Ψ ≤ →

Ψ ≤ →
                                     (3.130) 

 

 Thus, from this analysis, we realize that within three SDs most randomly generated 

samples will be accounted for with high probability (w.h.p.). As a result, the extent of shadowing 

can be estimated by: 

 

( ){ }2min 0, 3S dB S
σ

σ σ
∗

Ψ +

− Ψ Ψ
∈

Ψ ≈ −N                                    (3.131) 

 

( ){ }2max 0, 3S dB S
σ

σ σ
∗

Ψ +

− Ψ Ψ
∈

Ψ ≈N                                     (3.132) 

 

 Substituting (3.131) and (3.132) into (3.126) and (3.127) will respectively provide w.h.p. 

an approximation for the lower and higher extremities of the large-scale fading: 

 

( )0 0 10 0log 3l l rα β σΨ≈ = + −                                         (3.133) 

 

( )10log 3L Ll l Lα β σΨ≈ = + +                                         (3.134) 

 

Hence, a tighter support values for l  is given by: 

 

{ }00 Ll l l l∗

+∈ < < < < ∞                                           (3.135) 

 

 Having characterized the extent of the large-scale fading, we now find it interesting to 

graphically demonstrate in Figure 3.26 the average PL and the deviation from it caused by 

shadowing. In the illustration, an approximately all-inclusive CI for large-scale fading is 

obviously represented by: 
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Figure 3.26 – Interpreting the confidence interval and extent of large-scale fading 

 

 

( ){ }Pr 3 0.997300PL dB
l L r σΨ− ≤ ≈                                   (3.136) 

 

 Indeed, estimates for the lower and higher extremities of the large-scale fading measures 

are recognizable and are accordingly indicated in the above visual representation. As we can 

easily observe, the analyzed results are indeed congruent with the graphical extent shown in 

Figure 3.26. 

 At this moment, we have all the necessary features to analytically assemble the PDF of 

the channel-loss. To be precise, from (3.106), we recognize that the density function is composed 

of two parts. The first part, which is identified and described in (3.103) and (3.104), is designated 

by K . The second part, namely ( )L S FI l , was obtained in (3.122) with Q-function in (3.113); 

and its associated variables were solved in (3.123). Overall, the derived density result is generic 

due to the changeable parameters specified in (3.124). Further, the domain of the density 

function was detailed in (3.135), where the related boundaries were assessed in (3.133) and 

(3.134). The final, exact and closed-form stochastic statement for the probability distribution of 

the large-scale fading between a randomly positioned MS and a reference BS over a MCN model 

is elegantly ordered and explicitly shown in (3.137). 
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(3.137) 

 

3.4.6 – Experimental Validation by MC Simulations 

Here, we will authenticate the expression for the large-scale fading PDF of (3.137) by means of 

stochastic simulations. Generally speaking, the approach for the validation process is broken-

down into three major steps: 

 

1. For a given lattice structure and dimensions, the random network geometry of wireless 

nodes is emulated via MC approach. 

2. The large-scale fading density for a particular channel environment is numerically 

estimated using the emulated spatial samples. 

3. The analytically derived PDF is plotted and then compared with the scholastic estimation. 
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 It is imperative to emphasize that the tractable expression of (3.137) is fully generic and 

thus can be adaptable for any cellular application and wireless technology, as long as user’s 

spatial geometry is assumed to be random and homogeneous over a MCN. Although the obtained 

result is generic in nature, yet to examine its correctness, we will exclusively consider the 

channel parameters of IEEE 802.20 [52] for an urban macrocell as specified in Table 3.2. 

 

Table 3.2 – MBWA channel model for urban macrocell 

0

Propagation Model : -231  -

Operating Frequency : 1.9 GHz

 35 m
Support Range :

 600 3,500 m

34.5 dB
Channel - Loss :

35 dB

Shadowin

COST Hata Model

r r L

L

α

β

= ≤ ≤

≤ ≤

=

=

            IEEE 802.20 Propagation Parameters            

g : 10 dBσΨ =

 

 

In this situation, the actual details for the MC simulations are as follows: 

 

• In Table 3.2, the transmission radius L  can take different values. We will however 

consider a cellular size of 600 m , which translates into an RCR of 17.14 . Given 

this RCR value, we therefore realize from (3.74) that Cartesian-based RNG is more 

efficient. 

• An 10, 000Sn =  random samples for nodes 2D spatial position is required. In fact, the 

set of ˆ : 1, 2, ,i Sx i n=  components are generated from the Cartesian algorithm of 

Figure 3.10. After, based on these values, the ˆ iy  counterparts are obtained using the 

approach described in Figure 3.15. 

• Next, the distance îr  between the reference BS and random nodes is calculated using the 

simple Pythagorean notation of (3.69). 

• After that, the average PL for each of the Sn  random samples is computed by: 
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( ) ( )10
ˆ ˆ ˆlog      1,2, ,i PL i i SdB
l L r r i nα β= + =                       (3.138) 

 

• Using the emulation method detailed in Figure 3.24, values for shadowing are generated 

in order to get instances of large-scale fading as expressed by: 

 

( ) ˆˆ ˆˆ     1,2, ,i PL i i i SdB
l L r l i nψ= + =                              (3.139) 

 

• The uppermost plot of Figure 3.27 shows a scatter diagram for the large-scale fading as a 

function of the BS-to-MS interpoint range. Specifically, each of the 10,000 instances is 

represented by a random point. For perspective to this MC realization, three deterministic 

plots, namely: ( )PL dB
L r , ( ) 3PL dB

L r σ Ψ− , and ( ) 3PL dB
L r σ Ψ+  over [ ]0 ,r r L∈

 

are also shown so as to characterize the average PL and the 99.7%  CI of large-scale 

fading caused by shadowing. Indeed, as noticeable from the figure, only a negligible of 

0.3%  quantity of samples can be found outside the delineation of the CI. 

• Then, based on the described scatter plot, a histogram for the large-scale fading measure 

is constructed. In this simulation, an 100Bn =  bin histogram is considered with equal 

width designated by Bl
∗

+Δ ∈ . Precisely, the bars of the histogram are positioned next 

to each other with no spacing among them. As for the quantity of occurrence per bar, they 

are accordingly scaled to reflect an estimate of the PDF; i.e. the occurrence is divided by 

the amount of random samples and the bin width3. Once scaling is performed, we obtain 

the PDF estimation at discrete points, namely: :  1, 2, ,j Bpdf j n= . 

• Also, the CDF of the large-scale fading measure for randomly positioned nodes is 

approximated by the following recursive relationship: 

 

1 1

1  2,3, ,
B

j j j B B

cdf pdf l

cdf cdf pdf l j n−

= ⋅Δ

= + ⋅Δ =                              (3.140) 

                                                 
3 A more rigorous analysis for PDF estimation is available in Chapter 5 of this dissertation. 
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Figure 3.27 – Verifying the analytically derived formulation for large-scale fading PDF 

 

• As shown in Figure 3.27, the PDF estimation is performed over two values of Sn . As 

expected, an increase of random samples produces a better estimate that appropriately 

matches the theoretically derived density function of the large-scale fading. 

• As remarked earlier in Table 3.2, the cellular size varies from 600 3,500 mL = → . 

Therefore, we find it intriguing to randomly simulate the large-scale PDF as L  changes. 
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Figure 3.28 – Large-scale fading PDF for BS-to-MS over different cellular sizes 

 

The result of this undertaking is shown in Figure 3.28. It is worth noting from the 

simulation that an increase in the cellular dimension raises the channel-loss interval, and 

as a result the first-moment of the PDF is further shifted to the right. Also, it is obvious 

that the analytical derivation of the PDF and the estimation are properly congruent to 

each other. In fact, as Sn  and Bn  increase, the PDF estimation of the large-scale fading 

is further improved. 

 

3.5 – Conclusion 
The main objective of this chapter was to describe the channel-loss density for a random LWN 

with respect to its service provider. In fact, such density can be obtained numerically using MC 

simulations. However this approach is computationally expensive, and also it does not produce a 

tractable and universal stochastic statement useful for analysis and interplay of input/output 

parameters. Consequently, in order to mathematically characterize with great precision the 

manifestation of the channel decay, we progressed into various technical steps. 



95 
 

 In particular, we first had to explain the essential groundwork for the derivation of large-

scale fading density by specifying and combining the analytical features of spatial homogeneity, 

and the geometrical attributes of the MCN lattice. 

 Next, we developed an efficient approach for emulating the geometry of the random 

MCN geared specifically for channel attenuation analysis. This was done as a preliminary step in 

deriving the large-scale fading PDF and also for verifying the authenticity of the derivation via 

actual spatial deployment. We also measured the performance of the RNG, and its stochastic 

features were theoretically formulated and experimentally evaluated. 

 Equipped with all the necessary steps, we then analytically derived the exact and closed-

form expression for the large-scale fading density function between a reference BS and a 

randomly positioned node; and we performed various MC simulations in order to ensure and 

confirm the veracity of the result. To be precise, in this derivation we took into account a number 

of fundamentally important elements, namely: the cellular structure of the architecture, the nodal 

spatial emplacement, the far-field effect of the reference antenna, the PL behavior, and the 

impact of channel scatterers.  

 In fact, the final and overall stochastic expression of the large-scale fading PDF 

expressed in (3.137), is entirely generic and can directly be adjusted to any cellular size L , 

close-in distance 0r , PL parameters α  and β , and shadowing features described by its SD 

σΨ .  That is to say that the stochastic formulation was attained in such a way that it could be 

applied to numerous MCN applications and technologies having a unique scale, coverage size, 

and channel features. In other words, as shown in Figure 3.29, the reported predictive result is 

indeed adaptable via the insertion of related variables to the different network planning 

architectures such as: femtocell, picocell, microcell, and macrocell systems [68]. 

 Also, given the diversity of the transmission coverage for each of the listed network 

realizations, it is thus evident to recognize the variability of the RCR. Notably, for mobile 

applications that operate with microcell or macrocell networks, the RCR is in generally in the 

order of ten or greater. As for femtocell and picocell communications, the RCR is typically 

smaller than this value. Therefore, when the RCR has a slighter level, the significance of the BS 

far-field radiation is more prominent. On the other hand, a superior RCR is marginally impacted 

by the far-field region. Nonetheless, this EM propagation phenomenon was explicitly considered 
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μ  

Figure 3.29 – MCN model feasible for various deployment applications and purposes 

 

in the derived density of the large-scale fading model in order to characterize the laws of 

communications in a rigorous manner; and also to ensure the soundness of the stochastic 

expression for all type of cellular systems, irrespective of the network scheme. 

 Furthermore, it is worthwhile to remark that the closed-form analytical expression of the 

compiled channel-loss PDF will still be applicative for cellular network cases that are partitioned 

into three or six sectors. In fact, this premise was remarked in Section 3.2. More on this topic 

will further be elaborated in the next chapter. 

 For future work, the reported analytical result can be utilized by theoretically deriving the 

outage probability as a feasible integrity measure for the quality of the random network. Ideally, 

this formulation can be determined by an exact result; but to remain pragmatic, the derivation is 

likely to be founded on tight approximation bounds. 
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Chapter 4 

Emulating Heterogeneous Deployment via 

Geometrical Stochastic Modeling 
 

 

4.1 – Introduction 

4.1.1 – Objective 

Emulation is a powerful approach that assists applied scientists to better appreciate the system 

under investigation. Indeed, once adequately conceptualized, this technique develops into an 

indispensible analysis mechanism because the method for reengineering and modeling the 

network architecture can be shown to be: 

• Cost and time efficient. 

• Straightforwardly adjustable by simple parameter modifications. 

• Informative in understanding the attributes of a complex platform. 

As a result, having the capability to emulate the footprint of a LWN is fundamentally important 

for effective network design and planning during both pre- and post-deployment. Of course, 

some work has been initiated in spatial modeling of the network, but on the whole there are 

various research aspects in this subject matter that require extensive ameliorations or 

alternatives. In this chapter, our genuine contribution is based on a threefold objective: 

 

1. Deriving exact stochastic expressions for random spatial deployment over a flexible UCN 

model. The anticipated findings will also serve as intermediate steps for the subsequent 

channel-loss and inhomogeneity objectives. 

 

2. Obtaining a tractable closed-form stochastic notation for the large-scale fading PDF over 

a geometrically versatile random UCN deployment. 
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3. Proposing novel geometrical deployment algorithms for achieving spatial heterogeneity 

such that users clustering tendencies are accounted for UCN and MCN structures. 

 

After formulation, the above analytical undertakings will be supplemented by the demonstration 

of various random networks generated from MC realizations. Altogether, the obtained results are 

expected to deliver a practical toolkit that will be instrumental in researching the facets of radio 

networks related to connectivity and service quality. 

 

4.1.2 – Organization 

The rest of this chapter is organized as follows. In Section 4.2, we will explicitly formulate and 

analyze the geometrical characteristics of a flexibly versatile random UCN model. Under such 

network configuration, in Section 4.3, we will then derive a predictive model for the large-scale 

fading density function that exhibits adaptable and tractable properties. After, in Section 4.4, we 

will reveal the ASD algorithm for the purpose of emulating spatial inhomogeneity. Next, we will 

utilize this proposed algorithm to develop a heterogeneous mechanism for controlled UCN 

deployment. We will also conceive a technique for automatically generating an arbitrary 

geometrical structure with least amount of inputs. Afterward, in Section 4.5, we will develop an 

additional algorithm for spatially modeling a large MCN founded in part on antenna sectoring. 

Finally, Section 4.6 will conclude the chapter. 

 

4.2 – Stochastical Characteristics of a Versatile UCN Model 

4.2.1 – Exact Geometrical Expressions for Spatial Deployment 

As noted in Chapter 2, the BS coverage of a cellular network is influenced by multiple factors, 

such as: antenna radiation, atmospheric attenuation, channel deteriorations due to terrain features 

and manmade obstacles. Considering these items simultaneously will result in an unpredictable 

lattice contour. As a result, random nodal deployment in this irregular lattice model will be 

highly intricate and likely inconceivable. Fortunately, for cellular networks, it is customary to 

model the extent of the transmission coverage by an ideal disk-shaped circular geometry. The 

key rational for considering a well-defined cellular structure is done so as to facilitate the 

theoretical analysis and stochastically enable the spatial emulation of a LWN. 
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 For various mobile communication purposes the circular random network model has been 

presumed, among others, in [18]–[25]. Despite the availability of this spatial model, in its current 

state it does not offer any deployment versatility in dealing with sectored layers and edge related 

aspects. Clearly, the needed geometrical adaptability could be created synthetically through 

heuristic means. However, besides being an inefficient generation approach, such workarounds 

alters the wanted randomness; thus defeating the main principle of stochastic networks. As a 

consequence, we will in this subsection derive the exact and appropriate expressions needed for 

random nodal emplacement. 

 To begin, instead of making the cell shape represents the BS radiation coverage, we 

rather make it correspond to the surface area of some terrain. For the sake of the argument, let us 

assume that the surface region of interest has circular ring sector geometry. And, for the simplest 

and possibly most intuitive case for spatial deployment, we may postulate that nodes are 

uniformly distributed within this geographical strip. As a result, the joint spatial PDF for nodes 

2D position will have the form depicted in Figure 4.1, where the inner and outer cellular radii of 

the ring sector are identified in (4.1), and the angular limits are given by (4.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 – Spatial density function over a circular ring sector in Cartesian coordinates 

 

2
1 2 1 2, : 0L L L L+∃ ∈ ≤ <                                               (4.1) 

2
1 2 1 2, : 0 2α α α α π+∃ ∈ ≤ < ≤                                         (4.2) 
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 As for the region shown in Figure 4.1, it can be assessed over the surface domain by 

simply integrating an infinitesimal area element which is represented in Cartesian and polar 

notations by: 

polarCartesian

dA dx dy r dr dθ= ⋅ = ⋅ ⋅
                                                (4.3) 

 

Pursuing this task produces: 

 

( )
( ) ( )2

2 2
2 1 2 1,

2
RS

RS x y D
A dA L L α α

∈ ⊂
= = − −                              (4.4) 

 

such that RSA ∗

+∈  is the corresponding deployment area of the network cluster for the ring 

sector, RSD  is the support domain in Cartesian format, and 
P
RSD  is the equivalent domain in 

polar notation. From (4.4), the spatial density can then be formulated by its reciprocal as follows: 

 

( ) ( )( ) ( )2 2 2
2 1 2 1, 1 2 ,XY RS RS RSf x y A L L k x y Dα α= = − − = ∈ ⊂       (4.5) 

 

Also, the magnitude of this spatial density function is constant and set by RSk ∗

+∈ . 

 For generation purposes, the next step demands that we determine the marginal density 

along each axis. It turns out that if we continue with the rectangular coordinates, the analysis will 

become longer and more complicated to solve. Specifically, RVs X  and Y  are correlated; 

thus a generic and compact stochastic model for diverse cellular parameters will not be possible, 

rather derivation will be needed for different subsets of the values. Further, under these 

conditions, efficient random generation is unfeasible because the marginal ICDF is not 

expressible in an explicit format; thus requiring the use of the iterative suboptimal ARM 

procedure detailed in the former chapter. Also due to the variables interdependence, serial 

processing during the RNG step will be necessary as opposed to time-efficient parallel 

computation. In light of these observations, we will need to determine a stochastical conversion 

procedure in order to simplify these important challenges. 
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 Given the character of the network cluster being modeled, it is evident that the best 

transformation ought to depend on the polar coordinate system. In other words, the spatial 

density of (4.5) is stochastically converted to: 

 

( ) ( ) ( ) ( )

( )( )

2
cos
sin

2 2
2 1 2 1

, ,   ,     ,

                     2

P
x rR XY RS
y r

f r f x y J r r D

r L L

θθ
θ

θ θ θ

α α

= +
=

= ⋅ ∈ ⊂

= ⋅ − −
              (4.6) 

 

where its support surface is described by: 

 

( )

( )

2
1 2

4
1 21 2 1 2

, 0

0 2, , ,
P
RS

r L r L
D

L L

θ

α θ α πα α

+

+

∈ ≤ ≤ ≤
=

≤ ≤ ≤ ≤∈                       (4.7) 

 

The portrayal of this distribution function is accordingly shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – Spatial density function over a circular ring sector in polar coordinates 

 

 Using the results of (4.6) and (4.7), we could at present express the marginal probability 

densities for the radial and angular components: 



102 
 

( ) ( )
( )

( ) ( )

( ){ } ( )

2

1

2 2
2 1 2 1,
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( ) ( )
( )

( )( )

( )

2
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2 2
2 1 2 1,

1 2 1 2
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                         ,     0 2

P
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L

Rr D r L
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θ

θ θ α α

α α α θ α π

∈ =
= = ⋅ − −

= ≤ ≤ ≤ ≤U
              (4.9) 

 

From (4.8) and (4.9), we could readily show that RVs R  and θ  are indeed independent 

because: 

( ) ( ) ( ),R Rf r f r fθ θθ θ= ⋅                                               (4.10) 

 

Pursuing this further, the radial CDF ( ) [ ]: 0 ,1RF r +
 is also determined: 

 

( ) ( ) ( ) ( ) ( ){ } ( )2 2 2 2
1 2 1 1 2r 1

r

R Rr
F r R r f r dr r L L L L r L

=−∞
= Ρ ≤ = = − − ⋅ ≤ ≤         (4.11) 

 

 Now, if we set the CDF of (4.11) to an arbitrary sample occurrence û  generated from a 

standard uniform distribution, namely ( )ˆ ˆRF r u= , then the related ICDF should enable perfect 

emulation of random instances: 

 

( ) ( )( ){ } ( )
1ˆ ˆ 0,1R Rr F u f r
−

= U                                      (4.12) 

 

 After solving the expression in (4.12), we notice that the radial samples will be generated 

from a function specified by: 

 

( ) ( ) { } ( )2 2 2
1 2 1 2 1 1 2ˆ ˆ ˆ ˆ ˆ ˆ, , : : 0 1 ,r r u L L L u L L u u L L∗

+= = + − ∃ ∈ < <         (4.13) 
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 As for the angular component, its random samples can be produced using the 

transformation of Figure 3.9; and therefore we get: 

 

( ) ( ){ } ( )1 2 1 2 1
ˆ ˆ ˆ ˆ, ,v v fθθ θ α α α α α θ= = + −                               (4.14) 

 

where û  and v̂  are uncorrelated random i.i.d. samples, or ˆ ˆ ˆ ˆu v u v⋅ = ⋅ . Overall, due to 

the ( ) ( ), ,x y r θ→  transformation, we have changed inconveniences into advantages. 

Namely, R  and θ  are statistically independent, a unique model is valid for all supported 

parameter values, and the ITM approach can be used as the efficient RNG of choice. 

 To verify the generation accuracy of the radial density, we performed in Figure 4.3 a set 

of random simulations. Specifically, the outer radius of the network ring was fixed at one unit, 

whereas the inner radius varied for different values. For each network case, the simulation was 

performed based on 10,000 random samples with a histogram resolution of 100. As obvious from 

the outputs, the radial PDF based on theoretical analysis and MC measures are in agreement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 – Radial density by means of MC simulations for UCN deployment 
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 As for spatially modeling the versatility of UCN random deployment, using the above 

exact analysis, we show in Figure 4.4, a ( )SO n  pseudocode for this objective. 

 

( ) ( )

{ } ( )

( ) ( )

2 2
1 2 1 2

0 1

2 2 2
1 0 2 1

- Random Deployment for a Circular Network     

1: Require: , ,

2: 1, 2, ,  

ˆ ˆ3:      Generate two i.i.d. RVs: , 0,1

ˆ ˆ4:      Compute: :

5:    

S

S

i R

n L L

i n

u u

r L u L L f r

α α∗

+ +∈ ∈ ∈

=

= + −

Algorithm 5  

for do

U

( ){ } ( )

{ } ( ) ( ){ } ( )

{ }

1 1 2 1
ˆ ˆ  Compute: :

ˆ ˆˆ ˆ ˆ ˆ6:      Compute: ;  cos ;  sin ,

7:

ˆ ˆ8: Return: , : 1, 2, ,

i

i i i i i i XY

i i S

u f

x y r r f x y

x y i n

θθ α α α θ

θ θ

= + −

=

=

end for

 

Figure 4.4 – Pseudocode for random UCN spatial deployment 

 

 Furthermore, to demonstrate the flexibility and the generic nature of the UCN model just 

derived, we obtained through random MC simulation the results of Figure 4.5 for different 

parameter values and nodal densities assessed by Aρ . The six unique random network examples 

of these random networks were realized by two type of inputs to the algorithm; namely the 

geometrical attributes of the random cluster: 1 2 1 2, , ,L L α α , and the scale of the network: Sn . 

