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Abstract
Throughput Characterizations of Wireless Networks via Stochastic Geometry and Random Graph

Theory
Jeffrey William Wildman II
Steven Patrick Weber, Ph.D.

The shared medium of wireless communication networks presents many technical challenges that

offer a rich modeling and design space across both physical and scheduling protocol layers. This

dissertation is organized into tasks that characterize the throughput performance in such networks,

with a secondary focus on the interference models employed therein.

We examine the throughput ratio of greedy maximal scheduling (GMS) in wireless communication

networks modeled as random graphs. A throughput ratio is a single-parameter characterization of

the largest achievable fraction of the network capacity region. The throughput ratio of GMS is

generally very difficult to obtain; however, it may be evaluated or bounded based on specific topology

structures. We analyze the GMS throughput ratio in previously unexplored random graph families

under the assumption of primary interference. Critical edge densities are shown to yield bounds on

the range and expected GMS throughput ratio as the network grows large.

We next focus on the increasing interest in the use of directional antennas to improve throughput

in wireless networks. We propose a model for capturing the effects of antenna misdirection on

coverage and throughput in large-scale directional networks within a stochastic geometry framework.

We provide explicit expressions for communication outage as a function of network density and

antenna beamwidth for idealized sector antenna patterns. These expressions are then employed in

optimizations to maximize the spatial density of successful transmissions under ideal sector antennas.

We supplement our analytical findings with numerical trends across more realistic antenna patterns.

Finally, we characterize trade-offs between the protocol and physical interference models, each

used in the prior tasks. A transmission is successful under the protocol model if the receiver is free of

any single, significant interferer, while physical model feasibility accounts for multiple interference

sources. The protocol model, parameterized by a guard zone radius, naturally forms a decision
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rule for estimating physical model feasibility. We combine binary hypothesis testing with stochastic

geometry and characterize the guard zone achieving minimum protocol model prediction error. We

conclude with guidelines for identifying environmental parameter regimes for which the protocol

model is well suited as a proxy for the physical model.

Abstract
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Chapter 1: Introduction

The shared medium of wireless communication networks presents many technical challenges that

offer a rich modeling and design space across the physical and medium access control layers of the

protocol stack. Many network design objectives center on end user experience as well as overall

network utility; very often these objectives may be characterized in terms of throughput, or how

quickly data may be transmitted between various parties in the network. Accordingly, the high level

goals of this dissertation are to increase our understanding of the throughput performance and lim-

itations of existing wireless communications techniques, as well as to characterize how our modeling

assumptions influence the predicted throughput performance of such systems. This thesis is orga-

nized into three tasks that are primarily concerned with characterizing and maximizing throughput

performance in such networks, with a secondary focus on the interference models employed therein.

These tasks are investigated using random graph theory and stochastic geometry as a core set of

analytical tools.

In Ch. 21, we study the throughput ratio of a low-complexity, greedy scheduling technique in

wireless communications networks. Throughput ratios, when available, provide a single-parameter

means of expressing the achievable capacity region (and thus optimality) of a given scheduling

algorithm on a given network topology. Scheduling protocols with a larger provable throughput ratio

guarantee a higher degree of stability and robustness to the varied traffic loads that are inherent to

wireless networks. For one such algorithm, greedy maximal scheduling (GMS), a host of research

literature has characterized its throughput ratio via an alternative, but equivalent, definition called

the Local Pooling (LoP) factor. While the LoP factor of an arbitrary network topology is generally

very difficult to obtain, it may be evaluated or bounded based on specific topology structures.

Within the field of random graph theory, it is common to use threshold functions to investi-

1The work in Ch. 2 has been accepted for publication as: J. Wildman and S. Weber, “On characterizing the local
pooling factor of greedy maximal scheduling in random graphs,” IEEE/ACM Trans. Netw., (accepted: May 2015),
arXiv: 1409.0932.

http://arxiv.org/abs/1409.0932
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gate graph properties of interest through their sensitivity to the density of edges in the network.