As visually manifest in Figure 4.5, the 2D deployments and the spatial densities match the 

anticipated footprint of the network. 

 

4.2.2 – Experimental Analysis of the Spatial Density 

In this subsection, we intend to further probe in the estimation of spatial density between 

theoretically predicted formulation and randomly simulated results. Precisely, once the random 

2D deployment is realized, we then consider these arbitrary geometrical samples in order to 

represent a bivariate histogram that approximates the Euclidian distribution of the deployment. 
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Figure 4.5 – Versatility of UCN random network models 
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BxΔ
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Ly
Hy

Lx

Hx

( ),i jh

 For this purpose, as illustrated in Figure 4.6, we start by considering the approximation of 

a general 2D probability function by its histogram equivalent.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 – A general bivariate histogram realization 

 

 To analytically characterize this estimation, the bivariate fundamental histogram bin 

positioned at the origin of a Cartesian coordinate system is assigned to: 

 

( ) ( ), 2 ;  2B B Bx y x x y yδ = ≤ Δ ≤ Δ1                                    (4.15) 

 

such that ( ),A x y1  is a 2D indicator function over ( ) 2,x y A∈ ⊆ , and 

( ) 2
,,B Bx y + ∗Δ Δ ∈  are the dimensions of each histogram bin. In fact, these dimensions can be 

computed by: 

( )B H L B Xx x x n −Δ = −                                                  (4.16) 

( )B H L B Yy y y n −Δ = −                                                  (4.17) 

 

where [ ] [ ], ,L H L Hx x y y×  identifies the deployment surface of the network, and 

( ),B X B Yn n− −  represents the resolution of the bivariate histogram. Furthermore, the number of 

occurrence for the ( ), -thi j bin is defined by: 
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( ) ( ) ( ){ }2 2
, : , ;  ,  1 ;  1B X B Y B X B Yi jh i j n n i n j n∗ − − ∗ − −∈ ∈ ≤ ≤ ≤ ≤          (4.18) 

 

 Using the above definitions and assignments, we could therefore express the overall 

spatial density histogram ( ) 2, :H x y  for a randomly deployed network by: 

 

( ) ( ) ( ),1 1
, ,B Y B Xn n

B i ji jj i
H x y h x x y yδ− −

= =
= ⋅ − −                             (4.19) 

 

having bin center positions ( ) 2,i jx y ∈  parameterized by: 

 

( )1 2 1,2, ,i L B B Xx x i x i n −= + − Δ =                                   (4.20) 

( )1 2 1,2, ,j L B B Yy y j y j n −= + − Δ =                                  (4.21) 

 

At this point, we could analytically obtain the average bivariate histogram density as follows: 

 

analytical
XY XY A binh h Aρ= = ⋅                                               (4.22) 

 

such that Aρ
∗

+∈  is the number density of the spatial network, and binA ∗

+∈  represents the 

surface area of the bivariate bin. As a consequence, we could rewrite (4.22) in generic terms by: 

 

analytical
XY S bin N S B B Nh n A A n x y A= ⋅ = ⋅Δ ⋅Δ                                 (4.23) 

 

where Sn ∗∈  is the number of randomly generated position samples, and NA ∗

+∈  is the 

surface area of the network lattice.  

 Specifically, if we want to estimate the histogram density for the circular network case, 

we could consider the spatial footprint depicted in Figure 4.7. As illustrated, the histogram grid is 

based on equally-spaced bin regions of B
∗

+Δ ∈  dimensions. For precisions purposes, it is 
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worth noting that although the figure portrays a 10 10×  grid, in our generic derivation we will 

assume a 2D resolution of 
2
Bn . 

x

y

1α
2α

1L

2L

2
RSD ⊂

22L

22L

binA ∗
+∈

B
∗
+Δ ∈

LΔ

Figure 4.7 – Footprint of a UCN model for spatial density estimation 

 

The dimension of the bin area is therefore obtained by: 

 

22B B B Bx y L nΔ = Δ = Δ =                                             (4.24) 

 

Substituting (4.24) and (4.4) into (4.23), we then find that: 

 

( ) ( ){ }2analytical 2 2
2 1 1 28 1XY S B RS S Bh n A n n L Lα α= ⋅Δ = ⋅ ⋅ − ⋅ −                  (4.25) 

 

 The histogram density may also be computed from experimental MC data points through 

its empirical mean, which is defined in its general format by: 

 

( )
simulation

,1 1

1ˆ B Y B Xn n

XY XY i jj i
XY

h h h
n

− −

= =
= =

                                  (4.26) 
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where XYn ∗∈  is the amount of bins over the deployment surface having a nonzero occurrence 

number. To be accurate, this value is in fact bounded by: 

 

0 XY B X B Yn n n− −< ≤ ⋅                                                    (4.27) 

 

 For explicit computational purposes, the expression of (4.26) can be evaluated by means 

of the simple algorithm outlined in Figure 4.8. 

 

( ) ( ){ }2
,

- Computing the Empirical Mean of the Histogram Density

 1: Require: , : 1, 2, , ;  1, 2, ,

 2: Initialize :  0 0

 3: 1, 2, ,  

 4:      1, 2, ,  

B X B Y B X B Yi j

sum XY

B X

B Y

n n h i n j n

h n

i n

j n

− − ∗ − −

−

−

∈ ∈ = =

= =

=

=

Algorithm 6  

for do

for do

( ){ }
( )

,

,

simulation

 5:           0

 6:                :

 7:                : 1

 8:           

 9:      

10:

11: Return/Compute: 

i j

sum sum i j

XY XY

XY sum XY

h

h h h

n n

h h n

≠

= +

= +

=

if  then

end if

end for

end for

 

Figure 4.8 – Pseudocode for evaluating the average simulated histogram density 

 

 In order to verify the statistical metrics developed above, we performed a number of MC 

simulations for various permutations of the randomly modeled network. In essence, we 

considered the same network geometries as those described in Figure 4.5; except, random 

instances of the nodal position samples were augmented in order to produce a reliable 

approximation of the spatial density. As for the estimation step, the quantity of subdivisions 

along the x and y axes were equal and set to 500Bn =  for all cases. 



110 
 

 Table 4.1 presents a contrast of the spatial density estimation between theoretical 

prediction and simulated data. It should be clear from the table that although both bivariate 

histogram density measures of (4.25) and (4.26) have units of no. per bin area, they will not be 

integer values, rather each will be in 
∗

+  because they represent average quantities. The 

percentage error of the spatial density among analysis and simulation were quantified using 

(4.28). Given the slight value of the error, we can straightforwardly conclude the validity of the 

statistical estimation analysis formulated. 

 

simulation analytical

analytical
100

XY XY

A

XY

h h

h
ε

−
= ×                                           (4.28) 

 

Table 4.1 – Contrasting spatial density estimation among theoretical and empirical values 

( ) ( ) ( ) ( ) ( ) ( ) ( )

analytical simulation

22

6

6

random network

models no. %units no. no. bin area no. bin areak units

small ring sector 0.2793 10 3.5810 500 57.2958 56.4602 1.46

large ring sector 0.5027 10 1.9894 500 31.8310 31.229

RS AS B AXY XY
A n n h hρ ε

6

6

6

7

7 1.89

small circular sector 0.2618 10 3.8197 500 61.1155 59.9434 1.92

large circular sector 1.1345 10 0.8815 500 14.1036 14.0280 0.54

circular ring 1.6022 10 0.6241 500 9.9862 9.9137 0.73

circular cell 3.1416 10 3.1831 500 50.9296 50.7354 0.38

 

 

 Overall, in this section, we demonstrated and analyzed the approach for spatial flexibility 

in random deployment because we derived exact and generic stochastic expressions based on 

efficient random generation. As it will be shown in the next section, the described geometrical 

model will also be useful as a steppingstone for obtaining a tractable channel-loss distribution, 

because the impact of far-field will inherently be accounted for in the network model. Also, it 

will enable a more focused study of the large-scale fading behavior in the vicinity of the cellular 

border in order to study edge related aspects. Moreover, the versatile circular network model will 

as well be instrumental for deriving both controlled and uncontrolled algorithms for achieving 

network inhomogeneity. 
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4.3 – Channel-Loss Predictor for an Adaptable UCN Model 
 

4.3.1 – PDF of the Path-Loss 

Being able to model and predict the probability density of PL is always essential in wireless 

communications due to its insight for a range of network quality indicators. As a sophisticated 

substitute to intense and exhaustive MC simulations for each network geometry and channel 

environments, the channel-loss PDF can stochastically be obtained in a generic and tractable 

format. In this section, this mentioned purpose will constitute the central challenge to be solved. 

 Notably, for the spatial model characterized in Section 4.2, we need to find a 

corresponding PL density function that preserves the adaptable attributes of the random network. 

That is, we aim to derive the propagation loss between a cellular tower or AP positioned at the 

origin of the Euclidian plane and any arbitrarily located node in the deployment surface 

2
RSD ⊂  of a circular ring sector. 

 A generic model for the average PL is expressed in (4.29). As we notice, the PL model is 

only valid and defined for interpoint distances between a random node and a reference that 

extends beyond the close-in range 0r
∗

+∈  of the transmitting antenna. In other words, for 

channel analysis, the inner cellular radius of the ring sector during deployment has an additional 

requirement, constraining it by 1 0 0L r≥ >  as opposed to the support surface stipulated earlier in 

(4.7), which only specifies that 1 0L ≥ . 

 

( ) ( ) ( )10 0 1 2log     0PL dB
w r L r r r L r Lα β≡ = + < ≤ ≤ ≤                  (4.29) 

 

 In (4.30), the PL parameters ( ) 2
,,α β + ∗∈  are deterministic values, and the BS-to-MS 

spatial gap r ∗

+∈  is a RV specified by the radial PDF of (4.8). Empowered with this 

information, at present, we want to determine the density of the average PL which we define by: 

 

( ) ( ) ( ){ }1 2 1 2

3
0 , 0: ;  , ,PL W L L L LdB

L r f w w w w w w w w w∗ +
+ + ∗∈ ∈ ≤ ≤ ≤        (4.30) 
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where 0w , 
1Lw  and 

2Lw  are respectively the average channel-loss at the close-in distance, inner 

and outer radii of a circular network. From stochastic theory, and using the statements of (4.8), 

(4.29) and (4.30), we analytically compute the average PL density: 

 

( ) ( )( ) ( )
( )

( )( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ){ } ( )
1 2

10

2 2 2
2 1

ln 10
               10 ln 10 10 10

                           2 ln 10 10 1

w

W R r r w

w w w
R Rr

w
L L

f w f r r w dw r dr

f r f

L L w w w

α β

α β α β α β

α β

β
β

β

−

=

− − −

=

−

= =

= = ⋅ ⋅

= ⋅ ⋅ − ⋅ ≤ ≤

     (4.31) 

 

4.3.2 – PDF of the Large-Scale Fading 

Superimposing the random impact of in-field scatterers to the PL will further enhance the large-

scale fading model. In other words, we want to obtain the probability density of the following 

analytical upgrade: 

( ) ( ) ( ) :
PLPL PL S dB LdB dB

L r L r f l ∗ +
− += +Ψ                           (4.32) 

 

 It is paramount to remember that indeed the average PL which depends on nodal 

geometry and channel shadowing are stochastically disconnected, namely: 

 

( ) ( ) ( )
average PL shadowing

,           W Wf w f w fψ ψΨ Ψ= ×
                                     (4.33) 

 

Thus, the large-scale fading PDF of (4.32) will be based on the convolution of these independent 

stochastic components: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )2

          ,  

                                                  ,

PLL W W

W S

f l f l f l f f l d l

f l d

τ

τ

τ τ τ σ

τ σ τ

∗ ∗

Ψ Ψ Ψ + +<∞

Ψ<∞

= ∗ = ⋅ − ∈ ∈

= ⋅N          (4.34) 
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Working the details of (4.34) produces: 

 

( )
( )

( )
( ) ( ){ }

( )

( )
( ){ }

( )

( )

2

1

2

1

22 2

2 2
2 1

2
22 2

2 2
2 1

2

2 2
2 1

ln 102
10 exp 2

ln 10 102
                       10 exp 2

ln 10 102
                                     exp 2 ln

L

PL
L

L

L

w

L w

w

w

f l l d
L L

l d
L L

L L

τ α β

τ

α β
τ β

τ

α β

τ σ τ
π β σ

τ σ τ
π β σ

π β σ

−

Ψ=
Ψ

−

Ψ=
Ψ

−

Ψ

= ⋅ − −
⋅ −

⋅
= ⋅ − −

⋅ −

⋅
= ⋅

⋅ −
( ) ( ){ }2

1

2 210 2
L

L

w

w
l d

τ
τ β τ σ τΨ=

− −

   

                                    (4.35) 

 

 An alternate expression for the integrand of (4.35) was previously found in (3.102); after 

inserting it in the above notation, we get: 

 

( )
( ) ( )

( )
( )( ){ }

( ){ }( ){ }2

1

2
2

2 2
2 1

2
2 2

ln 10 102
exp 2ln 10

                                               exp 2ln 10 2

PL

L

L

l

L

w

w

f l
L L

l d

α β

τ

σ β
π β σ

τ σ β σ τ

−

Ψ

Ψ

Ψ Ψ
=

⋅
= ⋅

⋅ −

× − − +
     (4.36) 

 

If we transform the τ  variable of (4.36) by: 

 

( ) ( ){ }( )22ln 10z z lτ τ σ β σΨ Ψ= = − +                                 (4.37) 

 

we then obtain the following outcome: 

 

( )
( ) ( )

( )
( )( ){ } ( )2

1

2
2

2

2 2
2 1

ln 10 102
exp 2ln 10 exp 2

L

PL
L

l
z

L z z
f l z dz

L L

α β

σ β
π β

−

Ψ =

⋅
= ⋅ × −

−        (4.38) 
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such that ( )
1 1L Lz z wτ= =  and ( )

2 2L Lz z wτ= = . In (3.115), we showed an approach for 

expressing the integration of (4.38) using the Q-function; after exercising this we get: 

 

( )
( ) ( )

( )
( )( ){ } ( ) ( ){ }1 2

2
2

2 2
2 1

2 ln 10 10
exp 2ln 10

PL

l

L L Lf l Q z Q z
L L

α β

σ β
β

−

Ψ

⋅ ⋅
= ⋅ ⋅ −

−           (4.39) 

 

As noted above, ( )z z τ= , but τ  is a variable that characterizes the average PL; hence: 

 

( )( ) ( )( ) ( )10logPL dB
z z L r z r z rτ α β= = = + =                             (4.40) 

 

and so, (4.37) will change to: 

 

( ) ( ) ( ){ } ( )( ){ }2ln 10 22
10log 2ln 10 ln 10z z r r l l rβ σ βα β σ β σ α σΨ

Ψ Ψ Ψ= = + − − = − +     

     (4.41) 

 

From (4.41), we therefore can solve for ( )
1 1Lz z r L= =  and ( )

2 2Lz z r L= =  utilized in 

(4.39).  

 Before putting the final expression together, for the sake of mathematical elegance, we 

can attempt to represent the limits of the Q-function in (4.39) in a coherent fashion. Specifically, 

say we assign the ( )Q z  part of (4.39) to: 

 

( ) ( ){ } ( ){ } 1

1 2
2

L

L

z

LSF L L z z
I Q z Q z Q z

=
− =                                    (4.42) 

 

From probability theory, we know that: 

 

( ) ( )1Q z Q z= − −                                                      (4.43) 
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Plugging (4.43) into (4.42), we then deduce that: 

 

( ){ } ( ){ } ( ) ( ) ( ){ }1 1 2

2 1
2 2 1

1L L L

L L L

z z z

LSF L Lz z z z z z
I Q z Q z Q z Q z Q z

= = =
= = − − = − − − = −        (4.44) 

 

If we insert the z  of (4.41) into (4.44), we obtain: 

 

( ){ } ( )( ){ }( ){ }
( )( ){ }( ){ }

22
2

1
1

22

1

ln 10 2

ln 102

ln 10

                                               ln 10

L

L

L
z

LSF z z
r L

L

r L

I Q z Q l r

Q l r

β σ β

βσ β

α σ

α σ

Ψ

Ψ

Ψ=
=

Ψ
=

= − = − − +

= − +
         (4.45) 

 

 Last, substituting (4.45) into (4.39), we then obtain in (4.46) the final PDF notation for 

the large-scale fading between a reference BS and an arbitrary random terminal located in a 

UCN ring sector. Overall, as emphasized by Λ , the derived stochastic statement exhibits 

generic and adaptable traits for a particular channel behavior characterized by its distinctive 

propagation parameters, and for a flexibly variable random geometry over a UCN. 

 

( )
( ) ( )

( )
( )( ){ }

( )( ){ }( ){ }

{ }

22

1

2
2

2 2
2 1

ln 102

6
0 1 2 ,

2 ln 10 10
, exp 2ln 10

                                                             ln 10  

 , , , , ,                                        

PL

l

L

L

r L

f l
L L

Q l r

r L L

α β

βσ β

σ β
β

α σ

α β σ

Ψ

−

Ψ

Ψ
=

Ψ + ∗

⋅ ⋅
Λ = ⋅

−

× − +

• Λ= ∈

( ) ( ) ( ){ }
( )

( )

1 2

1

2

0 1 2

10 1

10 2

                   0

 2 2 1 2 2                                     0

 log 3

 log 3

L L

L

L

l l l

Q z erfc z erf z r L r L

l L

l L

α β σ

α β σ

Ψ

Ψ

< < < <∞

• = = − < ≤ ≤ ≤

• = + −

• = + +                                                                            

 

(4.46) 
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4.3.3 – Analyzing the Domain and Range of the Large-Scale Fading PDF 

Having derived the exact closed-form formulation for the large-scale fading density, at present, it 

is informative to further scrutinize and identify the properties of this function. In particular, the 

domain gap and range of this distribution function can be useful to characterize its behavior. 

 Admittedly, as demonstrated in the previous chapter, it is w.h.p. (i.e. ~99.7% CI) possible 

to model and compute the extremities of large-scale fading. Indeed, in (4.46) these lower and 

higher measures were shown for all possible UCN deployments. In view of this, the span of the 

domain PL
∗

+Δ ∈  can be determined by: 

 

( ) ( ){ }
( )

2 1 10 2 10 1

10 2 1

log 3 log 3

                           log 6

PL L Ll l L L

L L

α β σ α β σ

β σ

Ψ Ψ

Ψ

Δ = − = + + − + −

= +              (4.47) 

 

 Next, it is enlightening to describe the extent of the range, which basically can be 

evaluated by the maximum value of the large-scale fading PDF: 

 

( ){ }max max ,
PL PLL L

l
f f l

∗
+

∗
+

∈
Λ ∈                                          (4.48) 

 

To analytically solve (4.48), we first rewrite (4.46) as shown in (4.49), such that 1 2A A<  

because 1 2L L< . 

 

( ) ( )

( )
( )( ){ }
( )( ) ( )( ){ }

( )

( )( )2

2
2

2 2
2 1

2
2 1

ln 10 2
1 1

ln
2 2

2 ln 10 10
, exp 2ln 10                   

                                                  10

 ln 10

 ln

PL

PL

L

l

P l

f l l
L L

Q l A Q l A

A L

A L

α β

β

β σ β

β

σ β
β

σ σ

α

α

Ψ

−

∗

Ψ +

⋅

Ψ Ψ

⋅ ⋅
Λ = ⋅ ∈

−

× ⋅ − − −

• = +

• = + ( )( )210 210 σ βΨ

          (4.49) 
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 For analytical convenience, in the above (4.49) expression, we define the function 

( ) :PLP l ∗ +

+  that isolates and collects the l  based components together. This is actually 

done because the optimization of (4.48) is only dependent on this variable. 

 Next, we need to find the derivative of ( )PLP l , which in part requires the differentiation 

of a Q-function in the form of ( )( )Q x A B− , where A  and B  are some arbitrary constants. 

Equipped with the elegant result derived in Appendix-A, at this level, we could proceed with the 

optimization problem by carrying out the following derivative: 

 

( )
( )( ) ( )( ){ }

( )
( )( ) ( )( ){ }

2
2 1

2
2 1

2

,
10

2 ln 10
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 After replacing the Q-function in (4.50) by its equivalent integration format shown in 

(3.112), we then obtain: 
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(4.51)
 

 

 Finally, as demonstrated by (4.52), we set the above result to zero so as to solve for the 

optimum value of l  which we designate by maxl ∗

+∈ . To be precise, this variable is the 

argument that maximizes the density function of the large-scale fading indicator. 
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 From the equality in (4.52), it should be clear that there is no explicit way to solve for 

maxl  without the utilization of numerical techniques. Once an approximation for this parameter is 

realized, then the optimization problem of (4.48) leads us to: 

 

( ){ } ( )max
maxmax , ,

PL PL PLL L L
l

f f l f l l
∗
+∈

= Λ ≈ = Λ                                (4.53) 

 

 In this subsection, the theoretical characteristics of the domain and range for the large-

scale fading distribution were determined. In the simulation part, these parameters will be 

evaluated for a number of network examples, and remarks on the obtained results will be made. 

 

4.3.4 – Analyzing and Estimating the Moments of the Large-Scale Fading PDF 

Specifically, the moments of the distribution, and in particular the first and second moments of 

the density function, are instrumental in understanding the behavior of the large-scale fading for 

a given random network. As a matter of fact, the first moment can analytically be evaluated by: 

 

( ) [ ] ( ),
PL PLL PL PL LdB l

m L r L l f l dl
∗
+∈

= Ε = Ε = ⋅ Λ                         (4.54) 

 

where 
PLLm ∗

+∈  is a pointer for the mean of the RV for large-scale fading. Given the 

convoluted nature of the above analysis, this measure can alternatively be estimated from MC 

samples of the simulation. In essence, because the randomly generated data instances have 

unequal contribution, the approximation should be performed based on the weighted sample 

mean, which is formulated by: 
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PL
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L PL i PL ii
m L l L l
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such that 
PLLm ∗

+∈  is the empirical mean computed from MC samples, and ˆ
PLL ∗

+∈  is a RV 

for the large-scale fading level associated with ( ) :
PLLf l ∗ +

+ , which is basically the 

numerical PDF estimation of ( ),
PLLf l Λ . For further clarification, we could loosely think of ˆ

PLL  

as a RV of a PMF because the estimated density is only available at discrete points. And these 

discrete points are labeled by il
∗

+∈ , which is essentially the center position of the -thi  

histogram bin with values determined by: 

 

( )ˆ 1 2   1, 2, ,i L B Bl l i l i n= + − Δ =                                    (4.56) 

 

where Bl
∗

+Δ ∈  is the width for each histogram bar calculated by: 

 

( )ˆ ˆ
B H L Bl l l nΔ = −                                                      (4.57) 

 

such that ( ) 2
,

ˆ ˆ,L Hl l + ∗∈  are the lower and higher extremities of the argument for the estimated 

large-scale fading density. To be Precise, for each simulation run, these extremities are found 

from the set of randomly generated instances by: 
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where the set of large-scale fading samples ˆ
jl ∗

+∈  are generated from: 
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 The notation of (4.55) is shown in terms of a probability measure; however, it could 

equally be represented by the estimation of the large-scale fading density. We could therefore 

adjust this mathematical statement by expressing it in terms of the empirical PDF using the fact 

that: 

( )ˆPr       1,2, ,O
PL i i S i B BL l n pdf l i nπ= = = ⋅Δ =                        (4.61) 

 

where 
O
iπ

∗∈  is the number of occurrence for the -thi  bin, and ipdf ∗

+∈  is the 

corresponding approximated density. After inserting (4.61) into (4.55), we find that: 

 

1

B
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=
= Δ ⋅ ⋅                                               (4.62) 

 

As for the second moment of the PDF, it is theoretically obtained by: 

 

( )( ) ( ) ( ) ( )
2 2 22 ,
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where 
2

PLLσ
∗

+∈  is an indicator for the variance of the RV for large-scale fading. Similar to the 

argument made for the first moment of (4.54), this measure can rather be quantified via random 

estimation based on the weighted sample variance: 
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2 22
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such that 
2

PLLσ
∗

+∈  is the empirical variance of the channel-loss computed from MC samples. In 

fact, 
PLLm  is a deterministic value, and so the expression inside the averaging operator of (4.64) 

can be simplified by: 
 

( )
2

2 2 2 2 2ˆ ˆ ˆ ˆ2
PL PL PL PL PLL PL L PL L PL L PL LL m L m L m L mσ = − = − ⋅ ⋅ + = −             (4.65) 



121 
 

With the insight of (4.65), the expression of (4.64) can be written as: 

 

( ){ }2 2 2
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PL PL
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L i PL i Li
l L l mσ

=
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Next, if we substitute (4.61) and (4.62) into the result of (4.66), we at last obtain: 
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n n
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 To recap, as a consequence of the above statistical analysis, we have derived in (4.62) 

and (4.67) explicit formulas for practically estimating the first and second moments of the large-

scale fading PDF obtained via random MC samples. These measures will be evaluated in the 

subsequent simulation section so as to gain further knowledge of the channel-loss behavior as the 

geometrical structure of the random network changes. 

 

4.3.5 – MC Simulations and Discussions for the Channel-Loss PDF 

In this subsection, we in part aim to confirm the veracity of the analytical expression derived in 

(4.46), and also assess the statistical characteristics of the distribution. The analysis and MC 

simulation will be based on the IEEE 802.20 channel parameters for a suburban macrocellular 

model [52]. Table 4.2 provides a list for the necessary propagation values considered in this 

radiation environment. 

 

Table 4.2 – MBWA channel model for suburban macrocell 

0

2

Propagation Model : -231  -

Operating Frequency : 1.9 GHz

 35 m
Support Range :
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31.5 dB
Channel - Loss :

35 dB
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r r L

L L

α
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= ≤ ≤

≤ = ≤

=

=

            IEEE 802.20 Propagation Parameters            

wing : 10 dBσΨ =
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 In the simulation of Figure 4.9, we assumed a random network in a circular ring 

delineated between 1 1.5 kmL =  and 2 2.5 kmL = . As for the spatial random samples, they 

were founded on the analysis conducted in Section 4.2. Once random instances of the interpoint 

between a reference host and an arbitrarily positioned mobile were generated, we then assembled 

an 100Bn =  histogram for the PDF and CDF of the corresponding large-scale fading level. 

Further, for the interest of exemplifying the empirical PDF of the large-scale fading as a function 

of the amount of random samples, we simulated the same exact channel and network with 

1, 000Sn =  and 10, 000Sn = . As palpable from the graphical results, an increase in the volume 

of MC samples appropriately enhances the consistency with the analytically derived density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 – Authenticating the large-scale fading density analysis for a random UCN 

 

 Moreover, we ran three simulations for different spatial networks; however, the channel 

parameters, the quantity of MC samples, and the histogram resolution were held fix for all of 

these cases. In particular, the diversity of the network was setup by a variation of L
∗

+Δ ∈ , 
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which represents the width of a circular ring. To be precise, we kept the outer radius constant and 

we modified the inner radius of the lattice, that is: 

 

( )
2 1 2 1   1,2,3j

L L L L L jΔ = − = − =                                      (4.68) 

 

such that 
( ) [ )1 0 2,jL r L∈ , where the values of 0r  and 2L  are specified in Table 4.2. On balance, 

we could have varied LΔ  by fixing 1L  and changing 2L . Yet, from a design point of view, it is 

technically more practical to preset the size of the BS transmission coverage, and study the 

channel-loss as users’ concentration gradually shifts towards the cellular border. In the case at 

hand, we in fact set 2L  to 2.5 km  and 1L  was assigned: to the close-in distance, to 1 km, and 

2 km . To put these values into perspective, we visually depicted in Figure 4.10 the associated 

deployment surfaces for the planned spatial networks. 

 

2.465 kmLΔ = 1.5 kmLΔ = 0.5 kmLΔ =

 

Figure 4.10 – Deployment surfaces for the spatial networks used in the simulations 

 

 Overall, Figure 4.11 plots the density result of the simulations, where the MC estimation 

was based on 15,000Sn =  random samples, and 150Bn =  bins. Again, as expected, simulation 

and theory produces matching results for all of the considered network cases.  

 Pursuing this further, we could compare and contrast several key parameters that are 

fundamental in exploring the attributes of the large-scale fading density curve as the deployment 

surface of the random network changes. In particular, we are interested to study the effect on the 

shape of the density function, and what these changes correspond in terms of statistical 

properties.  
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Figure 4.11 – Large-scale fading PDF over different widths of a circular ring 

  

 To this end, in Table 4.3, we numerically quantified the domain gap, the extent of the 

range, the first moment, and the second moment for each density result associated to a particular 

random network. 

 

Table 4.3 – Contrasting the statistical attributes associated with a random network 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2

max
1 2

network lattice large-scale fading lattice width domain gap range empirical mean empirical SD

km km km dB dB dBdB dB

0.035 2.5  55.54 180.43 2.465 124.89 0.0337 142.7545 12.4490

1.0    2.5

PL PLPLL PL L LLL L
L L mfl l σΔ Δ

106.50 180.43 1.5 73.93 0.0374 145.5134 10.5374

2.0    2.5 117.04 180.43 0.5 63.39 0.0397 149.0484 10.0509

 

 

 As shown in the table, the lower extremity of the channel-loss has a unique value for each 

spatial network. As for the higher extremity of the PDF, given that 2L  has a fixed value, it 

therefore has a singular outcome for all the network scenarios. Thus, the span of the domain is 

evaluated w.h.p. by: 

 

( ) ( )( )10 2 1log 6    1,2,3i i
PL L L iβ σΨΔ = + =                                 (4.69) 
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And as discussed earlier, the extent of the range is numerically realized for each simulation run. 

Also, the mean and variance of the distribution function were accordingly estimated from the 

MC samples using the statistical expressions derived in the previous subsection. From the values 

presented in Table 4.3, we can remark several noteworthy observations: 

1. As LΔ  decreases, the span of the PDF domain shrinks. 

2. And because the area under the PDF curve has to remain unchanged, then as LΔ  reduces, 

the extent of the range is expanded. 

3. For an edge-focused spatial network, i.e. when 1L  moves closer to the cellular border, the 

first moment is further shifted to the right of the large-scale fading axis. Likewise, it is 

safe to consider that if the inner radius was fixed, then as 2L  moves inward towards 1L , 

the mean of the density will progress to the left of the axis. 

4. Further, as LΔ  drops, the second moment of the distribution function lessens. In other 

words, the RV for the large-scale fading becomes more predictable (i.e. less random).  

 

 Overall, in this section, we analytically derived the exact large-scale fading density 

between a BS and a randomly deployed node situated inside a flexible UCN. We also derived 

various statistical expressions useful to characterize the unique attributes of the large-scale 

fading density associated with a certain UCN lattice. We then verified through MC 

experimentations the accuracy of the analysis. Also, we investigated through simulations the 

interplay between the random network and its impact on the channel-loss behavior. Moreover, 

we should affirm that the formulated closed-form large-scale fading density has generic inputs. 

That is, it can be tuned for a particular channel environment, and also the determined expression 

is valid for all permutations of a UCN random pattern.  

 While on the subject, it is worth noting that although the analysis began from the circular 

ring sector defined in Figure 4.1; yet the derived large-scale fading PDF is independent of the 

lattice angular limits. This outcome is to be expected given that the propagation loss for 

centralized communications is dependent of the interspace between a random node and a tower 

station; which implies that the radial component is the necessary parameter. Having said that, we 

should stress that the reported density result is still applicable for all type of UCN deployments, 

including those contained in a ring sector delineated by angular boundaries. 
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4.4 – Deployment Strategy for Spatial Inhomogeneity

4.4.1 – Motivation and Background 

The principle of random geometry is necessary for mimicking the wireless architecture because 

it adds an element of realism to the spatial network. In fact, due of its well-behaved stochastic 

features, the homogeneous random network has been extensively considered in academic 

scholarship [18]–[30]. However, such oversimplification may not necessarily yield accurate 

spatial models that are reflective of actual scenarios. This is especially true during instances 

where the deployment terrain has topographical features; thus causing mobile carrying users to 

cluster in certain locations and not in others [34], [37]. Precisely, we can recognize that what 

mainly cause a set of wireless nodes to cluster are in fact natural features, such as: mountains, 

valleys, irregular hills, densely forested lands, rivers, lakes, etc; and manmade infrastructures, 

among other: ports, building structures, roads and highways. 

 Given that these earthbound items are indeed the major driving force for users’ spatial 

preferences, effective modeling techniques for non-homogeneous deployment are needed. In 

particular, several emulation methods have been proposed for achieving a heterogeneous 

network4. The most notable among them is the Gaussian spatial network [24]–[26], [35]–[45]. 

Specifically, the key advantage of this scheme is the geometrical flexibility obtained by tuning 

its spatial intensity Gσ
∗

+∈ . That is, by this variable the deployment terrain can either expand 

or shrink. In other words, the random network is elastic, where the amount of nodes need not 

change but the concentration of the network about a reference point is the varying component. In 

this dissertation, Chapter 5 is entirely devoted to the analysis of this random network type. 

 Besides the Gaussian architecture, other non-homogeneous networks were obtained by 

adopting a distribution index dβ ∈  into the spatial density as a modifying agent to either 

produce a centric or edge-focused deployment [34], [35]. Further, some investigators have also 

shown an approach for inhomogeneity using the so-called principle of thinning which is 

dependent on the position of neighboring nodes [31], [32]. 

                                                 
4 From a semantic point of view, it is important to note that the term heterogeneous may have different connotations 
in wireless networking. For instance, it may refer to the paradigm of seamless and ubiquitous interoperability 
between various multi-coverage protocols. Otherwise, it may refer to the non-uniform spatial distribution of users. 
From the context expressed in this chapter, it should be obvious that the latter meaning is always insinuated. 
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 Although the above efforts are important alternatives for the idealized homogeneous 

model, yet they still remain unfeasible for emulating and investigating the site of a 

geographically-specific network. Therefore, there is a demand to find better emulation 

algorithms that give greater control to network designers while preserving users’ stochastic 

characteristics. Notably, the model should principally attempt to take into account clustering 

tendencies due to terrain features. Also, the anticipated mechanism is desired to be generic, 

coherent, straightforward, and easily configured through software subroutines so as to be used 

for all type of cellular systems; namely: small, medium, and large-scale networks. 

 

4.4.2 – ASD Technique for Generating Random Heterogeneous Networks 

Basically, we need to construct a randomly tunable algorithm that takes into consideration the 

fundamental ingredients of spatial deployment. From a visceral observation, it becomes natural 

to give precise attention to the following criteria: 

 

1. Geography of the Network: This constitutes the general location and setting of the 

network. For instance, is the spatial emulation intended for a rural, or rather a built-up 

urban region? 

2. Topography of the Network: This part looks into the details of the terrain and its 

distinctive landforms and features. 

3. Demography of the Network: Here, the scale and distribution of the users are important. 

Namely, is the network densely or sparsely populated, and how does this composition 

change over time? 

 

 Overall, it is desired to conceive an easily controlled and configured algorithm with least 

amount of inputs while overlaying the above three aspects in order to closely reflect the terrain 

specifications and limitations of a specific site. These are all diametrically opposing 

requirements, and so reconciling them simultaneously is rather difficult to solve. Despite being 

quite involved, it is still possible to undertake this complex objective by contriving a framework 

that adheres to the notion of divide and conquer. In other words, the conundrum of spatial 

deployment can be tackled by gradually breaking down this nontrivial challenge into smaller 

algorithmically solvable parts, and then synthesizing the results. 
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 In particular, this is done by proposing a superposition-based algorithm which we refer to 

as area-specific deployment (ASD). As shown in the arbitrary example of Figure 4.12, the 

general abstraction of the ASD approach can be described gradually in a systematic manner. 

Essentially, for a particular project site, the deployment designer will identify various likely 

clusters such that the overall network scale and surface is selectively split among these smaller 

sub-regions. As a matter of fact, each of the compiled non-overlapping clusters is uniquely 

specified by its: 

• lattice shape or support domain 
2

iD ⊆  

• surface area iA ∗

+∈  

• quantity of randomly positioned nodes in ∗∈  

• and corresponding number density iρ
∗

+∈  
 

Moreover, the areal size and nodal volume of the original lattice are respectively given by: 

 

sec-total

1

n

N ii
A A

=
=                                                        (4.70) 

sec-total

1

n

S ii
n n

=
=                                                         (4.71) 

 

such that sec-totaln ∗∈  is the overall amount of sectors. Once the planning of the network 

footmark is set, we then focus on the sub-regions in a standalone way so as to stochastically 

generate the desired volume of Euclidian positions. Precisely, random uniform deployment is 

presumed over the specified sectors as expressed by the particular spatial density function of the 

sub-regions: 

( ) ( )2 sec-total, 1 ,      1, 2, ,
i

XY i D
f x y A x y i n

⊆
= ⋅ =1                         (4.72) 

 

 However, since the cluster envelopes have different 2D lattice shapes; probabilistic 

analysis has to carefully be drafted for random generation in a specific location, with a particular 

geometrical contour, coverage size, and nodal scale. Following the analysis step, the various 

subnetworks are then reassembled in a puzzle-like format. Thus, as a consequence of network 

synthesis, heterogeneous spatial distribution emerges over the deployment field. 



129 
 

NA
Sn

( )1 1 1, ,n A ρ

( )2 2 2, ,n A ρ

( )3 3 3, ,n A ρ

( )4 4 4, ,n A ρ

( )5 5 5, ,n A ρ

4D

2D

3D

5D

1D

 

Figure 4.12 – Characterizing ASD by an arbitrary network model 

 

 Evidently, the ASD technique gives the necessary leverage to designers to tailor and plan 

the spatial architecture when a priori knowledge of the network is asserted while still preserving 

the geometrical randomness of the users. Such attributes will hence ensure greater emulation 

flexibility and attain spatial heterogeneity so as to evaluate a host of network-based QoS factors. 

 

4.4.3 – UCN Algorithm for Heterogeneous Random Deployment 

In the previous section, we provided a high-level view for attaining inhomogeneity. In this part 

of the dissertation, we apply the proposed ASD method in order to conceive a UCN approach for 

generating spatial heterogeneity. But before beginning, we ought to remark that when the aim is 

to explore a UCN, then it is a natural choice to consider a disk-shaped circular lattice model. In 

fact, such network layout is mainly feasible for designing and analyzing a sparse cellular 

structure commonly encountered in rural settings. 
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 As a visual aid in deriving the non-uniform algorithm, we consider the canonical network 

model of Figure 4.13. From the display, it should be evident that the approach for partitioning 

the cell is in part inspired by the various layer formations apparent in the cross-section of an 

onion. Clearly, there are no sectors in the onion-layer arrangements; yet to add another level of 

deployment versatility to the conceptualized spatial model, we enable the possibility of 

incorporating sector strips in each layer of the network plan. This modification will in essence 

augment and enhance the inhomogeneous capability of the UCN model. 
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Figure 4.13 – Modeling the network plan of a heterogeneous UCN 

 

 In the above model, we recognize that the circular cell is split into Ln ∗∈  layers. And, 

each layer contains 
( )
sec

in ∗∈  sectors, such that 1, 2, , Li n= . Therefore, the total number of 

sectors in the UCN inhomogeneous model of Figure 4.13 can be computed by: 

 

( )
sec-total sec1

Ln i

i
n n

=
=                                                       (4.73) 

 



131 
 

 In principle, the more terrain strips we consider during the planning stage of a particular 

project site, the more network clusters will be resulted, and thus sec-totaln  will raise. And as the 

total number of sectors with varying densities increase, it will consequently impact the 

geometrical inhomogeneity level of the wireless nodes. In other words, the size of sec-totaln  is an 

indicator for the details and precision of the deployment plan, which is in fact left to the 

discretion of the network architect. 

 Furthermore, each cluster sector is indeed bounded within two radii and two angular 

limits. The layers radii for heterogeneous random deployment are collectively contained by the 

,
Ln
+ ∗∈R  vector, which is specified by: 

 

1 2 1,2, ,1 L
LL

T

n i i nn
r r r r ∗

+ =×
= = ∈R                                 (4.74) 

 

such that 1 : 2,3, ,i i Lr r i n− < = . As for the sectors angular information, they are identified by 

their higher values within the 
( )1Ln γ× −

+∈ΘΘΘΘ  matrix: 
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(4.75)
 

 

However, since the last sector of any layer is always set to 2π , then there is no need to enter 

this reoccurring measure in the matrix. In fact, the various angular values for each layer are 

bordered by: 

( ) ( ) ( )( )sec
,1 ,2 , 1

0 2     1,2, ,i Li i i n
i nθ θ θ π

−
< < < < < =                         (4.76) 
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Also, in (4.75) the γ
∗∈  represents the largest number of sectors in a particular UCN layer, 

which is quantified by: 

 

( ){ } ( )
sec sec

1,2, ,
max L

L

i k

i n
n nγ

=
=                                                  (4.77) 

 

such that { }1L L Lk k n∗∈ ≤ ≤  is the UCN layer that has the greatest number of sectors. It is 

worth noting that this value is not necessarily unique because there might be multiple layers that 

have the similar maximum number of sectors. 

 Pursuing this further, the Ln γ×∈ΝΝΝΝ  matrix of (4.78) holds the amount of randomly 

positioned nodes deployed in each sector. This means that the spatial topology is tunable by 

simply modifying the quantity of nodes in the cluster strips of the network plan. 
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(4.78) 

 

 For the convenience of manipulations, the radial, angular and nodal entries respectively 

expressed in (4.74), (4.75), and (4.78) can be assembled together by the network plan matrix  

2Ln γ×
+∈ΡΡΡΡ , which is defined as: 

 

( ) ( ), 1,2, ,2 1 1
1,2, ,2

L
L L L L

i j i nn n n n
j

p
γ γ γ

γ

+

=× × × − ×
=

= = ∈RΡ Θ ΝΡ Θ ΝΡ Θ ΝΡ Θ Ν                             (4.79) 
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 Overall, within the expression of (4.79), the following essential deployment parameters 

are inscribed: 

• the number of deployment layers 

• the width of each layer 

• the number of sectors in each layer 

• the extent of the angular boundary for each cluster 

• the nodal scale randomly located in each sector 

 

 At this level, we may harness the above descriptions by creating a generically flexible 

algorithm that enables controlled inhomogeneous random geometry. To emphasize, this method 

gives the necessary freedom to a cellular analyst or designer to selectively deploy random nodes 

in desired locations in order to form clusters. Once cluster-based random deployment is 

complete, the superposition principle can be applied to get the overall inhomogeneous spatial 

distribution of the cell. 

 All the required steps to accomplish the described ASD algorithm over a UCN model for 

the purpose of spatial inhomogeneity are provided in the pseudocode of Figure 4.14. As evident 

by the nested for-loop, the algorithm is in part based on the foundation formulated for unbiased 

and exact random generation inside a flexibly versatile ring sector model derived and analyzed in 

earlier parts of this chapter. 

 On the whole, the conceptualized algorithm is a simple emulation tool useful for 

modeling a non-homogeneous network in instances when some elementary knowledge about a 

cell site is known or hypothesized. In fact, the treated inhomogeneous approach has the benefit 

of preserving full spatial randomness without relying on synthetic workarounds. 