When established, a threshold function provides the limiting likelihood of satisfying a specific graph

property (e.g., connectivity) across various choices of specific graph construction parameters as the

network grows large. These parameters effectively control the density of edges in the network; in

Erdős-Rényi (ER) graphs, the parameter is the probability with which edges are added between each

pair of nodes in the network, while in random geometric (RG) graphs, the equivalent parameter is

the maximum distance under which each pair of nodes is connected by an edge. We posit that the

randomized structure of wireless networks will be prohibitive to the throughput optimality of GMS.

In this chapter, we explore this hypothesis by employing threshold functions to characterize the

sensitivity of the GMS throughput ratio to the density of edges in large networks modeled as ER

and RG graphs under the primary interference model. For sufficiently dense, large random graphs,

we find that the throughput ratio is bounded between 1/2 and 2/3 and conclude that GMS is sub-

optimal with high probability in this regime. However, in the opposite regime of sparse random

graphs, we demonstrate that GMS optimality, if permitted, must necessarily come at the cost of

network connectivity.

In Ch. 32, we focus on maximization of spatial throughput in large wireless networks employ-

ing directional antennas subject to orientation error. Spatial throughput is the spatial density of

concurrent, successful transmissions in a wireless network whose transmitter and receiver locations

are typically modeled as point processes. In this setting, the trade-off between the increase in spa-

tial intensity of active transmissions and the resulting decrease in transmission success rate can be

addressed and analyzed via stochastic geometry. Quality of service requirements in the form of

outage constraints are also typically built into the maximization of spatial throughput; this results

in the well-known throughput metric called transmission capacity. Both spatial throughput and

transmission capacity may be improved by the deployment of directional antennas, which focus

transmitted energy towards intended recipients and reduce interference in directions away from the

2The work in Ch. 3 is the result of a collaborative research visit with Dr. Matti Latva-aho and Dr. Pedro H.
J. Nardelli at the Center for Wireless Communications (CWC), University of Oulu, Finland. This work has been
published as: J. Wildman, P. H. J. Nardelli, M. Latva-aho, and S. Weber, “On the joint impact of beamwidth and
orientation error on throughput in directional wireless Poisson networks,” IEEE Trans. Wireless Commun., vol. 13,
no. 12, pp. 7072–7085, Jun. 2014. doi: 10.1109/TWC.2014.2331055.
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recipient. Related research in this area has characterized notions of spatial throughput in large scale

wireless networks employing directional antennas, but all surveyed works assume perfect pointing

or beamforming between transmitters and receivers. As a consequence of an orientation error-free

model, these works analytically demonstrate unbounded throughput gains as antenna directionality

is narrowed.

In large scale, highly directional networks, we expect the effects of antenna misalignment and/or

beamsteering error to have a significant role in determining network coverage and throughput. We

propose that the maximization of spatial throughput over a configurable antenna beamwidth will

require a careful tradeoff between reducing interference with antenna beamwidths that are not so

narrow that transmitters and receivers are also likely to miss each other. In this chapter, we define

a stochastic geometry based model that captures the effects of beam misdirection on coverage and

throughput in such networks. We are able to use this framework to provide explicit expressions for

communication outage as a function of network density and antenna beamwidth for idealized sector

antenna patterns. We then explore the optimization of both spatial throughput and transmission

capacity, where we confirm the existence of a throughput-optimal beamwidth that appropriately

navigates the above tradeoffs, and supplement our findings with matching numerical trends across

more realistic antenna patterns.