 Now that we have the above pseudocode, it is noteworthy to determine by (4.80) the 

algorithm cost for executing this operation, where Sn ∗∈  is the overall number of randomly 

deployed nodes within the UCN model. 
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Figure 4.14 – Pseudocode for heterogeneous spatial deployment of controlled UCN plan 

 

 In Figure 4.15, an example of a possible 3-layer network plan is shown. From the 

illustration, we identify that sec-total 6n =  where the inner and outer layers have each a singular 

sector, and the middle layer is split into four clusters. Also, in each of these zones, the amount of 

random nodes to be deployed is accordingly mapped. Although the derived inhomogeneous 

algorithm is scalable, in this UCN example we consider an 3,300Sn =  nodes. 
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Figure 4.15 – Example of a 6-sector network footprint 

 

The network plan of Figure 4.15 can equivalently be transformed into matrix format as follows: 

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
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2 2,1 2,2 2, 3 2,1 2,2 2,3 2,43 8 3 1 3 3 3 4

3 3,1
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                                                 2.0 3 4 3 800 1,000 300 500
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r n

r n n n n

r n

θ θ θ

π π π

× × × ×
= =

=

Ρ Θ ΝΡ Θ ΝΡ Θ ΝΡ Θ ΝR

          

(4.81) 

 

 Figure 4.16 shows the MC simulation result for the non-homogeneous network of (4.81). 

The generated structure is clearly a random network, i.e. this outcome is one of infinitely many 

random realizations of users’ Euclidian geometry. This means that at every simulation run, the 

characterized network plan produces a unique inhomogeneous spatial emplacement. As for the 

corresponding spatial density shown in the figure, it was estimated based on 25 25×  grid. 
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Figure 4.16 – Heterogeneous spatial deployment and density for a 6-sector UCN example 

 

 To further display the conceptualized inhomogeneous algorithm of Figure 4.14, we 

designed another cellular deployment with 3,300Sn =  nodes. This time however, the UCN is 

composed of 4-layers with sec-total 10n =  sectors. The considered network footprint is depicted in 

Figure 4.17, and its matrix equivalent is given in (4.82). 
 

x

y

 

Figure 4.17 – Example of a 10-sector network footprint 
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 As a consequence of simulating this network, we obtain in Figure 4.18 one of many 

possible random instances of the result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 – Heterogeneous spatial deployment and density for a 10-sector UCN example 

 

 When we compare the network plans of (4.82) with (4.81), we obviously notice that it has 

more entries, which in essence means that the associated spatial design is more elaborate than the 

previous one. In fact, the major elaboration of the network plan for a particular site is 
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characterized by the R  and ΘΘΘΘ  components as a function of terrain features. Then, we could 

study and verify various QoS measures as the number of nodes in each sector is altered by a 

simple modification of the values in the ΝΝΝΝ  matrix. 

 Evidently, this approach may become handy when we couple to the described spatial 

model a temporal element in order to further improve the modeling of users clustering tendency. 

That is, users’ gathering inclinations in a particular sector due to topographical biases will in fact 

change with time. In other words, during a certain point a particular geometrical density is in 

effect and perhaps at another timeframe terminals concentration shifts to different locations. For 

instance during business hours mobile subscribers’ activity is expected in commercial areas; 

while after hours, users’ spatial pattern relocates to residential areas [37]. 

 Thus, the aim here is to highlight the fact that the position density is indeed dependent on 

the correlation of both the spatial landscape and the temporal component of users’ 

communications activity. And so, the nodal information of the network plan can accordingly be 

adjusted to reflect the changeable nature of users’ geometry. In fact, these values could be 

conjectured based on plausible situations, or they could be compiled from simple statistical data 

gathering of a site as opposed to socially-intensive trend studies. Then, the ASD method for 

UCN can effortlessly be triggered to emulate a random spatial model which can assist in 

bridging the gap between reality and modeling. 

 Before closing this subsection, we should acknowledge the main shortcoming for 

emulating an inhomogeneous random network. In particular, the model of the derived algorithm 

considers circular-based deployment strips. However, the various cluster sectors need not 

necessarily be of this form. Thus, the random deployment may not be appropriate at all times in 

an accurate way. Nonetheless, it could still be instrumental as an approximately more realistic 

deployment approach than the typical homogeneous alternative. 

 

4.4.4 – Automatic Emulation of Heterogeneous Random Networks 

From the above discussion, it should be obvious by now that the occurrence of clustering is 

inevitable in most real-life scenarios. As a result, the spatial distribution of nodes for a given 

deployment project will likely be non-homogeneous. For this reason, in the previous section we 

developed a practical spatial-level simulator tool for inhomogeneous random nodal deployment 

based on controlled network planning. While the approach is adequate, in particular cases, 
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various modeling accommodations and extensions could be incorporated to this mechanism so 

that the emulation experience becomes more lucid for network designers. This endeavor will 

actually be the primary intention of the treatment that follows. 

 Specifically, we want to provide greater emulation leverage by conceptualizing another 

algorithm that can achieve heterogeneity with very limited planning information to the network 

subroutine. Thus, in contrast to the controlled approach of Subsection 4.4.3, the aim here is to 

construct an inhomogeneous random network in an uncontrolled or arbitrary manner. This could 

be done by redesigning the algorithm of Figure 4.14 such that it maintains similar attributes 

while requiring less input parameters in order to produce a simpler process for generating a 

heterogeneous spatial network. 

 From the ASD principle in Subsection 4.4.2, we explained a strategy for inhomogeneity 

by having different areal number densities in each of the deployment sub-regions. In fact, the 

density for the sectors is obtained by: 

 

sec-total: :      1,2, ,i i i i iA n n A i nρ∗ ∗

+∀ ∈ ∃ ∈ =                       (4.83) 

 

From (4.83), we clearly notice that the densities can be made unique in one of three ways: 

1. change in , and keep iA  fixed. 

2. change iA , and keep in  fixed. 

3. change simultaneously in  and iA . 

 

In deriving the desired inhomogeneous algorithm, we find that actually the second approach is 

more suitable; thus, (4.83) becomes: 

 

0 sec-total     1,2, ,i in A i nρ = =                                         (4.84) 

 

 In order to obtain different sub-regions, we will consider Ln ∗∈  onion-like layers; 

therefore, for this layout sec-total Ln n= . In fact, for the purpose of uncontrolled inhomogeneity, the 

number of layers will randomly be chosen from a predefined integer range. Therefore, this task 

will necessitate the formulation of a generic technique for randomly producing discrete values. 
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 Say, we want to generate a random integer bounded by [ ]1 2,n n  in such a way that these 

values have equal contribution. That is, we desire to obtain a generic method for discrete RNG 

from a PMF. In Figure 4.19, we visually show the stem plot for the 2 1 1n n− +  discrete data 

sequence distribution. Analytically speaking, this PMF is defined by:

 

{ } [ ] ( )2
1 2 1 2 2 1Pr : : , : , 1 1X x x n n n n n n= ∀ ∈ ∃ ∈ − +                    (4.85) 

 

 To randomly generate discrete points from this PMF, we could consider a workaround 

that depends on the corresponding continuous uniform distribution, namely: 

 

( ) ( ) ( ) 2
1 2 1 2 1 21 2, 1 2    , :X Xf x n n n n n n= − + ∈ ≤U                     (4.86) 

 

This density function is also graphed in Figure 4.19. Once a continuous sample from the PDF of 

(4.86) is randomly generated, we then assign it to the nearby discrete value of the PMF. 

 

1n
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1 1n + 1 2n + 2n2 1n −2 2n −

1

1 1 2n − 2 1 2n +

( )2 11 1n n− +

( )p.d.f.:  Xf x{ }p.m.f. : Pr X x=

 

Figure 4.19 – Uniform PMF and its corresponding PDF

 

As a shorthand notation to a discrete uniform distribution, we rather utilize this statement: 

 

{ } ( ) ( ) 2
1 2 1 2 1 2Pr ,    , :DX x n n n n n n= = ∈ ≤U                           (4.87) 
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 Equipped with the above rationalization, we can then write a simple pseudocode for 

generating Sn  random samples from the PMF of (4.87). The generic solution is expressed in the 

algorithm of Figure 4.20. As for the cost of this algorithm, it can be measured by the worst case 

computational complexity assessed by: 

 

( )( ) ( )( )cos 1 2 2 1, , 1t S SO T n n n O n n n= − +                                   (4.88) 
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Figure 4.20 – RNG from discrete uniform distribution 

 

 To ascertain the effectiveness of the determined algorithm for random integer generation, 

we performed in Figure 4.21 a set of MC simulations for a particular amount of Sn  values from 

the discrete set bounded by say [ ]4,9− . In the figures, the estimated PMF is represented by bars; 

also, for the sake of comparison in each case we plotted the corresponding theoretical PDF. 

 First, irrespective of the simulation case, when we add the likelihood for each of the 

discrete samples, it always sums up to unity; which is in accordance with the fundamentals of 

probability theory. Second, from the obtained results, we can evidently notice that as the number 

of samples increases, the PMF estimation gets closer to the theoretical baseline. Overall, the 

simulation reveals that the random generation approach produces the expected distribution. 
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Figure 4.21 – Substantiating experimentally the random generation of discrete samples 

 

 Returning back to the main problem, using the above derivation, we aim to randomly 

generate Ln  from a range delimited by maxLn − , which essentially refers to the maximum arbitrary 

number of deployment layers possible for achieving spatial inhomogeneity. This value will 

actually be preset by the UCN designer at the start of the automatic emulation process. 

Therefore, the number of layers at a simulation instance will be a discrete RV specified by: 

 

( )max max max2,    : 1L D L L Ln n n n∗

− − −∈ >U                               (4.89) 

 

 From (4.89), we notice that the sampling range begins at 1 2n =  because from the ASD 

principle, we at least need 2-layers for attaining inhomogeneity. In other words, if we would 

have started with 1 1n = , and by discrete RNG Ln  is randomly set to this value, then we will 

simply obtain a homogeneous random network; this will actually be the antithesis to the wanted 

objective of spatial heterogeneity. Meanwhile, it is worth adding that in the rare but possible case 

where maxLn −  is set to 2, then from (4.89) the number of layers will deterministically be assigned 

at all times to this value. 
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 Now that we have framed an approach for randomly obtaining the number of layers, as 

explained in (4.84), the next step requires us to equally split the number of nodes among these 

sub-regions. By design, the overall amount of nodes Sn ∗∈  planned for random deployment is 

supplied by the network architect. Since Sn  and Ln  need not necessarily be multiples of each 

other, then the number of nodes per layer must be arranged in a careful way. In particular, the 

amount of random nodes deployed in the innermost layer of an automatically emulated 

inhomogeneous UCN is designated by inn ∗∈ . As for the outer layers, each of these sub-

regions will contain outn ∗∈  nodes computed by: 

 

: :S L out S Ln n n n n∗ ∗∀ ∈ ∃ ∈                                      (4.90) 

 

Knowing the volume of nodes in the outer layers, then it should be evident that the rest of the 

overall nodal quantity will constitute the amount of terminals in the innermost sub-region of the 

cell. Therefore, this measure can be calculated as follows: 

 

( ) ( )1 1in S L out S L S Ln n n n n n n n− − ⋅ = − − ⋅                              (4.91) 

 

 So far, we have determined the number of layers and the amount of nodes in each sector. 

At present, we want to vary the areal size of each sub-region. This task can be done by randomly 

deciding on the geometrical position of the layers. That is, we want the width or thickness  

i
∗

+Δ ∈  of the various deployment layers to be different. In fact, this value corresponds to: 

 

1     2,3, ,i i i Lr r i n−Δ = − =                                           (4.92) 

 

such that 1 1rΔ =  is the radius measured from the origin of the Cartesian coordinate system to the 

first layer, and ir
∗

+∈  is the particular radius for all the other deployment layers. In this 

situation, the procedure to generate diverse widths of the deployment sub-regions can be realized 

by randomly producing radial values for the layers; this can be accomplished by: 
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( )0,      1,2, , 1i R Lr L i n= −U                                        (4.93) 

 

From (4.93), it should be clear that we only generate random radial values for the first 1Ln −  

layers since 
Lnr  will always be equal to the preassigned size of the cellular radius, namely 

L ∗

+∈ . 

 Following the generation of these radial distances, it then becomes necessary to sort them 

in ascending order, i.e.: 

 

( ) [ ]( )1
, 1,2, , 1

sort sortL

L

n
sorted i i n

r r r−

+ ∗ = −
= ∈ =                                 (4.94) 

 

There are many techniques available for implementing the sorting operator of (4.94); some of the 

most notable among them are: quicksort, heapsort, and mergesort. Specifically, quicksort has 

been established as one of the fastest algorithms for ordering an array of numbers. Thus, 

MATLAB® uses this approach for its sort function. 

 Next, as discussed in Section 4.2, we will stochastically deploy in each of the formed 

random sized sub-regions the corresponding amount of nodes. Then, we superimpose these 

multi-density sectors together and look at the network as a holistic entity, which results into a 

heterogeneous outcome that has a random characteristic. 

 With the above conceptualization, we have progressively developed an automatic 

mechanism for randomly constructing the network plan so as to produce an inhomogeneous 

spatial structure. To be precise, the geometrical randomness is achieved due to the arbitrary 

nature of: 

• the number of deployment layers: Ln  

• the size of the layers: iΔ  

• the position of nodes within each layer: { }ˆ ˆ,i ix y  

 

 Consequently, the amalgamation of the above factors will result into a heterogeneous 

random network. For the sake of completeness, these attributes are graphically depicted in the 

geometrical model of Figure 4.22 used for automatically producing a random UCN footprint.  
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Figure 4.22 – Geometrical details for uncontrolled random realization of the UCN footprint 

 

 Overall, the culmination of the above explanations and analysis enables us to derive the 

uncontrolled inhomogeneous algorithm of Figure 4.23. From this algorithm, it can vividly be 

observed that a deployment designer will only require entering three essential inputs: 

• the size of the cellular network: L  

• the maximum number of deployment layers: maxLn −  

• the quantity of nodes to be deployed: Sn  

 

 Given that the formulated method only demands few entries, it then means that the 

heterogeneous algorithm of Figure 4.23 will basically do most of the network decisions 

automatically in a stochastic way. In fact, when compared to the set of required parameters for 

the network footprint of the controlled deployment option detailed in Figure 4.14, the 

discrepancy of the inputs among these inhomogeneous random network algorithms is 

considerable. In light of this reality, we can therefore remark that if less a priori information 

about the network project site is known or hypothesized, then the automatic inhomogeneous 

alternative for spatial emulation should be favored as opposed to the controlled algorithm. 
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Figure 4.23 – Pseudocode for heterogeneous spatial deployment of uncontrolled UCN plan 
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 In order to comprehend the time performance of the above algorithm, we therefore find it 

necessary to evaluate in (4.95) its overall computational complexity. We should note that in this 

cost analysis, we considered maxL Ln n −=  so as to reflect the worst computational scenario. 
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(4.95) 

 

 At this level, it is interesting to highlight that the derived inhomogeneous algorithm of 

Figure 4.23 can be used to automatically emulate a host of wireless network applications 

contained within a disk-shaped lattice. In particular, it could be appropriate for stochastically 

mapping the spatial configuration of: WSN, WMN, or cellular networks. Indeed, each of these 

networks has a particular purpose and application focus. For instance, WSN is considered for 

low-power remote sensing; WMN is rather a multihop topology used for range extension or as a 

backup connectivity route; and cellular networks are aimed for ubiquitous long-range mobile 

communications [70]. In Table 4.4, the distinctive characteristics of these networks are 

accordingly outlined. 

 Furthermore, these featured wireless networks are generally composed of variable-sized 

scale. For example, the volume of nodes in a WSN is for the most part way lager than a WMN 

because point sensors are typically cheaper to fabricate. Specifically, the scale of a WSN is 

somewhere in the order of hundreds up to thousands, and could in extreme cases reach millions 

of nodes [42], [71]. Irrespective of the quantity of nodes to be deployed, the formulated 

inhomogeneous random network algorithm is scalable for the emulation scenario under study. 

Given that the algorithm supports diverse spatial geometries, we will therefore demonstrate the 

scalability aspect by generating various heterogeneous random realizations of the network. 
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Table 4.4 – On the specifications and characteristics of different wireless networks 

ZigBee, 6LoWPAN
low-power sensor

WSN meters LR-WPAN WirelessHART
commuications

MiWi, LR-UWB

WPAN UWB
WMN meters

WLAN

network communication P2MP network examples of principal

applications range topology technologies feature

, Bluetooth high-speed

Wi-Fi commuications

WMAN MBWA, WiMAX long-range
cellular network kilometers

WWAN LTE commuications

 

 

 In Figure 4.24, we show four random instances of a small-scale heterogeneous random 

deployment. Within these results, in addition to the actual spatial deployment, the network plan 

is separately graphed so as to emphasize its arbitrary nature. In other words, the planning of the 

network, which is assembled by the number of layer, the deployment size, and the geometry of 

nodes, is randomly obtained in an automatic way at every simulation run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 – Random instances of small-scale heterogeneous network deployment 



149 
 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

y-
ax

is

A
rb

itr
ar

y 
N

et
w

or
k 

P
la

n
n L

-m
ax

=
 1

0

n
L = 2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

y-
ax

is

R
an

do
m

 2
D

 D
ep

lo
ym

en
t

n S
=

 1
00

0

x-axis

n
av
∼ 500 nodes/sector

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

n
L = 4

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x-axis

n
av
∼ 250 nodes/sector

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

n
L = 7

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x-axis

n
av
∼ 143 nodes/sector

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

n
L = 10

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x-axis

n
av
∼ 100 nodes/sector

 Similarly, in Figure 4.25, we demonstrate another set of examples for a medium-scale 

network. Again, each run of the simulation produces a unique inhomogeneous random spatial 

realization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 – Random instances of medium-scale heterogeneous network deployment 

 

 As a final representative example, a large-scale model for the network is emulated in 

Figure 4.26. Because the scale is relatively elevated when compared to the other two cases, as 

illustrated by this MC simulation, the geometrical resolution of each node is reduced. 

 It is valuable to note that in emulating an uncontrolled inhomogeneous architecture, there 

is no particular interconnection, linear or otherwise, between the inputted maximum number of 

deployment layers and the network scale; unless such relation is intentionally assumed by the 

designer. From Table 4.5, which essentially summarizes the considered inputs to the network 

instances generated in Figures 4.24, 4.25 and 4.26, we in fact hypothesized such correlation 

between the supplied variables. That is, for the three network cases, as maxLn −  increased, by 

design the network scale Sn  also rose. 
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Figure 4.26 – Random instances of large-scale heterogeneous network deployment 

 

 Although there is no explicit association among maxLn −  and Sn ; yet on the other hand, we 

notice a symbiotic relationship between maxLn −  and the degree of network inhomogeneity that 

requires some carefully calculated scrutiny. To be precise, the direct interdependence with maxLn −  

and the random number of layers is indicated in (4.89). And, as Ln  increases, the amount of 

random sized sub-regions will straightforwardly augment. Assuming from (4.84) that the number 

of nodes per sector remains steady; consequently, the quantity of layers with unique densities 

will also rise. Thus, for all practical purposes, it is projected that maxLn −  affects the 

inhomogeneity of a random network constellation. However, more research work is required in 

order to describe the interplay between maxLn −  and its significance on the geometrical 

heterogeneity of a random graph. 

 

Table 4.5 – Simulation inputs used for generating a random inhomogeneous UCN 

( ) ( ) ( )max network models  unit  no.  no.  

small-scale 1 5 100

medium-scale 1 10 1,000

large-scale 1 12 5,000

L SL n n−
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4.5 – Modeling a Large Multi-Cellular Spatial Network 

4.5.1 – Motivation and Background 

In earlier parts, it was noted that the actual BS coverage has an irregular contour due to antenna 

radiation and channel impairments. To overcome this unpredictability of the cellular geometrical 

structure, it was asserted that the ideal disk-shaped circular profile is a feasible and instinctive 

model for the purpose of UCN analysis and spatial emulation. Indeed, this configuration is 

mainly relevant for mapping scarcely distributed mobile users that are typically set in a suburban 

environment. 

 In the event that it is desired to supply wireless network service for a broad urban-based 

geographical region containing a high-density of users, then a large UCN will be inappropriate. 

As a practical substitute, a MCN assembled by a number of contiguously positioned smaller cells 

is rather preferred5. In order to put together such MCN architecture, tessellating cells are needed; 

thus implying that the circular model will be unsuitable due to its noncompliant layout. 

Therefore, as premised and quantified in Table 2.1, the hexagonal shape is rationally the leading 

cellular model of choice because it closely resembles the circular lattice while still remaining 

compatible for the MCN objective. 

 In fact, various research works have considered spatial deployment in a hexagonal cell 

model under a homogeneous profile, e.g. [26]–[30]. However, to the best of our knowledge, the 

random generation approach was not explicitly and thoroughly specified in any of these or other 

contributions; thus leading us to believe that perhaps a heuristic method was applied to 

artificially produce a random network pattern. In other words, emulation used for analysis of 

complex mobile systems is not obtained from accurate stochastical models, but is rather realized 

synthetically via selective sampling. And certainly, such simplification measures completely 

dissolve and defeat the true randomness and purpose sought by the MC simulation process. 

 In light of this revelation, we thus clearly perceive the technical effort needed for 

improving and advancing the emulation of these network models. Namely, even though the 

cellular concept has tangibly existed for over thirty years, and despite the wide use and 

practicality of probabilistic emplacement, it is astonishing to note that no detailed algorithm is 

available in literature for unbiased random nodal deployment in hexagon-based models. As a 

                                                 
5 Some of the key advantages and challenges of such configuration were noted in Chapter 2 of this dissertation. 
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consequence, in this section, we aim to meticulously derive from first principle the exact 

stochastic expressions necessary for emulating random network models enclosed by diverse 

tessellating geometries for non-sectored and sectored hexagonal lattices. These analytical 

statements will then be modulated into algorithm format so as to be used for the anticipated 

heterogeneous random deployment of mobile nodes. 

 To emphasize, the outcomes to be obtained from rigorous analysis for random dispersion 

in a honeycomb grid, as well as its sectored counterparts, will serve as essential building blocks 

for formulating the spatial inhomogeneity of a MCN. In fact, this heterogeneous generation 

approach is founded on the ASD principle, which is literally based on dividing the deployment 

surface into smaller sub-regions, analyzing each separately, and then synthesizing the results. 

Overall, the spatial emulator to be developed in this section is expected to serve as a useful 

modeling mechanism for exploring the various QoS metrics of a random MCN. 

 

4.5.2 – Exact Stochastic Generation in a Hexagonal Lattice 

The aim of this part is to stochastically derive an approach for distributing random nodes inside a 

hexagonal cell. One possibility to perform this duty would be to consider arbitrary deployment in 

a circular cell by the use of the analysis conducted in Section 4.2. However, this process will 

specifically produce an unfair nodal density at the edges of the non-circular contour. Therefore to 

adjust this aspect, a simple heuristic rule can be integrated in the simulation code in order to take 

into account the geometrical profile of the border. Nonetheless, this technical rectification 

method used to handle the edges of the tessellating cell will actually corrupt the wanted 

randomness of the generation. For this reason, we will here derive the exact RNG technique 

required for nodes spatial deployment inside a hexagonal cell. 

 For the sake of analysis, and perhaps from an intuitive modeling perspective, we assume 

that randomly located users are homogeneously spread over the coverage area HA ∗

+∈  of a 

hexagonal lattice with side length L ∗

+∈  depicted in Figure 4.27. This surface area is in fact 

determined by: 

 

( ) 2

2 2

,
3 3 2 2.598

H
H x y D

A dA L L
∈ ⊂

= = ≈                                  (4.96) 
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Figure 4.27 – Deployment surface of the hexagonal lattice 

 

such that HD  is the corresponding deployment domain which can compactly be represented by: 

 

( ) ( )2 3 :  2, ;

3 2 :  2
H

y L x L x Lx y
D

L y L x L
∗

+

≤ − ≤ ≤∈
=

∈ ≤ ≤
                       (4.97) 

 

From (4.96) and (4.97), the homogeneous spatial density can readily be obtained as follows: 

 

( ) ( )2 2, 1 2 3 3 ,XY H Hf x y A L x y D= = ∈ ⊂                            (4.98) 

 

Next, using (4.98), we can derive the marginal PDF along the x-axis by: 
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Also, via the use of (4.99), and following several manipulations, the marginal CDF is derived: 

 

( ) ( ) ( )

( ){ } ( )

{ } ( ) ( ){ } ( )

2

2

r

                2 1 3 2

                          2 3 1 2 2 1 2 1 3 2

1

1 1

x

X Xx
F x X x f x dx

x L L x L

x L x L x L L x L

=−∞
=Ρ ≤ =

= + ⋅ − ≤ ≤−

+ + ⋅ ≤ + − − ⋅ ≤ ≤  

(4.100)           

 

 In Figure 4.28, we provide a generic plot for the CDF of (4.100). Also, this graph 

demonstrates the approach for random generation, provided the ICDF is explicitly reachable by 

the fact that: 

( ) ( )( ){ } ( )
1ˆ ˆ 0,1X Xx F u f x
−

= U                                    (4.101) 

 

x
L− 2L− 2L L

1 6

5 6
1

û

x̂

( ) ( )rXF x X x= Ρ ≤

 

Figure 4.28 – Marginal CDF for hexagonal random network geometry along the x-axis 

 

The ICDF is indeed invertible and is equal to: 

 

( ) ( ){ } ( ) ( ){ } ( )

( )( ){ } ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 3 2 1 0 1 6 3 2 1 4 1 6 5 6
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x x u L L u u L u u

L u u

= = − ⋅ ≤ ≤ + − ⋅ ≤ ≤

+ − − ⋅ ≤ ≤
      (4.102) 
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 To verify the accuracy and effectiveness of this random generator, we performed MC 

experimentation based on 15,000Sn =  samples for different cellular sizes. As shown in Figure 

4.29, the theoretical and the randomly generated PDF estimation with 150Bn =  are in 

agreement; thus implying the correctness of the above analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 – Marginal PDF of nodal geometry for a hexagonal network along the x-axis 

 

 At this level, we could also determine the marginal PDF along the y-axis. To facilitate 

this task, we should first change the deployment domain of (4.97) as a function of the x-variable. 

After several careful manipulations, we get the elegant notation of (4.103). Although this 

expression appears simpler, yet we should underscore that both (4.97) and (4.103) refer to the 

same exact Euclidian domain; except each is seen from a different vantage point. 

 

( ){ }2, ; 3 :  0 3 2HD x y L x L y y L∗
+= ∈ ∈ ≤ − ≤ ≤                (4.103) 

 

With the direction of (4.103), we can now compute the desired marginal density function: 
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, 3 0 3 2
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(4.104) 



156 
 

 Clearly, the stochastic correlation between the random coordinates of a deployed node is 

expected due to the nature of the honeycomb structure. Nonetheless, we can analytically 

establish this interconnectedness by applying the stochastical test ( ) ( ) ( ),XY X Yf x y f x f y≠ ⋅  

while considering the geometrical densities of (4.98), (4.99) and (4.104).  

 Evidently, in comparison to the random disk model explored in Section 4.2, analysis for 

the hexagonal spatial deployment is relatively involved. In essence, the inherent advantage of the 

UCN model is due to the fact that the radial and angular PDFs are statistically disconnected; thus 

facilitating the geometrical generation. On the other hand, as mentioned earlier, an important 

drawback of this postulation for MCN emulation is related to its non-tessellating geometry. 

 In view of the interdependence among the RVs for a hexagonal network, and assuming 

that we begin by randomly generating x̂  from (4.102), then the following step requires us to 

characterize the conditional PDF along the y-axis as follows: 

 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, ,Y XY X XY XY X xf y x f x y f x f y f x y f x
=

= = =               (4.105) 

 

After carefully inserting (4.98) and (4.99) into the expression of (4.105), we then obtain: 
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 The overall approach for exact random spatial generation inside a hexagonal cell is 

specified in the algorithm of Figure 4.30. The spatial interpretation of this non-synthetic 

formulation is manifested in Figure 4.31 over different network scales. For these random 

networks, it is interesting to notice how perfectly the cell boundaries are respected. 
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Figure 4.30 – Pseudocode for spatial random deployment within a hexagonal lattice 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 – Random hexagonal networks 
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4.5.3 – Exact Random Nodal Dispersion in Sectored Cells 

At this level, we are interested to derive the method for random deployment in sectored regions 

of a cell. But before carrying on this RNG analysis, we find it necessary to promptly revisit and 

discuss the major technical implications of cellular sectoring. Fundamentally, cellular sectoring 

by the use of directional antennas is frequently implemented in mobile networking in order to 

mitigate the distorting impact of co-channel interference [47]–[49]. However, this crucial benefit 

is obtained at the expense of a number of challenges, among them: 
 

• Traffic Intensity per Sector: Sectoring lowers the traffic intensity, thus accommodating 

less channel-demanding active users. Precisely, 60˚ are worse than 120˚ sectors since the 

portion of frequency channels per sector is lessened. Yet, because of the frequency reuse 

(FR) principle, the deployment coverage will have a wider reach. Hence, the overall 

number of users throughout the MCN will still rise without the need of extra spectrum. 
 

• Handover Capability: As the number of sectoring increases, the need for sophisticated 

handoff capability becomes more important for MSs that travel among these regions. 
 

• Infrastructure Cost: cellular sectoring is achieved by means of directional antennas, 

which are generally more expensive to design and manufacture than omni-directional 

emitters. Also, sectoring requires more antennas per cell, thus increasing the overall cost. 

  

 

Figure 4.32 – Antenna radiation for unsectored and sectored cells 
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 In Figure 4.32, we illustrated the radiation features for unsectored and sectored cells. 

Also, as shown by the arrows which point to the preferred direction, we visualized the 

conflicting engineering requirements for a host of network attributes. As a result, tradeoff 

analysis during the design process is required for each particular network deployment case. 

 In the previous subsection, the exact MC simulation approach for random position 

generation within the boundaries of a hexagonal cell was found. In this part, we will supplement 

this uncovering by deriving the precise random generation in rhombus and triangular sectors. 

 To describe the stochastical interpretation for random homogeneous spatial density over a 

rhombus region, we will consider the deployment surface of Figure 4.33. 

  

x

y

3 2L

L 2 3π

3y x= −
( )3y L x= −

2
RD ⊂

L

3π

2L

( )2,1 0φ =

( )2,2

2

3

π
φ =

( )2,3

4
3
π

φ =

Figure 4.33 – Deployment surface of the rhombus lattice 

 

The marked area is given by: 
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From (4.107) and (4.108), we get the following spatial density: 

 

( ) ( )2 2, 1 2 3 ,XY R Rf x y A L x y D= = ∈ ⊂                            (4.109) 

 

Next, from (4.109), the marginal PDF can be computed: 
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 (4.110) 

 

Then after, the marginal CDF of (4.110) is obtained: 
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(4.111) 

 

From (4.111), we solve for the ICDF: 

 

( ) ( ){ } ( )

( ){ } ( ) ( ){ } ( )
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1
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x x u L L u u

L u u L u u

= = − ⋅ ≤ ≤
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    (4.112) 

 

 If we simulate the above random generation, we obtain the PDF estimation result of 

Figure 4.34. Clearly the generated samples produce outcomes that are consistent with the 

analytical expression; thus ascertaining the correctness of the derivation. 

 At this stage, by (4.108), (4.109) and (4.110), we determine the conditional density along 

the y-axis: 



161 
 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x-axis

y-
ax

is

n
S

= 10,000

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x-axis

y-
ax

is

n
S

= 1,000

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x-axis

y-
ax

is

n
S

= 100

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

random samples  -  x (units of length)

p.
d.

f. 
 -

  f
X

(x
)

L = 1

n
S
 = 15,000

n
B
 = 150

L = 2

L = 3

Monte Carlo
analytical

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4.34 – Marginal PDF of nodal geometry for a rhombus network along the x-axis 
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 In Figure 4.35, we randomly generated the nodal geometry for various network scales of 

the rhombus lattice. In fact, this graph was obtained by utilizing the outlined algorithm of Figure 

4.36, which is actually based on the merger of the above formulated expressions. As it can be 

noted, the algorithm only requires two inputs, namely the size of the cell and the scale of the 

network. Similar to the observation made for hexagonal model, here too the MC results are 

within the delineation of the lattice. 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4.35 – Random rhombus networks 
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Figure 4.36 – Pseudocode for spatial random deployment within a rhombus lattice 

 

 By the same token, the deployment surface for an equilateral triangular lattice is 

represented in Figure 4.37. The depicted area is equal to: 
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where the support domain is given by: 
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Figure 4.37 – Deployment surface of the triangular lattice 

 

With this realization, we can acquire the corresponding spatial density function: 

 

( ) ( )2 2, 1 4 3 ,XY T Tf x y A L x y D += = ∈ ⊂                            (4.116) 

 

Next, by (4.116) we formulate the marginal PDF along the x-axis: 
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And, the marginal CDF is accordingly derived: 
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If we solve for the ICDF, we then get: 

 

( ) { } ( ) ( )( ){ } ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 2 0 1 2 1 1 2 1 2 11 1x x u L L u u L u u= = ⋅ ≤ ≤ + − − ⋅ ≤ ≤             (4.119) 
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 In Figure 4.38, we tested the analyzed random generation over different cellular sizes. 

Definitely, we notice that the densities via MC simulations properly overlap the theoretical 

derivation of the marginal PDF. 

 

 

 

 

 

 

 

 

 

Figure 4.38 – Marginal PDF of nodal geometry for a triangular network along the x-axis 
 

Now, using the statements in (4.115), (4.116) and (4.117), we find the conditional density: 
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 Having these explicit stochastic notations, at presented, we simulated the various random 

networks of Figure 4.39 using the algorithm detailed in Figure 4.40. The experimental outcomes 

are further justifications to the performed analysis. 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 4.39 – Random triangular networks 
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Figure 4.40 – Pseudocode for spatial random deployment within a triangular lattice 

 

4.5.4 – Geometrical Transformation of a Random Network 

Before proceeding forward in the development of an inhomogeneous spatial algorithm for MCN, 

we must first formulate a number of geometrical tools useful for transforming a random network. 

 

• Cluster Reflection: In Figure 4.41, we demonstrated three different ways for reflecting a 

random cluster; namely with respect to the: x-axis, y-axis, and origin. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.41 – Different perspectives for reflecting a random cluster 
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• Cluster Rotation: Consider Figure 4.42, where a random cluster is rotated about the 

origin of a Euclidian plane. In this model, a counterclockwise rotation results into a 

positive angle, i.e. φ
+∈ ; otherwise, the angle will be negative. To determine the 

relation between the original coordinates ( ) 2,i ix y ∈  of the random nodes, and the new 

positions ( ) 2,i ix y ∈  obtained via rotation, the cluster should initially be characterized 

in polar format by the ( ) 2,i ir θ ∈  pair. After performing this task, we get: 
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Figure 4.42 – Applying rotation to a random cluster
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 Certainly, the derived spatial emulation algorithms of Figures 4.36 and 4.40 for 

rhombus and triangular lattices are only valid in the fundamental sector that commences 

in the first quadrant of the Cartesian coordinate system. During MCN deployment, the 

rotation process of (4.121) is then required in order to relocate the random geometries in 

the appropriate sector within the cell. To facilitate this, the lattice models can be mapped 

to a numerical digit based on the following convention: 

 

triangular 1

rhombus   2

hexagonal 3

l←⎯→ =
                                         (4.122) 

 

 With this definition, the rotation angle ( ),l jφ +∈  of a random cluster for MCN 

modeling can generically be expressed by: 

 

( ) ( ), 1 3     1, 2,3     1, 2, , 6 !l j l j l j lφ π= ⋅ ⋅ − = =                      (4.123) 

 

From this compact representation, the angular value for each sector can be obtained as 

explicitly shown in Figures 4.33 and 4.37. 

 In Figure 4.43, we performed a multi-density simulation of 1,000Sn =  random 

nodes per cell. In fact, the manner by which the terminals are partitioned is expressed in 

Table 4.6, where the rate of nodal quantity per cellular sector is obtained by: 

 

: :     1,2,3     1,2, ,6 !S j j j Sn n r n n l j l∗ ∗∀ ∈ ∃ ∈ = =             (4.124) 

 

such that jn  is the portion of nodes inside the -thj  sector out of the overall quantity Sn , 

and the obtained rate is limited by: 

 

{ } 1j jr r∗

+∈ ≤                                                  (4.125) 
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Figure 4.43 – Random network emulation with cellular sectoring 

 

Table 4.6 – Rate of nodal quantity and areal density per cellular sector 

( ) ( )2 2k units  k units

1 0.65 0.7506 0.26 0.6004

2 0.20 0.2309 0.05 0.1155

3 0.15 0.1732 0.19 0.4388
         

4 0.04 0.0924

5 0.39 0.9007

6 0.07 0.1617

j A j Ar rj ρ ρ

− −

− −

− −

rhombus sectors triangular sectorsno. of sectors

 

 

• Cluster Scaling: Scaling the geometrical position of a node can be explained differently, 

but the most general characterization is of the following form: 

 

0
          1,2, ,

0
x x ii i

S
y y ii i

s s xx x
i n

s s yy y
= = =

                     (4.126) 

 

where the entries of the diagonal scaling matrix are in . If for instance, we are 

interested to generate a densely or sparsely populated network, then we could assume a 

unique scaling factor s ∗

+∈ , and therefore (4.126) changes to: 
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 In Figure 4.44, we display six example of 500Sn =  nodes randomly deployed in 

a square box of [ ]
2

1,1−  dimensions. At every run of the generation, the nodes are 

accordingly remapped to their new positions by their corresponding scaling factor s. 

From the simulation results, we notice how the network areal density changes from 

highly dense to sparsely located deployment as the value of s is tuned. In other words, 

the generated random network is categorized by: 

 

0 1  

1  

1  

s condense network

s unscaled network

s dispersed network

< < ↔

= ↔

> ↔
                                     (4.128) 

 

In fact, this occurs not because the volume of nodes vary, but because the deployment 

area is altered; thus changing the surface density A S Nn Aρ = . 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.44 – Random networks as a function of different scaling values 
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• Cluster Translation: As shown in Figure 4.45, the translation of a random cluster is 

achieved by a shift along the x and y axes via ( ) 2,h k ∈ ; the new positions are thus 

given by: 

 

          1,2, ,i i i
S

i i i

x x x hh
i n

y y y kk

+
= + = =

+                      (4.129) 
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Figure 4.45 – Applying translation to a random cluster 

 

 All the manipulation tools formulated above for a random cluster can jointly and 

elegantly come together as expressed by: 

 

2 1 2 2 2 2 2 1 2 1

         1,2, ,P S R P Ti C C i C Si n
× × × × ×

= + =                             (4.130) 

 

where iP  and iP  are the original and new positions of a node within the cluster; and CR  is the 

rotation matrix, CS  is the scaling matrix, and CT  is the translation vector for a random cluster. 

For convenience, we expanded this compact representation by inserting (4.121), (4.126) and 

(4.129) into (4.130) in order to get: 
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 We could at this point make several noteworthy observations regarding the assembled 

generic expression of (4.131): 

 

1. In Figure 4.41, the only reflection that can be obtained by rotation is the one performed 

about the origin; in particular, for this case φ π= . 

 

2. Alternatively, all three reflections can be achieved by setting the appropriate minus sign 

in the scaling matrix. 

 

3. When a cluster is not intended for rotation, then 0φ = ; and therefore, the rotation matrix 

will simplify to the identity matrix, i.e. 2C =R I . 

 

4. To model a multi-density deployment such as that shown in Figure 4.44, then the scaling 

matrix reduces to: 2C s= ⋅S I . 

 

 Ultimately, for MCN emulation, we are interested to deploy wireless devices in a vast 

geographical area. Therefore, a cluster is initially generated via MC simulations about the origin 

of the coordinate system. Then, the random network is positioned in the proper location of the 

architecture footprint by the use of the geometrical manipulation tools formulated here. 

 

4.5.5 – MCN Algorithm for Heterogeneous Random Deployment 

In this section, we obtained exact expressions for random nodal deployment surrounded by 

tessellating forms identified by hexagonal, rhombus, and triangular lattice shapes. We also 

showed the analytical formulation for geometrical maneuvering of a random cluster. Now, we 
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aim to merge all these results defined and derived throughout this section in order to build a 

modular subroutine that enables a spatially flexible random deployment over a MCN. 

 The anticipated heterogeneous spatial deployment algorithm will actually be based on the 

ASD approach proposed earlier in this chapter. To be precise, the purpose of the ASD technique 

is formulated for randomly mapping a non-homogeneous cellular network by taking apart a 

deployment terrain and then reassembling the sectors; namely geometrical analysis followed by 

synthesis. This superposition principle of targeted distribution method is in fact applied in order 

to ensure a more realistic inhomogeneous stochastic pattern caused by users’ tendency to cluster. 

 To create a generic modeling tool that can support a large and complex network, at first, 

we need to explain the layout of the MCN grid. Thus, in Figure 4.46 we illustrated the 

deployment model for a large network containing multiple hexagonal cells. 
 

3 2L

3 2L

0x
0y

1vk =

0y

0 0 1vy y k == +

2uh =

0 0 2ux x h == +

 

Figure 4.46 – Layout of a large MCN grid 
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 As graphically explained, nodes will randomly be positioned in the fundamental cell 

centered at the origin of the Euclidian plane. Then, a sequence of geometrical steps can be 

applied to move the generated cluster to its desired position without an overlap of the borders. To 

do this task, we most importantly need to mathematically characterize the centroids of the 

network, which we can do by identifying the appropriate indices of a particular cell. 

 In Figure 4.46, we set the index along the x-axis to the u∈  integer, and t∈  for the y-

axis. Indeed, identifying a cell with the ( ),u t  pair is problematic because not all combinations 

are valid cellular centroids, e.g. ( ) ( ), 1,0u t =  or ( )1,2 . In fact, from the network grid model, we 

recognize that if u is even, then t  must also be even; otherwise both will be odd. Therefore, we 

rather remedy this reality by mapping ( ),u t  to an all-inclusive and compatible pair, say ( ),u v , 

where v is yet another integer variable. With some thought, we determined the relationship 

among the two pair of indices; thus we established the centroids for all possible cells: 

 

{ } ( ){ } ( ){ } ( ) 2 ,  ,  ,  ,  2 2           ,u t u t u v u u v u v= = + ⋅ ∈ mod              (4.132) 

 

where mod is the modulo operator used to obtain the remainder of a rational number. To expand 

this operator, say we have the following rational number: 

 

a b q r b= +                                                        (4.133) 

 

such that a∈  is the dividend, b ∗∈  is the divisor, q∈  is the quotient, r∈  is the 

remainder. Knowing that the quotient will always equal a b , we could therefore isolate for the 

remainder in (4.133); hence we get: 

 

( )         ,r a b b a b q a b q a b a b a b ∗= = − = − ⋅ = − ⋅ ∈ ∈ mod          (4.134) 

 

 With the geometrical help of Figure 4.46 and the compact generalization of (4.132), we 

can find the corresponding shifting vector for each cell by: 
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 ( )3 2      uh L u u= ⋅ ∈                                              (4.135) 

 

( ) ( ) ( ) ( ) 23 2 3 2 2 2      ,vk L t L u v u v= = ⋅ + ⋅ ∈ mod                 (4.136) 

 

If we use the equality of (4.134), we can more appropriately rewrite (4.136) as follows: 

 

( ) { } ( ) 23 2 2      ,v vk k u L u u v u v= = ⋅ − + ∈                       (4.137) 

 

 So basically, having the position indices ( ),u v  for the cellular of interest is enough for us 

to get the required centroid position within the larger honeycomb network grid by the use of 

(4.135) and (4.137). For an entire large network, these indices are inscribed in the cellular 

location matrix 2Cn ×∈L , defined as: 

 

[ ]
1 2

1,2, ,2
1 2

,C

CC
C

T

n

i i i nn
n

u u u
u v

v v v =×
= =L                                (4.138) 

 

where Cn ∗∈  is the overall number of cells considered for emulating a heterogeneous MCN 

deployment. 

 Beyond the location, particular cells may be partitioned differently; therefore, the sectors 

information will be indicated in the Cn
∗∈S  array, namely: 

 

[ ]1 2 1,2, ,1 C CC

T

n i i nn
s s s s

=×
= =S                                   (4.139) 

 

such that { }1,3,6is ∈  which basically refers to the number of sectors within the -thi cell. 