In Ch. 43, we turn our attention to interference models, which form a key component in the

simulation and design of large scale wireless networks. Several models have seen extensive use

over the past several decades, including the physical and protocol interference models. Under the

physical interference model, successful reception requires the receiver’s signal-to-interference-plus-

noise (SINR) ratio, computed from all interference sources, to fall above a given threshold. In

contrast, the protocol interference model places constraints on the max power observed at the receiver

from any one source of interference. Usage of the protocol model is typically parameterized by a

guard zone distance around each receiver; when the guard zone contains any source of interference,

the transmission is declared as being in outage. For network operating environments of interest,

3Portions of the work in Ch. 4 have been presented in poster form at the 2015 Simons Conference on Networks
and Stochastic Geometry held at The University of Texas at Austin.

Chapter 1: Introduction



4

specific settings for the guard distance have been shown to produce protocol model outage rates

that closely approximate those of the physical model. Of note in this area is a guard zone set to

exclude dominant interferers, those who individually violate SINR constraints.

While a guard zone may be chosen to match the outage rate (and thus, spatial throughput)

predicted by networks employing the physical interference model, it is not immediately clear if such

a guard zone also yields a high degree of correlation between the subsets of transmissions that are

predicted successful by both models. We hypothesize that the protocol model configured to use a

dominant interferer guard zone can achieve both objectives for most regimes of interest. In this

chapter, we note that the usage of the protocol model in networks modeled as points processes fits

nicely within the framework of binary hypothesis testing. We treat the protocol interference model,

parameterized by a guard zone distance, as a decision rule to evaluate/predict physical model success

of a typical transmission; given the simple observation of the distance from the receiver to the closest

interferer, the protocol model must decide between success/outage under the physical model. Under

this framework, we employ Bayes estimation and stochastic geometry to characterize the optimal

guard zone that minimizes the prediction error rate associated with the protocol model decision

rule. We find that the efficacy of the optimal protocol model decision rule is tightly coupled with

the overall quality (outage) of the physical model channel. In regimes of low physical model outage,

we demonstrate that a guard zone radius based on dominant interference incurs little additional

error over the optimal guard zone and correlates well with physical model feasibility, in support of

our hypothesis. This framework is then extended to the case of directional networks, where we are

able to draw similar conclusions.

In Ch. 5, we summarize our findings and discuss their implications for future research.

Chapter 1: Introduction
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Chapter 2: On Characterizing the Throughput Ratio of Greedy Maximal
Scheduling in Random Graphs

2.1 Introduction

The stability region (or capacity region) of a queueing network is often defined as the set of exogenous

traffic arrival rates for which a stabilizing scheduling policy exists. A scheduling policy is optimal if

it stabilizes the network for the entire stability region. In [1], Tassiulas and Ephremides proved the

optimality of the Maximum Weight Scheduling (MWS) policy, which prioritizes backlogged queues

in the network. However, for arbitrary communication networks and interference models, employing

MWS incurs large computation and communication costs. Under the assumption of graph-based

networks with primary interference, the MWS policy simplifies to that of the Maximum Weighted

Matching (MWM) problem, for which there are polynomial-time algorithms.

Greedy and heuristic scheduling can help reduce these operating costs further, usually at the

expense of optimality. The relative performance of these policies is often defined by their largest

achievable fraction γ of the stability region, called a throughput ratio. For example, Sarkar and Kar

[2] provide a O(∆ log ∆ log n)-time (where ∆ is the max degree of the network) scheduling policy

that attains at least 2/3 of the stability region for tree graphs under primary interference. Lin and

Shroff [3] prove that a maximal scheduling policy on arbitrary graphs can do no worse than 1/2 of the

stability region under primary interference. Maximal matching policies can be implemented to run in

O
(
log2 n

)
-time [4]. Lin and Rasool [5] propose a constant, O(1)-time algorithm that asymptotically

achieves at least 1/3 of the stability region under primary interference. This naturally leads to the

question of whether or not greedy scheduling techniques may in fact be optimal (γ = 1).