 As for the network scale, it will be registered in 6Cn ×∈ΝΝΝΝ , which is the MCN 

deployment matrix for nodal quantity per sector per cell; this component is equal to:  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1

1

2

2

1,1 1,2 1,
6

2,1 2,2 2,
6

, 1,2, ,6 1,2, ,

,1 ,2 ,
6

 0 0 

 0 0 

 0 0 

C
C

i

C C C nC
nC

s
s

s
s

i j i nn
j s

n n n s
s

n n n

n n n
n

n n n

−

∗−
=×
=

−

= = ∈ΝΝΝΝ
             (4.140) 

 

 For easily managing the emulation process during its reusability for different network 

projects, we could combine (4.138), (4.139) and (4.140) together in the network plan matrix 

9Cn ×∈ΡΡΡΡ , so as to form: 

 

( ) ( ), , 1,2, ,1,2, ,9 2 1 6 1,2, ,1,2, ,9
CC

C C C C
i

i i ii j i j i ni nn n n n
j sj

p u v s n
==× × × ×
==

= = =Ρ ΝΡ ΝΡ ΝΡ ΝL S               (4.141) 

 

 At this level, we can also quantify the overall number of sectors considered in the MCN 

emulation by: 

 

( )sec-total ,31 1

C Cn n

iii i
n p s

= =
= =                                           (4.142) 

 

 Having clear and explicit stochastic expressions derived for non-sectored and sectored 

hexagonal lattices, and geometrical ways to manage a random cluster, at present these 

components can coherently converge to produce the algorithm for MCN deployment of Figure 

4.47. As it can be observed, this inhomogeneous spatial approach has a modular format, because 

as needed the appropriate random deployment algorithm for a particular sector lattice is 

accordingly called. Notably, Algorithms 10, 11, and 12 shown in this pseudocode respectively 

refer to the code detailed in Figures 4.30, 4.36, and 4.40.  

 Moreover, the algorithm of Figure 4.47 is generic because it can support a host of 

complex non-homogeneous random networks effortlessly with simple, obvious and intuitive 

inputs. Indeed, this is possible due to the changeable attributes of the associated network plan 

enabled by adjusting: 
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( )

( ) ( )

, 1,2, ,
1,2, ,9

sec-total

,1

- Emulating a Wide Inhomogeneous Random Network

 1: Require: 

 2: Initialize :  0 0

 3: 1, 2, ,  

 4: Compute :  : 3 2

 5:

CC i j i n
j

S

C

i i

n L p

n n

i n

h L p

∗ ∗
+ =

=

∈ ∈ = ∈

= =

=

= ⋅

ΡΡΡΡ

Algorithm 13  

for do

     

    ( ) ( ) ( ){ }
( )

( )

( ){ }

( )( ) { } ( )

,1 ,1 ,2

sec-total sec-total ,3

,3

,3

, 3 , 3

Compute :  : 3 2 2

 6: :

 7: 1, 2, ,  

 8: 1

ˆ ˆ 9:                :  , , : 1, 2, ,

10:         

i i i i

i

i

i

m mi j i j

k L p p p

n n p

j p

p

p L x y m p
+ +

= ⋅ − +

= +

=

=

=

     

     for do

          if   then

Algorithm 10

( ){ }

( )( ) { } ( )

( )

( ){ }

,3

, 3 , 3

,3

       Set/Compute :  : 0

11: 3

ˆ ˆ12:                :  , , : 1, 2, ,

13:                Set/Compute :  : 2 1 3

14: 6

15:     

j

i

m mi j i j

j

i

p

p L x y m p

j

p

φ

φ π

+ +

=

=

=

= −

=

          else if   then

Algorithm 11

          else if   then

( )( ) { } ( )

( )

( )

( )

, 3 , 3

, 3

ˆ ˆ           :  , , : 1, 2, ,

16:                Set/Compute :  : 1 3

17:

18: 1, 2, ,  

ˆ ˆ19: Compute :  : cos si
S

m mi j i j

j

i j

n m m j m

p L x y m p

j

m p

x x y

φ π

φ

+ +

+

+

=

= −

=

= ⋅ − ⋅

Algorithm 12

          end if

          for do

               ( )

( ) ( )

( )

{ }

, 3

sec-total

n

ˆ ˆ20: Compute :  : sin cos

21:

22: :

23:

24:

25: Return: , : 1, 2, ,

S

j i

n m m j m j i

S S i j

t t S

h

y x y k

n n p

x y t n n

φ

φ φ+

+

∗

+

= ⋅ + ⋅ +

= +

= ∈

               

          end for

          

     end for

end for

 

 Figure 4.47 – Pseudocode for random heterogeneous MCN spatial deployment 
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• the size of the cellular network: L  

• the number of deployed cells: Cn  

• the geographical position of the cell: ( ),i iu v  

• the sectoring capability of the cell: is  

• the network scale of the cluster: ( ),i jn  

 

 Furthermore, the computational complexity of the above algorithm is given in (4.143), 

such that Sn ∗∈  is the overall amount of randomly positioned nodes over the entire service 

area of the MCN. 

 

( )
( )( ) ( )( ) ( ),3

, 3 ,1 1 1 1

C C iin p n s

Si j i ji j i j
O p O n O n

+= = = =
= =                       (4.143) 

 

 To demonstrate this algorithm, in Figure 4.48 we displayed the footmark of the network 

plan for a large architecture example composed of 19-cells, where users nodal quantity is 

inscribed in each zone. From this visual aid, we can straightforwardly express the heterogeneous 

deployment information in its equivalent canonical matrix format by: 

 

19 9

2 2 2 1 1 1 1 0 0 0 0 0 1 1 1 1 2 2 2

1 0 1 1 0 1 2 2 1 0 1 2 1 0 1 2 1 0 1

3 1 6 6 1 6 3 1 3 1 3 1 3 6 1 6 6 1 3

80 400 150 60 300 50 220 250 300 1,200 400 500 30 150 400 150 30 100 90

130 0 25 35 0 120 300 0 100 0 150 0 130 80 0 75 150 0 150

150 0 90 80 0 150 190 0 100 0 170 0 90 200 0
×

− − − − − − −

− − − − − − − −

=P

150 50 0 130

0 0 150 150 0 190 0 0 0 0 0 0 0 100 0 45 40 0 0

0 0 65 80 0 50 0 0 0 0 0 0 0 50 0 15 150 0 0

0 0 200 250 0 85 0 0 0 0 0 0 0 150 0 25 350 0 0

T

 

(4.144) 

 

 From (4.142) and (4.144), we realize that in this network example sec-total 61n =  sectors; 

and by (4.143) we can compute that 10, 000Sn =  wireless nodes. If we simulate this described 

structure, we obtain in Figure 4.49 one possible random instance of the generated network. 
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Figure 4.48 – Network footprint for a complex non-homogeneous MCN example 

 

 Although we did not do that in Figure 4.49, yet coloring could have been used to 

distinguish the various clusters of the MCN. This was in fact performed in the example that we 

demonstrated in [72]. 

 Overall, the conceptualized algorithm tool can emulate heterogeneous MCN models that 

have the advantage of being flexible and scalable based on unbiased random sampling so as to 

reflect the desired network plan. Indeed, this generic deployment algorithm supports random 

structures with varying size, capacity, density, and sectoring capability. Thus, a designer could 

utilize this subroutine to simulate a large inhomogeneous mobile network straightforwardly and 

in a timely manner due mainly to its ease of configuration and modular complexion. 
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Figure 4.49 – Random heterogeneous spatial deployment for a 19-cell MCN example 

 

 Although the point here is to show how it is possible to emulate a random heterogeneous 

MCN; yet once constructed by the simulator tool, the hexagonal-based stochastic map can be 

used to effectively study various performance indicators. In particular, interference is a crucial 

system-level metric worthy of investigation, mainly for exploring: adjacent-channel interference, 

co-channel interference, and coexistence analysis due to spectrum overlapping. 

 To incite such potential, in the MCN footprint of Figure 4.48, we identified the first- and 

second-tier neighbors of a reference cell located at the origin of the Cartesian plane. As it is 

usually the case with CDMA and LTE networks, the reference is assumed to operate with FR 

factor of unity. In this setting, we may for instance explore the deteriorating impact of 
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interference on a randomly positioned MS in the reference network from these outer cells 

containing diverse multi-pattern sectoring. In fact, the analysis can be performed over different 

network planning, scaling, and coverage scenarios in order to observe outcomes and deduce 

valuable conclusions regarding the spatial layout of the architecture. 

 Following the in-depth characterization of the heterogeneous MCN, at this juncture we 

could concisely recapitulate and compare the various emulating algorithms formulated in this 

chapter. In Table 4.7, the major distinctive highlights between UCN and MCN inhomogeneous 

approaches are featured6. From the presented dichotomy, we can clearly identify and select the 

appropriate algorithm feasible for a certain deployment project. Generally speaking, macrocells 

are used for planning low-traffic network demands commonly encountered in rural conditions 

[73]; whereas microcells are considered in densely populated regions such as large urban cities 

with multiple BSs having directional antenna schemes. 

 Also, from the table we notice that the notion of spatial clustering can carry different 

meanings depending on the considered approach and the deployment settings. For instance, for 

the UCN case, clustering is founded as a function of terrain features. On the other hand, for the 

MCN case, it makes more sense due to the cell geometry to consider clustering as a function of 

the BS position within the MCN grid, and the sectoring capability of its antenna by the use of 

directional emitters. 

 

Table 4.7 – Comparing the emulation algorithms for uni- and multi-cellular networks 

network location suburban
network scale

network dimension

lattice structure

spatial clustering

algorithm cost

spatial inhomogeneity  algorithms       

attributes UCN                                          MCN

( ) ( ) ( )max 2 max

controlled uncontrolled

urban

sparsely populated densely populated

macrocell microcells

circular hexagonal

terrain features BS positions and antenna sectoring

, logS S L L SO n O n n n O n− −+ ⋅

 

                                                 
6 We should remark that the associations outlined in Table 4.7 are typically valid, but are not necessarily true for all 
deployment scenarios; e.g. we may have a non-sparse UCN which is overloaded with active users as in Figure 4.26. 
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4.5.6 – Formulating the Spatial Density for Heterogeneous Networks 

Similar to the spatial density analysis and verification conducted in Subsection 4.2.2 for the UCN 

structure; in this part, we are interested to formulate the related expressions for MCN 

deployment. Furthermore, we aim to derive a PDF estimation expression tailored specifically for 

approximating the spatial density of an inhomogeneous random network deployment realized via 

the proposed ASD algorithm. 

 In Figure 4.50, we provided the bivariate histogram for the random simulation of 

10, 000Sn =  samples estimated with 25Bn =  bins for a triangular, rhombus and hexagonal 

lattices by using the algorithms detailed in earlier subsections of this chapter. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.50 – Spatial densities of hexagonal-based random networks 

 
 Now, we want to analytically predict this spatial density estimation shown above. To do 

this, we could begin by unifying the relevant deployment areas of (4.96), (4.107), and (4.114) 

into: 

( ) 23 ! 4     1,2,3l
HA L l l= ⋅ ⋅ =                                        (4.145) 

 

where l  follows the notational convention of (4.122). To facilitate this derivation, the footprint 

of Figure 4.51 can be utilized. In this illustration, we notice the bivariate estimation grid as 

equally-spaced bin regions; thus, the average histogram density can analytically be obtained by: 

 

( )
( )( ) ( )

analytical 2

2 2         1,2,3                       2 16 3 !

XY XY A bin S N B

l
S H B S B

h h A n A

ln A L n n n l

ρ= = ⋅ = ⋅Δ

== ⋅ = ⋅ ⋅ ⋅           (4.146) 
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Figure 4.51 – Footprint of a hexagonal network for spatial density estimation 

 

 To verify this result, we performed a set of MC simulations with 100, 000Sn =  samples 

over different histogram resolutions. The results are indicated in Table 4.8, such that 
simulation
XYh  

is given in (4.26), and the error measure Aε  is defined in (4.28). The small percentage error of 

the spatial density among analysis and simulation insinuates the correctness of the derivation. 

 

Table 4.8 – Contrasting spatial density estimation for a hexagonal-based network 

( ) ( ) ( ) ( ) ( ) ( ) ( )

analytical simulation

22

5

5

random network

models units no. %no. no. bin area no. bin areak units

triangular sector 0.4330 10 0.2309 300 10.2640 10.1708 0.91

rhombus sector 0.8660 10 0.1155 200 11.5470 11.4147 1.1

H AS B AXY XY
A n n h hρ ε

5

5

hexagonal cell 2.5981 10 0.0385 100 15.3960 15.0742 2.09

 

 In the previous subsection, we conceptualize a MCN algorithm for heterogeneous random 

deployment. Then, we experimented the inhomogeneous spatial generation for a 19-cell 

example, and one instance of the random 2D deployment was shown in Figure 4.49. Here, its 

related spatial density is estimated in Figure 4.52 based on 50Bn =  resolution along each axis. 
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Figure 4.52 – Inhomogeneous spatial density estimation for a 19-cell MCN example 

 

 As apparent from Figure 4.52, the overall spatial distribution is non-homogeneous. At 

this stage, the intrigue is to develop a mathematical mechanism that can effectively approximate 

heterogeneously deployed networks such as the one estimated above. For this purpose, we define 

the spatial density histogram ( ) 2, :ASDH x y  for heterogeneous ASD deployment: 

 

( ) ( ) ( ),1 1
, ,B Y B Xn n ASD

ASD B i ji jj i
H x y h x x y yδ− −

= =
= ⋅ − −                       (4.147) 

 

As it can be observed, this expression is similar to the notation of (4.19) except that here we 

consider multiple deployment regions as opposed to a single one. As a consequence, ( ),
ASD
i jh ∈  

will equal the aggregate of the multi-density sectors: 
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( ) ( )
( )

( )
( )

( )
( )

( )
( )sec-totalsec-total1 2

, , , , ,1

nn kASD
i j i j i j i j i jk

h h h h h
=

= + + + =                           (4.148) 

 

 And for this generalized case, the overall deployment surface [ ] [ ], ,L H L Hx x y y×  is 

obtained by: 

 

  
( ){ } ( ){ }

sec-total sec-total1,2, , 1,2, ,
min ;      maxk k

L L H H
k n k n

x x x x
= =

= =                          (4.149) 

  
( ){ } ( ){ }

sec-total sec-total1,2, , 1,2, ,
min ;      maxk k

L L H H
k n k n

y y y y
= =

= =                          (4.150) 

 

Indeed, these expressions will basically determine the smallest and largest extremities of the sub-

regions. As a result, (4.147) can be rewritten as follows: 

 

( ) ( )
( ) ( ) ( )( )sec-total

,1 1 1
, 1 2 ;  1 2B Y B Xn n n k

ASD B L B L Bi jj i k
H x y h x x i x y y j yδ− −

= = =
= ⋅ − + − Δ − + − Δ    

                    (4.151) 

 

where the dimensions of the bivariate histogram bin are computed by: 

 

( ) ( ){ } ( ){ }( )
sec-totalsec-total 1,2, ,1,2, ,

max mink k
B H L B X H L B X

k nk n
x x x n x x n− −

==
Δ = − = −            (4.152) 

 

( ) ( ){ } ( ){ }( )
sec-totalsec-total 1,2, ,1,2, ,

max mink k
B H L B Y H L B Y

k nk n
y y y n y y n− −

==
Δ = − = −            (4.153) 

 

 To determine the density of (4.151), we need to go over the fundamentals of stochastic 

theory. Evidently, the probability of some arbitrary event A  obtained for a bivariate PDF will 

be equal to: 

( )( ) ( )
( ),

Pr , ,  XYx y D
A x y D f x y dx dy

∈
→ ∈ =                           (4.154) 
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 This expression can be approximated by looking at the left and right hand sides of (4.154) 

separately and then equating them together, namely: 

 

( )( ) ( ) ( )Pr , , ,ASD S XY B BA x y D H x y n f x y x y→ ∈ ≈ ≈ ⋅Δ ⋅Δ               (4.155) 

 

such that ( ),XYf x y  is the numerical probability density estimation for spatial inhomogeneous 

deployment. If we isolate for the density function, we obtain the final result as follows: 

 

( ) ( )

( )
( ) ( )

( ) ( )
( )

sec-total

0 0

,1 1 1
0 0

, lim  lim  lim ,

                   lim  lim  lim ,

 , 2; 2

 

S B X B Y

B B

B Y B X

S B X B Y

B B

XY XYn n n
x y

n n n k
B i j S B Bi jj i kn n n

x y

B B B

B H L

f x y f x y

h x x y y n x y

x y x x y y

x x x n

δ

δ

− −

− −

− −

→∞ →∞ →∞
Δ → Δ →

= = =→∞ →∞ →∞
Δ → Δ →

=

= ⋅ − − ⋅Δ ⋅Δ

• = ≤Δ ≤Δ

• Δ = −

1

( )
( ){ } ( ){ }
( ){ } ( ){ }

( ) ( )

sec-total sec-total

sec-total sec-total

1,2, , 1,2, ,

1,2, , 1,2, ,

 

 min  max
 

 min  max

 1 2  1 2

B X B H L B Y

k k
L L H H

k n k n

k k
L L H H

k n k n

i L B j L B

y y y n

x x x x

y y y y

x x i x y y j y

− −

= =

= =

• Δ = −

• = • =

• = • =

• = + − Δ • = + − Δ                                   

                                                                                                                 
 (4.156) 

  

 As noted by the limits in this statement, the spatial density estimation can be improved by 

augmenting the quantity of MC samples Sn . Also, increasing the histogram resolution through 

the number of bars along each axis is expected to ameliorate the numerical computation of the 

2D density function. However, rising Sn  and Bn  (assuming B X B Yn n− −= ) simultaneously by a 

certain level does not necessarily improve the result. This is in fact the case because by (4.156) 

these elements oppositely impact the spatial density function, i.e.: 
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( ) 2, 1XY S B B B X B Y S B Sf x y n x y n n n n n− −∝ ⋅Δ ⋅Δ ∝ ⋅ ∝                     (4.157) 

 

Therefore, a better understanding of the joint relationship between these estimation factors is 

needed in order to fine-tune the approximation process. 

 On the whole, we should emphasize that the tractable statement of (4.156) offers an 

analytical formula for estimating users’ inhomogeneous geometrical trend over a geographical 

service area. In fact, this statement is tailored specifically for approximating the spatial density 

function of an ASD-based heterogeneous network. Thus, the result is applicative for all the 

inhomogeneous algorithms derived in this chapter, i.e. controlled/uncontrolled UCN and MCN 

deployments. In other words, so long as the random position generation is based on the ASD 

approach, then the developed expression will be valid. 

 

4.6 – Conclusion 
The importance of all variations of wireless communications, and in particular cellular 

technologies, are still and even more significant as we move toward newer network generations. 

Therefore, analysis and planning of such systems through time- and cost-efficient simulations is 

rather vital. As a result, the central focus of this chapter was based on the random emulation of 

terminals spatial position. In fact, in order to enable the effective geometrical modeling of a 

network, we had to undertake this research challenge from different viewpoints targeting a 

specific deployment situation. 

 To this end, we began by identifying that it is a common practice by researchers and 

design engineers to spread random nodes in a disk-shaped circular cell representing an ideal EM 

radiation profile of a BS. Also, we noted that spatial distribution in an annulus is often conducted 

in order to study edge related aspects. However, despite this reality, no comprehensive stochastic 

method exists for nodal emplacement in different mutations of a circular cell without relying on 

biased sampling. Thus, we improved the spatial geometry of terminals by deriving exact 

expressions for versatile nodal deployment. To be precise, our UCN deployment derivation has a 

number of direct and cascading advantages; notably: 

• It is more generic than currently available models; hence it enables spatial flexibility. 

• It is based on more efficient position generation when compared to heuristic approaches. 
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• It ensures the preservation of unbiased randomness. 

• It is analytically useful for rigorously obtaining a tractable large-scale fading density. 

• It can be used as a foundation for spatially emulating an inhomogeneous multipurpose 

cellular network. 

 

 Next, as an alternative to exhaustive MC techniques, using the above steppingstone, we 

derived a closed-form large-scale fading predictor for a flexibly versatile random UCN. This 

finding essentially generalizes the result in [19], which basically determined the PL distribution 

for a fixed deployment coverage. Indeed, the impact of far-field was also overlooked in this 

previously reported result. In fact, the consideration of this phenomenon is critical because the 

large-scale fading is only valid and defined for interpoint distances that extends beyond the 

close-in range. On the other hand, our density derivation is more accurate because this 

fundamental propagation factor was explicitly accounted for in the spatial deployment, the 

channel-loss model, the stochastical transformation, and the theoretical analysis. Following the 

large-scale fading formulation, MC simulations were used to reaffirm the validity of the 

theoretical analysis. Also, various permutations of the UCN were evaluated from a PL 

perspective in order to study the interplay between the deployment structure of the network, the 

random nodal geometry, and its impact on the channel-loss behavior. 

 Furthermore, we remarked that typical spatial distribution densities, though practical to 

some degree, have their own limitations. For example, the uniform case is mainly valid when the 

terrain of interest is flat with no topographical features. And, this is the case because humans, 

who for the most part are the carriers of mobile devices, will favor one location as opposed to 

another. Likewise, the Gaussian spatial geometry is applicable in scenarios where the center of a 

cell has greater nodal concentration, and for modeling the airdropping of terminals. 

 Therefore, by means of the determined results for versatile nodal deployment, an 

inhomogeneous UCN algorithm based on the superposition principle of targeted spatial 

distribution was proposed. This conceptualized heterogeneous networking approach, which we 

refer to as ASD, is certainly more manageable because it breaks down a fairly complicated task 

of finding the wholesome density of users’ spatial pattern in a vast terrain to that of smaller 

regions. Then, the principle of superposition can be applied to merge the spatial clusters together, 

and hence establish the entire random mobile distribution of the cell in order to investigate 
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various network-based integrity measures. Overall, this controlled spatial emulation algorithm is 

a coherent, easily configured tool, with greater emulation flexibility, useful for approximately 

modeling and attaining a heterogeneous random arrangement. 

 In addition to the above controlled UCN algorithm, we derived an automatic emulator to 

arbitrarily simulate an inhomogeneous wireless network. This uncontrolled heterogeneous spatial 

generator method is practical when no specific information about a network site is known or 

asserted; i.e., the designer is not aware of the actual deployment environment. The key advantage 

of this tool is that it can randomly construct a unique heterogeneous geometry suitable for small, 

medium or large scale networks while necessitating very few input parameters. 

 Moreover, we described an adjustable computer simulation mechanism for unbiased 

random deployment of nodes over a large MCN. This was done by first acknowledging that 

during the analysis of a cellular-based network, it is common to model the BS coverage area by 

assuming ideal cell shapes such as a circle or a hexagon. In fact, for MCN deployment, the 

hexagonal model is more appropriate because it eliminates overlapping and coverage holes. 

Consequently, we methodically derived the exact random generation approach for deploying 

nodes within non-sectored and sectored hexagonal-based network lattices; the outcomes were 

then verified through stochastic simulations. Using these findings, we subsequently demonstrated 

the implementation of a comprehensive stochastic model that can be applied to generically 

simulate a complex non-homogeneous cellular structure with varying parameters, such as: size, 

capacity, density, and sectoring capability. The systematic and modular nature of the obtained 

algorithm promotes its flexibility for different large coverage MCN projects. In general, this 

inhomogeneous simulator model can be used for studying a host of factors that affects the link-

layer of the network, among others: channel losses, interference, and resource consumption. 
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Chapter 5 

Channel-Loss Predictor for Gaussianly 

Deployed Network 
 

 

5.1 – Introduction 

5.1.1 – Objective 

The Gaussian random network has been considered as an effective model for cellular systems 

and air deployed devices. Meanwhile, for the analysis of such LWN, profiling and predicting the 

behavior of the propagation channel is fundamental. By and large, the only way to obtain an 

estimate of the channel-loss distribution for a specific random network relies on computationally 

expensive MC simulation for each topology under investigation. For efficiency and tractably 

purposes, the large-scale fading distributions over various random uniform deployment models 

have already been formulated and analyzed in literature [19], [74], [75], and in previous parts of 

this dissertation. However, there is yet an analytical reporting to be made for the Gaussian 

network model. 

 Given the wide interest and practicality of the Gaussian network, as a result, in this 

chapter, we will derive a generic and exact closed-form PDF expression for the large-scale 

fading between an AP and a randomly deployed node based on a generalized truncated 

realization. The expected formulation will essentially characterize the propagation attributes 

while remaining fully generic and compatible to different cellular sizes, spatial intensities, 

channel parameters and operating environments. Overall, the result will be an insightful 

mechanism for planning, analyzing, and designing large RF networks that exhibit or emulate a 

Gaussian spatial pattern. 
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5.1.2 – Organization 

The rest of this chapter is organized as follows. In Section 5.2, the motivation, geometry, and 

behavior of the Gaussian random network model will be detailed. Then, in Section 5.3, an exact 

closed-form analytical derivation for the large-scale fading density will be shown. After, in 

Section 5.4, the validity of the formulation will be demonstrated and analyzed via stochastic MC 

simulations. Next, in Section 5.5, some key implications of the large-scale fading PDF derived 

throughout this dissertation will be described. Finally, Section 5.6 will close the chapter. 

 

5.2 – Gaussian Random Network Model 

5.2.1 – Motivation 

Besides the homogeneous network discussed previously, researchers have also considered the 

Gaussian geometry for modeling a snapshot of users in a cellular configuration, where mobiles 

concentration near or away from the AP is analyzed [24]–[26], [35]–[39]. Further, it was 

reported that the Gaussian distribution is an effective way to model nodes deployment from an 

air moving vehicle [42]–[45]. This realization is depicted in Figure 5.1, where a set of radios are 

deployed about a pre-positioned processing reference (e.g. tank). Once airdropped, the nodes are 

expected to be anywhere in a cloud around the AP due to factors such as wind, speed, height, etc. 

 

Figure 5.1 – Aerial network deployment 
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5.2.2 – Network Geometry 

The network spatial configuration is based on Gaussianly deployed nodes, with a joint PDF 

governed by: 

 

( ) ( ) ( ) [ ]( ) [ ]( ){ }1
1 2

1
, , , exp , , 2

2

T

XYX Y f x y x y x y
π

−∼ = = − − −N m m mΣ ΣΣ ΣΣ ΣΣ Σ
ΣΣΣΣ     (5.1) 

 

where the random spatial position is given by ( ) 2,x y ∈ , with mean vector 

( ) 2,X Ym m= ∈m , and the covariance matrix 
2 2×∈ΣΣΣΣ  contains the spread 

( ) 2
,,X Yσ σ + ∗∈  and correlation coefficient : 1XY XYρ ρ∈ ≤  of the PDF: 

 

2

2
X XY X Y

XY X Y Y

σ ρ σ σ

ρ σ σ σ
=ΣΣΣΣ

                                             (5.2) 

 

Taking into consideration that the reference AP will be located at the origin of the Euclidian 

space, implies that 0X Ym m= = . Further, it is assumed that the spatial axes are uncorrelated, or 

0XYρ = . This is done not only for the sake of simplicity, but is rather instinctive because no a 

priori statistical insight of users’ trends or terrain limitations is known. Moreover, in order to 

have a single controllable dispersion element, we will consider the SD to be the same along each 

direction; hence: X Y Gσ σ σ= = . Overall, the per-dimension samples for each nodal position 

are i.i.d.; and nodes geometrical emplacements among themselves are also i.i.d. 

 

5.2.3 – Network Behavior 

It is important to note that in comparison to the nonflexible uniform layout, the Gaussian model 

has the ability for controlling nodes deployment via the SD Gσ
∗

+∈  of the joint spatial PDF. 

In particular, the reach and intensity of the spatial network can be adjusted by first realizing that 

a cellular radius of 3 Gσ  covers almost 0.997 of the surface area. If we assign L
 
for the radius, 
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we could then parameterize the SD by: [ ): 3, : GL a L aσ∗

+∀ ∈ ∃ ∈ ∞ ≈ . In light of this 

interpretation, simple examples that demonstrate the tunable flexibility of the network topology 

are demonstrated in Figure 5.2. Specifically, the cell size and the amount of nodes are held 

constant (e.g. 1; 10,000SL n= = ); however a is made variable so as to produce different 

realizations. When 3a =  the nodes presence is all over the network surface, hence a sparse 

configuration is resulted. Otherwise, say for instance that 5a = , then a condense outcome is 

obtained. And, as this variable grows, e.g. 7a = , then the concentration further intensifies and a 

highly-centric structure near the BS is realized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 – Parameterizing the geographical spread and spatial intensity of the model 

 

5.3 – Distribution of the Large-Scale Fading 

5.3.1 – Internodal Distance PDF 

At this point, we are interested to find the density of r , which is the distance between a random 

node and the corresponding AP. To achieve this, it becomes natural to transform (5.1) from its 

Cartesian representation to polar notation, where ( ),J r θ  is a 2D Jacobian matrix: 
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( ) ( ){ } ( ) ( ) ( ){ } ( )2 2
cos cos
cos cos

, , , 0, 0, ,x rR X G Y G x r
y r y r

f r m J r J rθθ θ
θ θ

θ θ σ σ θ= =
= =

= Σ =N N N    (5.3) 

 

Then, we determine the marginal density along the radius, which can be shown to reduce to a 

Rayleigh distribution: 

 

( ) ( ) { } ( )
2 2 2 2

0
, exp 2       R R G G GR f r f r d r r Rayleigh r

π

θθ
θ θ σ σ σ +

=
= = − = ∈      (5.4) 

 

 Evidently, the geometrical position of nodes will follow a Gaussian spatial pattern; but in 

particular, we will consider its truncated counterpart, which is a conditional realization of the 

original PDF [76]. In Cartesian format, the spatial density thus changes to: 

 

( ) ( ) ( ) ( )( )2 2 2 2 2 2
0 , 0, , , ; ,T T

XY XY XYf x y f x y D f x y r L r x y L+ ∗= = ∈ ∈ ≤ + ≤      (5.5) 

 

Specifically, this modification is performed because the large-scale fading model is valid for 

interpoint distances that extends beyond the far-field region 0r . Moreover, this adjustment 

ensures that all nodes will be positioned within a preset delineation of the cell radius L . Thus, 

as shown by Figure 5.3, the radial density will be truncated, i.e.: [ ) [ ]00, ,r L∞ → ; thus further 

generalizing the analysis. 

L

0r

( ) 2: , TSupport x y D∈ ⊂

( )T
Rr f r

( ) ( ), ,T
XYX Y f x y

Figure 5.3 – Truncated deployment surface 
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Therefore, after readjusting (5.4), the radial equivalent of (5.5) becomes: 

 

( ) ( ) ( ) ( ){ } [ ]
0

0 0      ,
LT

R R G R r
R f r f r r r L Rayleigh F r r r Lσ= ≤ ≤ = ∈          (5.6) 

 

where ( ) { } [ ]2 21 exp 2 : 0,1R GF r r σ += − −  is the CDF of the Rayleigh PDF. After several 

manipulations, we obtain: 

 

( ) ( ){ } ( ){ } [ ]2 2 2 2 2 2 2 2
0 0 0exp 2 4 2 sinh 4       ,T

R G G Gf r r L r r L r r r Lσ σ σ= + − − ∈       (5.7) 

 

 As it will be explained later on, the CDF of (5.7) is also needed in order to generate 

random samples. Following some analysis, and with the support of Appendix-B, we then get: 

 

( ) ( ) ( ) [ ]

( ){ } ( ){ } ( ){ }
0

0

2 2 2 2 2 2 2 2 2
0 0

r                                                         ,

                       exp 4 sinh 4 sinh 4

rT T
R Rr r

G G G

F r R r f r dr r r L

L r r r L rσ σ σ

=
=Ρ ≤ = ∈

= − ⋅ − −
  (5.8) 

 

In Figure 5.4 the analytical PDF and CDF for the prolonged and truncated internodal density are 

accordingly plotted, where from the CDF curve the authenticity of the derivation is revealed. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 – Analytical plots for the internodal distance distribution 
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5.3.2 – Path-Loss PDF 

Now, the aim is to obtain a PDF for the average PL over the intended Gaussian geometry and the 

supported surface region, namely: 

 

( )( ) ( ) ( ){ } ( ) [ ]10 0log       ,T
R PL WdB

w r f r L r r f w r r Lα β≡ = + ∈            (5.9) 

 

where for theoretical convenience we assigned this average power loss to some RV 

( ) { }0: 0w w r r r L ∗

+= < ≤ ≤ . And, as shown in Figure 5.5, the values of w  are 

exclusively limited to ( ) 2
0 , 0, :L Lw w w w+ ∗∈ > . 

 

 

Figure 5.5 – Mapping truncated radius to the average path-loss 

Further, in order to obtain the density of w , the transformation function must be: 

• Continuous: ( ) ( )lim
r

w r w
δ

δ
→

=  for [ ]0 ,r Lδ∀ ∈ . 

• Memoryless: output at a given moment is only dependant on the input at the same instant. 

• Bijective: a unique r w↔  correspondence as illustrated by the arrows of Figure 5.5. 

Substantiating the above for the treated average PL, allows us to express the distribution of w  

by the derivation of (5.10). 
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( )( ) ( ) ( )

( ) ( ){ } ( ){ }{ }
( ) ( ){ } ( )
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10 ln 10

                     ln 10 exp 4 2 sinh 4

                                          10 exp 10 2 1

w
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W R Rr r w r

G G G

w w
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f w f r r w dw r dr f r

L r L r

w w w

α β

α β

α β α β

β

σ βσ σ

σ

−

−

= =

− −
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= + −

× ⋅ − ⋅ ≤ ≤
      (5.10) 

 

 For certainty purposes, we can quickly verify the legitimacy of the above density function 

by noting that ( ) 0Wf w ≥  for w∀ ∈  because the various exponential parts will inherently be 

positive; and given that 0L r> , the hyperbolic sine component will also produce a positive 

value. Also, it can analytically be demonstrated that (5.10) integrates to unity. 

 

5.3.3 – Large-Scale Fading PDF 

In this part, we will complement the PL density model of (5.10) by incorporating the stochastic 

influence of channel scatterers. Namely, we intend to find the distribution of: 

 

( ) ( ) ( ){ } ( ){ } ( ) [ ]2
00,       ,

PLPL W S dB S LdB
L r w r f w f l r r Lσ− Ψ= + Ψ ∈N        (5.11) 

 

 Since the average PL ( )w r  and the shadowing factor S dB−Ψ  are statistically 

independent; i.e. ( ) ( ) [ ]S dB S dBw r w r− −Ε ⋅ Ψ = Ε ⋅ Ε Ψ ; therefore, the overall large-scale 

fading PDF ( )
PLLf l  can be obtained by convolving their respective densities, where l ∗

+∈  is 

a sample value of the PL in dB: 

 

( ) ( )( ) ( ) ( ) ( )0PLL W Wf l f f l f f l d f d
τ τ

τ τ τ τ τ
∞ ∞

Ψ Ψ
=−∞ =−∞

= ∗ = −            (5.12) 

 

 As for ( )Wf τ , it is obtained from (5.10) after switching w to the integration variable τ . 

And, the shadowing contribution ( )f l τΨ −  was previously derived in (3.88). All together, the 

integrand of (5.12) is then obtained as follows: 



197 
 

( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ){ } ( ){ }{ }
( ){ } ( ) ( )

2
0 0

2 2 2 2 2 2 2
0 0

22 22

Equation (3.92)

,                         ,

            ln 10 exp 4 2 2 sinh 4

                                     exp 10 2 10 exp 2

W W S L

G G G

G

f f f l f l w w

L r L r

lτ α β τ α β

τ τ τ τ σ τ

σ πβσ σ σ

σ τ σ

Ψ Ψ

Ψ

− −

Ψ

= − = ∈

= + −

× − ⋅ ⋅ − −

N

{ }

( ) ( ){ } ( ){ }{ }
( ){ } ( ) ( ){ }

( ) ( )

2

2 2 2 2 2 2 2 2
0 0

22 2 2

Equation (3.102)

2

3 2

 

           ln 10 exp 4 10 2 2 sinh 4

                                     exp 10 2 exp 2ln 10 2

ln 10 10
            

2 s

G G G

G

l

G

L r L r

l

α β

τ α β

α β

σ πβσ σ σ

σ τ β τ σ

πβσ σ

−

Ψ

−

Ψ

−

Ψ

= + ⋅ −

× − ⋅ − −

⋅
=

( ){ }
( ) ( )( ){ }

( ){ } ( ){ }( ){ }

2
2 2 2

02 2 2
0

22 2 2 2

exp 4 2ln 10
inh 4

                                     exp 10 2 exp 2ln 10 2

G

G

G

L r
L r

lτ α β

σ σ β
σ

σ τ σ β σ

Ψ

−

Ψ Ψ

⋅ + +
−

× − ⋅ − − +

           

(5.13) 

 

After inserting (5.13) into (5.12), we then get: 
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( ){ } ( ){ }( ){ }
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⋅
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−
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(5.14) 

 

 At this point, we may further simplify (5.14) by noticing that the second exponential of 

the integrand resembles a Gaussian PDF with distribution: ( )( )2 22 ln 10 ,lτ σ β σΨ Ψ+N  
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along the τ  variable. As a consequence of this observation, the indicated expression can be 

simplified by standardizing it to ( )0,1μN  using the following transformation: 

 

( )( ){ }22ln 10lμ τ σ β σΨ Ψ= − +                                       (5.15) 

 

where we can isolate for ( ) 22 ln 10lτ σ μ σ βΨ Ψ= + + , and thus: d dτ σ μΨ= . After taking 

into account these remarks, followed by several maneuvering steps, we finally obtain in (5.16) 

the exact closed-form PDF of the large-scale fading between a reference AP and a random node 

deployed over a truncated Gaussian pattern. 
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 And as suggested by ( ) ( ),
PL PLL Lf l f l= Λ , the derived stochastic expression has generic 

parameters, and it is therefore adaptable to different cellular dimensions, spatial intensities, 

channel parameters, and operating conditions. 
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5.4 – Experimental Analysis and Results 

5.4.1 – Estimation Model 

In order to verify the analytical derivation that was obtained above, in this section we will 

perform a set of stochastic simulations. But before we begin, it is necessary to explicitly define 

and analyze the model for numerical estimation. To do this, our derivation in this subsection will 

be based on the estimation of some representative PDF ( ) :Zf z +
. The attained 

principles and results may then be personalized for the approximation of interpoint and large-

scale fading density functions. 

 

Lz Hz

( )Zf z

z

BzΔ
1i =

Bi n=

1Bi n= −

1z 2z 3z
Bnz1Bnz −

2i =

3i =

 

Figure 5.6 – Illustrating density estimation from random samples 

 

 To proceed, we respectively characterize the lower/higher extremities of the density 

domain by: infL Sz z=  and supH Sz z= , such that Sn
Sz ∈  is a vector of Sn ∗∈  i.i.d. 

randomly generated samples. For density approximation, Bn ∗∈  histogram bins are 

considered, where consecutive adjacent bars are aligned with no gap among them as depicted by 

Figure 5.6. Further, all bins are assumed to have equal width of size: ( )B H L Bz z z nΔ = − . For 

analytical purposes, the fundamental bin positioned at the origin may then be expressed by: 

 

( ) ( )21B Bz z zδ = ≤Δ                                                (5.17) 
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As for bins center position iz ∈ , it can be shown to equal: 

 

( )1 2   1,2, ,i L B Bz z i z i n= + − ⋅Δ =                                  (5.18) 

 

At this level, we can straightforwardly remark that the probability for each bin is thus: 

 

{ }Pr   1,2, ,o
i i S Bz D n i nπ∈ = =                                    (5.19) 

 

where 
o
iπ

∗∈  is the number of occurrence per bar, such that the total number of samples is 

1

Bn o
S ii

n π
=

= , and ( ){ }2, ,   2i i B i BD z z z z z z∗

+= ∈ Δ ∈ − ≤ Δ  is the associated 

domain. Further, from stochastic analysis, the probability measure for some arbitrary event A  

in sample space Ω , mapped to a RV Z  element in , is given by: 

 

{ } ( )( ) ( )Pr : Zz D
z D P A Z A D f z dz

∈
∈ = ⊆Ω ∈ =                         (5.20) 

 

In light of (5.20), we can approximate the probability value by: 

 

{ } ( )Pr   1,2, ,i Z i B Bz D f z D z i n∈ ≈ ∈ Δ =                              (5.21) 

 

With the insight of (5.19) and (5.21), we solve for the density function and then aggregate for all 

bins so as to obtain an exclusive mathematical notation for PDF estimation. 

 

( ) ( ) ( )
1

B

o
n i

Z Z B ii
S B

f z f z z z
n z

π
δ

=
≈ = ⋅ −

⋅Δ                                (5.22) 

 

 Several instrumental remarks regarding this estimation model can be noted. In part, the 

approximation can be enhanced by: increasing the number of samples, increasing the amount of 
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bars, or equally reducing the bin width. As a consequence, MC results would idealistically match 

the theoretical analysis provided: 

 

( ) ( ) ( )
1

0 0

lim lim lim lim B

S B S B

B B

o
n i

Z Z B iin n n n
S Bz z

f z f z z z
n z

π
δ

=→∞ →∞ →∞ →∞
Δ → Δ →

= = ⋅ −
⋅Δ                (5.23) 

 

5.4.2 – Internodal Random Generation 

To simulate the channel behavior, we initially need to generate random values for interpoint 

distances between the AP and an arbitrarily deployed node. In particular, we produce a stochastic 

sample ( )ˆ 0,1u U , such that ( ),a bU  over [ ] ( ), 0,1a b b a−  is a uniform 

distribution for 
2: ,x a b∀ ∈ ∃ ∈ . Next, we assign this value to the CDF of the interpoint 

density derived in (5.8), i.e. ( )ˆ ˆT
RF r u= . Then, provided the corresponding ICDF is available in 

closed-form, we solve for the interspace distance: ( ) ( )
1

ˆ ˆT
Rr F u

−

= . To emphasize the various 

interdependence of this generation, the above process can be represented by: 

 

( ) { } ( )0 0ˆ ˆ ˆ, , , : :0 1 ,GG u r L u u r Lσ ∗

+∃ ∈ < <                            (5.24) 

 

And with some derivation, it can be shown that: 

 

( ) ( ) ( ){ }2 2 2 2
0ˆ ˆ ˆ2 ln 1 exp 2 exp 2G G Gr u r u Lσ σ σ= − ⋅ − ⋅ − + ⋅ −                 (5.25) 

 

 Equipped with the above analysis, we could now verify the generation process by the 

formation of 10,000 random samples. From the results, a 100 bin histogram is constructed and 

scaled as explained in the PDF estimation model of the previous subsection. In Figure 5.7, the 

MC approximation and the analytical internodal distribution derived in (5.7) are accordingly 

plotted. The results clearly demonstrate the generation accuracy. 
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Figure 5.7 – Internodal distribution through analysis and simulations 

 

5.4.3 – MC Simulations 

To experimentally evaluate the channel behavior, we will utilize parameters from the IEEE 

802.20 mobile broadband wireless access (MBWA) standard [52]. For a concise yet elaborate 

overview of MBWA peculiarities, interested readers may for instance refer to [77] and [78]. 

Generally speaking, MBWA supports three channel environments: urban macrocell, suburban 

macrocell, and urban microcell. In this chapter, we will specifically authenticate our analytical 

derivation based on the urban microcell channel detailed in Table 5.1. Parameters and 

investigation results of the other two channels were previously reported in [79]. 

 

Table 5.1 – MBWA channel model for urban microcell 

0

Propagation Model : -231  -

Operating Frequency : 1.9 GHz

 20 m
Support Range :

 200 300 m

Path Obstruction :              

            IEEE 802.20 Propagation Parameters            

COST Walfisch Ikegami

r r L

L
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= ≤ ≤

≤ ≤
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 To obtain an estimate of the large-scale fading distribution, we will utilize the 

elaborations reported in the previous two subsections. From these steps, the MC estimation 

algorithm of Figure 5.8 is obtained. This algorithm is basically divided into three major parts. 