2.1.1 Related Work

Sufficient conditions for the optimality of Greedy Maximal Scheduling (GMS) employed on a network

graph G(V,E) were produced by Dimakis and Walrand [6] and called Local Pooling (LoP). The GMS

algorithm (called Longest Queue First, LQF [6]) consists of an iterated selection of links in order of
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decreasing queue lengths, subject to pair-wise interference constraints. Computing whether or not an

arbitrary graph G satisfies LoP consists of solving an exponential number of linear programs (LPs),

one for each subset of links in G. Trees are an example of one class of graphs proved to satisfy LoP.

While LoP is necessary and sufficient under deterministic traffic processes, a full characterization of

the graphs for which GMS is optimal under random arrivals is unknown.

The work by Birand et al. [7] produced a simpler characterization of all LoP-satisfying graphs

under primary interference using forbidden subgraphs on the graph topology. Even more remark-

ably, they provide an O(n)-time algorithm for computing whether or not a graph G satisfies LoP.

Concerning general interference models, the class of co-strongly perfect interference graphs are shown

to satisfy LoP conditions. The definition of co-strongly perfect graphs is equated with the LoP con-

ditions of Dimakis and Walrand [6]. Additionally, both Joo et al. [8] and Zussman et al. [9] prove

that GMS is optimal on tree graphs for k-hop interference models.

For graphs that do not satisfy local pooling, Joo et al. [10, 8] provide a generalization of LoP,

called σ-LoP. The LoP factor of a graph, σ, is formulated from the original LPs of Dimakis and

Walrand [6]. Joo et al. [8] show that the LoP factor is in fact equivalent to GMS’s throughput ratio

σ = γ. Li et al. [11] generalize LoP further to that of Σ-LoP, which includes a per-link LoP factor σl

that scales each dimension of Λ independently and recovers a superset of the provable GMS stability

region under the single parameter LoP factor.

As mentioned, checking LoP conditions can be computationally prohibitive, particularly under

arbitrary interference models. Therefore, algorithms to easily estimate or bound σ and σl are of

interest and immediate use in studying GMS stability. Joo et al. [8] provide a lower bound on σ by

the inverse of the largest interference degree of a nested sequence of increasing subsets of links in G,

and provide an algorithm for computing the bound. Li et al. [11] refine this algorithm to provide

individual per-link bounds on σl. Under the primary interference model, Joo et al. [10] show that

∆/(2∆− 1) is a lower bound for σ. Leconte et al. [12], Li et al. [11], and Birand et al. [7] note that

a lower bound for σ is derived from the ratio of the min- to max-cardinality maximal schedules.

Joo et al. [8] define the worst-case LoP over a class of graphs, and in particular find bounds on the

Chapter 2: GMS Tput in Random Graphs 2.1 Introduction
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worst-case σ for geometric-unit-disk graphs with a k-distance interference model. Birand et al. [7]

list particular topologies that admit arbitrarily low σ, and provide upper and lower bounds on σ for

several classes of interference graphs. The body of work by Brzezinski et al. [13, 9, 14] brings some

attention to multi-hop (routing) definitions for LoP. Brzezinski et al. [14] investigate scheduling on

arbitrary graphs by decomposing, or pre-partitioning, the graph topology into multiple ‘orthogonal’

trees and then applying known LoP results about GMS optimality on trees. Both Joo et al. [10] and

Kang et al. [15] also treat the case of multi-hop traffic and LoP conditions.

2.1.2 Motivation & Contributions

Much of the work reviewed above focuses on the issue of identifying the performance of GMS via

the LoP factor for a given graph or select classes of graphs. However, aside from the worst-case LoP

analysis in geometric-unit-disk graphs by Joo et al. [8] we are not aware of any work on establishing

statistics and trends on the LoP factor σ in networks modeled as random graphs. We note that the

topology and structure of random graphs families, such as Erdős-Rényi (ER) and random geometric

(RG) graphs, are tightly coupled with the density of edges present in the graph. This chapter

seeks to fill this void by rigorously establishing relationships between network edge densities and the

resulting LoP factor in networks modeled as random graphs. When viewed within the context of

Joo et al. [8], statistics on the LoP factor σ are equivalent to statistics on GMS’s throughput ratio γ,

the relative size of GMS’s stability (or capacity) region. We then place LoP within a larger context

of commonly studied properties in both random graph families by comparison with the likelihood

of connectivity properties.