First, random instances of the large-scale fading are obtained based on the stochastic nature of 

nodes geometry and shadowing. Once completed, a histogram for the PL frequency of 

occurrence is constructed with bin resolution Bn . Also, due to its faster convergence, the 

cumulative frequency is realized using a recursive relationship. Then, both of these values are 

appropriately scaled so as to produce the density of the channel attenuation. 
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Figure 5.8 – Pseudocode for estimating the large-scale fading distribution 
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 The computational running time complexity of the estimation algorithm of Figure 5.8 can 

be assessed by: 
 

( )( ) ( ), ,cost S B S BO T n n O n nΛ                                          (5.26) 

 

where attributes of Λ  are defined in (5.16). Taking into account the observations made for 

(5.23), at present we remark that an increase in the sample size and the quantity of bins improves 

the density estimation at the cost of complexity. Consequently, from an estimation point of view, 

these competing requirements will result in a computational cost-benefit tradeoff. 

 In Figure 5.9, we substantiated our exact analytical derivation of (5.16) by means of 

random instances over two particular IEEE 802.20 channels: line-of-sight (LOS) and non-LOS 

(NLOS) propagations. From Table 5.1, we note that the size of the supported urban cell can go 

up to 300 m; in the simulation however, we assumed a transmission radius of 250 m.  

 

 

 

 

 

 

   (a) 
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(c) 

Figure 5.9 – Substantiating analytical derivation using the IEEE 802.20 channel 
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 The plot of Figure 5.9a shows a scatter display based on 10,000 MC samples for each of 

the channel cases. Particularly for the LOS setting, we considered a densely populated network 

in the vicinity of the AP with 12G Lσ = . As for the NLOS channel, the experimentation was 

performed for spatial intensity 3G Lσ = , which translates into a sparsely populated network 

that extends throughout the entire cell. Also, it is interesting to observe that random instances of 

PL are exclusively limited between 0r  and L . Further, for greater perspective, we overlaid the 

average PL  ( )PL dB
L r  onto the scatter points, which is basically an oversimplified deterministic 

model for the channel-loss. In fact, when compared to MC simulation values, this nonrandom 

realization gives a justifiable representation of the average decay. 

 In the plot of Figure 5.9b, based on the above estimation model, algorithm, and the prior 

scatter diagram, a histogram for the PL density is constructed. In this plot, we clearly note that 

our analytically derived large-scale fading PDF completely coincides with the 10,000 MC 

samples over a bin resolution set to 100. For the sake of demonstrating the impact that the size of 

samples has on the estimation process, we also plotted simulation results with 1,000 random 

instances. As it can be noted during this situation, PL for the condensed LOS network fluctuation 

is substantially high; whereas for the scarce NLOS case, it is moderately visible. 

 Last, in the diagram of Figure 5.9c, the CDF is accordingly obtained from the previous 

set of PDF plots. In fact, this is achieved by an aggregation of the occurrence followed by a 

scaling step. 

 As noted earlier the reported analytical derivation is adaptable to different channel 

parameters, transmission coverage and spatial intensity. In Figure 5.10, we plotted the large-scale 

fading density function for LOS and NLOS channels over four network scenarios: 

3,  6, 9, 15G L L L Lσ = . In this figure, it can be observed that as the spatial network 

constellation varies from highly-centric to sparse; the PL span is accordingly extended. And this 

is an anticipated outcome because as the network concentration is set farther away from the AP, 

the amount of power lost in the channel will proportionately augment. By the same token, and 

because of the nature of the LOS channel, in Figure 5.10 we also note that for a particular 

intensity level, the PL attenuation median is always smaller when compared to the NLOS 

counterpart. 
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Figure 5.10 – Large-scale fading density functions over various spatial intensities 

 

5.5 – Implications of the Large-Scale Fading Density 
Throughout this dissertation, one of the principal objectives of our research investigation was to 

describe various probabilistic behaviors of random networks by tractably deriving exact closed-

form expressions for the large-scale fading density. In fact, these channel-loss PDF results can be 

instrumental for explicitly approaching a number of network requirements and performance 

metrics in order to study factors that affect the QoS. Therefore, the purpose of this section is to 

briefly demonstrate several prospects and implications of the large-scale fading distributions by 

analytically assessing and detailing the necessary steps for: effective power management, 

connectivity, and detection capability. Once generically formulated, the actual derivations of 

these integrity measures for particular random deployment models can be evaluated. 

 

5.5.1 – Power Consumption and Control 

It has been identified that nearly 70% of the overall power depletion of a wireless node is 

attributed to the wireless interface [80]. In other words, this is a clear testament that the radio 

component is the most power hungry element of mobile units. Therefore, having the ability to 

analytically profile the channel-loss for an entire random network can be insightful in order to 

conceive and design sophisticated stochastical protocols that optimize consumption. 
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 Meanwhile, in the event that a mobile is near the cell border; during uplink, the unit is 

expected to transmit with more power than another terminal located in the surrounding area of 

the BS. In other words, power control has to be used in order to eliminate the so-called near-far 

effect [48]. To be precise, in this setup, the power lost in the channel is projected by ( ),
PLLf l Λ , 

and so from (5.27) we can forecast and thus control the necessary EIRP required in order to 

achieve the desired QoS level or tolerance designated at the receiver. 

 

( ) ( )dBW RX PLdBW dB
EIRP P r L r= +                                        (5.27) 

 

Also, in this scheme, the potential for intercell interference is to be expected. And so devices 

operating near the border should consider power control so as to minimize possible leakage to 

neighboring cells. Further, power control based on (5.27) can be enlightening during the analysis 

for effective horizontal-handoff. 

 

5.5.2 – Outage Probability 

On one hand, the outage probability performance metric characterizes the likelihood that the 

received power falls below a preset minimum threshold min
dBWP ∈  [47]. On the other hand, 

outage probability may also be interpreted from a channel-loss viewpoint, where the probability 

that PL extends beyond a maximum target level max
dBL ∗

+∈  is assessed [50]. In either case, 

selecting these thresholds is carried in order to meet the required quality of communications. In 

fact, as shown in (5.28), we may pass from one form to the other by fixing the EIRP of (5.27). 
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 From this formulation, we observe that outage probability is minimized as the threshold 

approaches the higher extremity of the channel-loss PDF. Overall, we note that the derived large-

scale fading distributions are paramount for quantifying the likelihood for nodal connectivity. 

 

5.5.3 – Detection Capability 

As it will be shown, the derived PDF results can also be instrumental for evaluating the 

surveillance quality of WSNs. To illustrate this, say we have an occurring event located at the 

origin of the Euclidean plane that emits EM radiation with a steady power T
dBWP ∈ ; we will 

refer to this point as the target. And, the monitoring area of the WSN that surrounding the target 

contains n ∗∈  randomly positioned sensors. The detection distance of an arbitrary sensor 

i ∗∈  for 1 i n≤ ≤  is identified by ir , which is a subset of r ∗

+∈  having a distribution function 

( ) [ ]0: ,Rf r r L + . In this setup, the sensing capability for a particular random node is obtained 

by: 

  

( ){ } ( ){ }
( ){ }

Pr 1 Pr

                      1 Pr

S S
S RX dBW RX dBWdBW dBW

T S
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p P r P r

L r P

η η

η

≥ = − ≤

= − ≥ −                    (5.29) 

 

where S
dBWη ∈  is the sensor sensitivity. Using (5.29), we then derive in (5.30) a notation for the 

detection capability: 
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        (5.30) 

 

 To be exact, this expression is a metric for successful detection of an event at the target 

by n sensors [81]. In fact, this indicator is a key criterion in quantifying the performance of 

WSNs. 
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5.6 – Conclusion 

The concept of random networks is inevitable in many wireless network situations. In particular, 

a random LWN constructed by a Gaussian profile has been considered due to its spatial 

flexibility for mobile and air deployed nodes. Precisely, the Gaussian scheme is easily malleable 

and can shift from a sparse to a dense network by a simple modification to the spatial intensity 

through the SD of the geometrical pattern. 

 Meanwhile, PL is a necessary element in order to understand, analyze, optimize, control 

and design RF network structures. For the Gaussian network geometry, the large-scale fading 

between a reference AP and an arbitrary node is only possible using MC simulations, with no 

analytical equivalent. As a consequence, in this chapter, we generically found an exact closed-

form expression for the large-scale fading density that supports different: channel parameters, 

operating conditions, cellular sizes, and spatial intensities. 

 In fact, in doing so we progressed through various algebraical steps, where a random 

Gaussian network was modeled to deploy over a truncated surface region delimited radially 

between 0r  and L . Although for mobile communications the RCR ratio is generally superior 

by severalfold; we nonetheless took the close-in range into account in order to ensure a precise 

and accurate characterization of the channel-loss, and also for the sake of obtaining a generic 

result. Furthermore, shortening the spatial distribution to some predefined value L was applied, 

because in addition to generalizing the outcome, it will explicitly incorporate the cellular size 

within the analytical derivation of the large-scale fading density. Hence, it will enable greater 

leverage during network analysis and design. 

 Following the theoretical derivation, we then validated, analyzed, and discussed the result 

while comparing it to MC simulation techniques based on IEEE 802.20 specifications. 

 Finally, we identified various implications and prospects for the uncovered large-scale 

fading PDF results derived in this chapter and those that preceded it. In particular, we discussed 

various means useful for analytically quantifying critical QoS metrics, such as: power 

consumption, outage probability, and detection capability. We also provided the corresponding 

expressions for explicitly gaining theoretical insight to these random-based LWNs. 
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Chapter 6 

Conclusion and Future Work 
 

 

6.1 – Overall Synopsis 
The broad objective for next generation wireless communications is to design networks that 

support ubiquitous connectivity, for a growing populace, over limited resources. Indeed, 

managing and planning such LWNs is complex, and optimizing its overall performance is 

relatively intricate to realize. To tackle this huge undertaking, diverse technical pathways can be 

regarded ranging from experimental techniques to analytical descriptions. In particular, insight 

into various aspects of the network can gradually be gained by modeling the deployment. 

Specifically, spatial modeling has emerged as an important topic worthy of investigation, not 

only in pure and applied applications, but also in communications and network theory. Hence, in 

this dissertation, we attempted to better understand the fundamentals of cellular radio networking 

by overlaying the principle of spatial geometry. 

 Despite some breakthroughs, until now, the concept of network geometry has been 

treated in a limited way. Therefore, in addition to surveying the notion of wireless spatial 

networking, we also tried to make some cohesive organization out of a still disordered research 

subject in order to serve as a guide throughout this treatment and beyond. From this arrangement, 

we identified numerous ways for obtaining a spatial pattern. Of course, the natural approach for 

constructing a LWN would be to find the actual location of users. However, besides empirical 

complications, this method does not produce well-behaved tractable results. Alternatively, 

stochastic geometry has been considered as an effective workaround for emulating the network 

and assessing its performance. As a consequence, the field of stochastic spatial modeling has 

attracted some researchers; yet, there are numerous aspects that require further insight. 

 In particular, quantifying the wireless propagation for random structures is critical for 

evaluating essential network metrics because the channel-loss indicator is the most fundamental 
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aspect in RF communications. To be precise, knowing or predicting the channel-loss behavior 

for mobile users is utterly dependent on the network geometry. Typically, the location of users is 

considered deterministic, and so the traditional approach is only based on modeling the random 

channel as a function of PL and shadowing. From this, we notice that the channel propagation is 

by itself an area of focus; and probabilistic network deployment is another standalone theme. 

Thus, the idea in this body of work was to cohesively amalgamate these two paradigms together 

by joining the randomness of the channel and the location of users in order to obtain an improved 

stochastic model for the large-scale fading density. As a result, the goal of this research consisted 

on conducting an in-depth study by analyzing important spatial models and verifying their effect 

on transmission losses. 

 Pursuing this further, it is important to highlight that large-scale fading is principal for all 

wireless links because it is the main attenuating source in the transmission. Also, its associated 

distribution function is a rudimentary element for profiling the channel behavior for a variety of 

random network models. Actually, obtaining the channel-loss density for multiple-access 

networks is realized through non-explicit MC simulations. Clearly, this estimation process via 

random numerical experimentation is both: computationally inefficient, and is analytically 

intractable. Therefore, theoretical parameterization of the large-scale fading PDF through 

variable notations for channel and network characteristics was established. 

 To be specific, we investigated the homogeneous random network model intended 

exclusively for MCN and UCN deployments. For these models, we analytically determined the 

exact closed-form distribution function of the large-scale fading among a reference AP and a 

randomly positioned user. In fact, we for the first time provided a precise and well-rounded 

density formulation that considered at once: the lattice profile, the users’ random geometry, the 

effect of the far-field phenomenon, the PL behavior, and the stochastic impact of in-field 

scatterers. Indeed, the reported analytical PDFs were intentionally derived based on generic 

parameters. Therefore, the modeling results are compatible with an array of cellular networks 

having a unique: purpose, layout, scale, coverage size, and radio specifications; provided their 

designated channel propagation and spatial values are accordingly inserted in the stochastical 

expressions. As a case in point, the PL predictor for the MCN model is compliant to a host of 

networks, including: femtocells, picocells, microcells, and macrocells. Likewise, the large-scale 

fading distribution for UCN model can be useful during the analysis of a flexibly versatile nodal 
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deployment in sectored layers, annulus regions, and circular cells. Overall, these channel-loss 

PDFs will provide analytical insight into practical concerns during design and planning phases. 

 Furthermore, we also looked at the Gaussian random network structure, which is 

generally accepted for emulating snapshots of mobile units in a cellular-based architecture, and 

for modeling airborne deployments. For this tunable spatial distribution, we derived an explicit 

closed-form notation for the large-scale fading density between a set of Gaussianly deployed 

nodes with reference to an AP. Moreover, we explored the large-scale fading behavior for 

different deployment situations, such as instances where the size of the cell is unchangeable but 

the spatial intensity of the truncated Gaussian distribution is variable. 

 On the whole, the channel-loss distributions for MCN, UCN, and Gaussian random 

network models were verified using MC simulations. Although these probabilistic statements 

were generally formulated, yet the computational testing was founded on the MBWA 

propagation parameters. As expected, the random experimentations for the PL distributions 

appropriately match the theoretical results; thus signifying the correctness of the analysis. 

 Besides the explicit derivation for the PL distributions, an important portion of this 

dissertation was devoted to the conceptualization of inhomogeneous spatial algorithms. In fact, 

we considered this task because there was still a serious need to find robust, yet straightforwardly 

configured models that suitably emulates the most likely spatial position of random nodes over a 

specific deployment site. Even though formulating such geometrical nodal structure is a complex 

endeavor, we nonetheless attempted this challenge by proposing the ASD deployment principle. 

In general, this systematic mechanism is founded on three cascading steps: cluster planning, 

geometrical analysis, and synthesis of subnetworks. Also, apart from extensive empirical 

scrutiny, the ASD emulation technique has the advantage for only requiring limited geometrical-

based network planning entries, which can be dependent on minimal social observations of the 

project site or by means of plausible assumptions. As a result, this concept produces a flexible 

deployment method useful to effectively plan the spatial traffic in order to realize a 

heterogeneous random network, while still preserving the stochastic character of users’ position. 

 Equipped with the ASD principle, we then conceived various algorithms for generating 

heterogeneous random networks for UCN and MCN structures. Namely, we first derived a 

controlled inhomogeneous simulator tool for UCN deployment, which is generally practical for 

emulating a suburban network, where spatial clustering is subject to terrain features. We also 
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produced an uncontrolled UCN counterpart for non-homogeneous deployments. This latter 

algorithm is in fact useful when less information about the deployment footprint is known; thus it 

is particularly appropriate for automatically generating an inhomogeneous network in an 

arbitrary manner. Moreover, we applied the ASD procedure so as to randomly assemble a LWN 

for an urban-based wide coverage area. From this, we created a heterogeneous MCN modeling 

approach, where spatial clustering relies on the position of the BSs and the sectoring capability 

of its antennas. Altogether, these algorithms were generically developed; therefore, they could be 

designed for different: network situations, planning complexities, predefined assumptions, 

geographical locations, sizes, and scales. Evidently, the outcome of this research will be a 

significant step towards modeling and understanding stochastical schemes; especially emerging 

multi-scale and multi-coverage wireless networks. Actually, the scalability feature of the 

inhomogeneous algorithms makes these deployment models particularly feasible in response to a 

continuous increase of users’ concentration and connectivity in current and future generation 

networks. Practically, these spatial-level tools are expected to serve as effective emulation 

mechanisms aimed for cellular mobile operators, deployment specialists, and system developers 

in order to examine the quality and performance for a specific network model. 

 Overall, we provided crucial breakthroughs in the area of spatial geometry so as to 

perform channel-level and system-level analysis of large random patterns. Indeed, the presented 

research is concentrated in the direction of network modeling by considering the fundamental 

results and interactions between: random geometry, channel losses, and inhomogeneous 

deployment. In fact, the broad idea was to: spatially emulate LWNs, extract interesting 

observations from the modeled structures, and utilize the results in order to better comprehend 

the characteristics, properties, and limitations of these networks. Accordingly, these original 

results are insightful for: planning the network deployment, performing connectivity analysis, 

and designing effective resource utilization intended for different cellular-based systems.  

 

6.2 – Future Directions 
Overall, the novel contributions of our presented work can be used as a foundation for diverse 

research directions. Therefore, before closing this dissertation, we will recommend some 

additional extensions by means of modeling, so as to further advance our insight into the concept 

of random networks. 
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• Analytical Tractability: It is technically valuable to assess critical QoS metrics for 

random network models. However, reusability of the derived channel-loss densities for 

these measures may sometimes result in an explicit, yet complicated formulation. 

Therefore, it would be interesting to analytically approximate the exact closed-form 

derivations by simpler expressions, while still preserving the generic and reliable 

properties of the notations, so that the evaluation of performance indicators is facilitated. 

 

• Decentralized Connectivity: This body of work focused in part on determining 

stochastical expressions for the large-scale fading distributions over centralized 

communications. Since decentralized multihop networking continues to progress, it then 

becomes natural to also attempt to understand the behavior of channel losses under this 

condition. Thus, for future endeavors, it would be interesting to expand our research by 

attempting to derive channel-loss predictors for ad hoc interconnection. 

 

• Spatial Inhomogeneity: In this research, we developed the ASD algorithm in order to 

generate a random heterogeneous deployment for UCN and MCN models. For this 

principle, it would be interesting to conceptualize an approach for characterizing the 

inhomogeneous level of a random spatial pattern via an index. 

 

• Mobility and Dimensionality: For the purpose of obtaining solvable models, the analyzed 

random emulation techniques in this dissertation were considered motionless and over a 

flat Euclidian plane. To further add realism to the deployment, the effect of mobility and 

dimensionality can be superimposed to the random nodes of the network model. 

However, the challenge in this endeavor is to discover appropriate models that are 

reflective of users’ patterns. Also, this spatio-temporal combination should be 

implemented in a careful manner in order to enable the deduction of well-behaved results. 

 

 On the whole, we hope that the motivation, analysis and insight of this dissertation will 

inspire, stimulate and foster research interest in order to exploit, complement and advance the 

reported stochastical modeling results, so as to enhance our understanding of random networks. 
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Appendices 
 

Appendix A – Deriving the Differentiation of ( )( )Q x A B−

First, by (3.113), we express this notation in terms of the error function: 

 

( )( ) ( )( ){ }1 2 2Q x A B erf x A B− = − −                                (A.1) 

 

After taking the derivative of (A.1), we obtain: 

 

( )( ){ } ( )( ){ }2 2d Q x A B dx d erf x A B dx− =− −                       (A.2) 

 

In particular, the error function in (A.2) is defined as: 

 

( ) ( ) ( )2

0
2 exp

x

t
erf x t dtπ

=
= ⋅ −                                         (A.3) 

 

 Meanwhile, from the fundamentals of definite integrals, we know that the differentiation 

with respect to the upper limit for some continuous function ( )f x  has the following property 

[69, p. 443, 8.43]: 

( ){ } ( )
x

t a
d f t dt dx f x

=
=                                               (A.4) 

 

With the aid of (A.4), we therefore can find the derivative of (A.3) by: 

 

( ){ } ( ){ } ( )2 2

0
2 exp 2exp

x

t
d erf x dx d t dt dx xπ π

=
= − = −               (A.5) 
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 However, the derivative of the ERF in (A.2) is based on a generalized linear argument, 

which is obviously different from that in (A.5). Therefore, we apply the chain rule with 

( ) 2u x A B= −  in order to obtain: 

 

( )( ){ } ( ){ }
( )

( )
( )

( ){ }

( ){ }

2

2

2

2 2

2

                                            2exp 2

                                                     2 exp 2

u x A B

u x A B

d erf x A B dx d erf u du du dx

u d x A B dx

x A B B

π

π

= −

= −

− = ⋅

= − ⋅ −

= ⋅ − −

      (A.6) 

 

Inserting (A.6) into (A.2) thus produces: 

 

( )( ){ } ( ){ } ( )2 2 2exp 2 2  ,Xd Q x A B dx x A B B A Bπ− =− − − =−N        (A.7) 

 

Appendix B – A Hyperbolic Expression for ( ) ( )exp expa b±

First, following several manipulations, it can be demonstrated that: 

 

( ) ( ) ( ){ } ( ){ } ( ){ }( )exp exp exp 2 exp 2 exp 2a b a b a b a b± = + ⋅ − ± − −         (B.1) 

 

Then, from definition, the hyperbolic cosine and sine are respectively defined by 

( ) ( ) ( ){ }cosh exp exp 2x x x= + −  and ( ) ( ) ( ){ }sinh exp exp 2x x x= − − ; with this insight, we 

finally can express (B.1) by a more tractable arrangement, namely: 

 

( ) ( ) ( ){ } ( ){ }exp exp 2 exp 2 cosh 2a b a b a b+ = ⋅ + ⋅ −                      (B.2) 

 

( ) ( ) ( ){ } ( ){ }exp exp 2 exp 2 sinh 2a b a b a b− = ⋅ + ⋅ −                       (B.3) 
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