This chapter and contributions are organized as follows. In §2.2, we introduce our network model

and provides essential definitions of threshold functions and the graph properties of interest. In §2.3,

we examine ER graphs due to their analytical tractability and gain insight into the behavior of the

LoP factor relative to the chosen edge probability function. We establish a regular threshold function

based on the forbidden subgraph characterization of LoP [7] that dictates the likelihood that a graph

satisfies LoP σ = 1 conditions (Thm. 2.2) and carry this analysis into bounds on the expected LoP

factor (Thm. 2.3). In §2.4, we extend our analysis to the case of RG graphs due to their natural

Chapter 2: GMS Tput in Random Graphs 2.1 Introduction
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connection to wireless network models. While the spatial dependence between edges in RG graphs

complicates analysis, we are able to establish an upper bound for LoP threshold function (Prop. 2.4

and Cor. 2.4) as well as similar bounds on the expected LoP factor (Thm. 2.5). In both ER and RG

sections, the LoP threshold functions are shown to produce a mutual exclusion between LoP and

notions of connectedness (giant components and traditional connectivity) as the size of the network

grows, for a large class of edge probability/radius functions (Thm. 2.4 and Cor. 2.3 for ER graphs;

Thm. 2.6 and Cor. 2.5 for RG graphs). ). In §2.5, we comment on aspects of our numerical results,

particularly on algorithm implementation to detect necessary or sufficient conditions for LoP in i.i.d.

realizations of ER and RG graphs. In §2.6, we compare the analytical mutual exclusion of LoP and

giant components with that of numerical results for finite network sizes and find that convergence to

this exclusion between properties is rather quick as the network grows in size. In §2.7, we conclude

our work and touch upon ideas for future investigation. Finally, for clarity, long proofs are presented

in App. A.

2.2 Model & Definitions

Let Gn be the set of all 2(n2) simple graphs on n nodes. A common variant of an Erdős-Rényi (ER)

graph is constructed from n nodes where undirected edges between pairs of nodes are added using

i.i.d. Bernoulli trials with edge probability p ∈ [0, 1]. For each choice of p, let Gn,p denote the finite

probability space formed over Gn.

We will also consider a common variant of a random geometric (RG) graph, in which n node

positions are modeled by a Binomial Point Process (BPP) within a unit square [−1/2, 1/2]2 ⊂ R2.

Undirected edges between pairs of nodes are added iff the Euclidean distance between the two nodes

is less than a given, fixed distance r ∈ [0,∞). For each choice of r, let Gn,r denote the finite

probability space formed over Gn. Note that the particular RG model we have chosen is equivalent

to a Poisson Point Process (PPP) conditioned on having n nodes within the unit square, producing

an ‘equivalent’ intensity λ = n.

Interference in a graph Gn ∈ Gn is captured as a pairwise function between its edges. Specifically,

we adopt the primary (one-hop) interference model, under which adjacent edges (sharing a common

Chapter 2: GMS Tput in Random Graphs 2.2 Model & Definitions
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node) interfere with one another. Under this assumption, we can employ the forbidden subgraph

characterization of LoP conditions found in [7].

Let P refer to both i) a specific property or condition of a graph Gn, as well as ii) the subset of

graphs of Gn for which the property holds, as described by Def. 2.1.

Definition 2.1 (Graph Property [16]). A graph property P is a subset of Gn that is closed under

isomorphism (∼iso): i.e., G ∈ P, H ∈ Gn, G ∼iso H ⇒ H ∈ P.

Definition 2.2 (Monotone Graph Property [17]). Graph property P is monotone increasing if

G ∈ P, H ⊃ G⇒ H ∈ P. Correspondingly, graph property P is monotone decreasing if G ∈ P, H ⊂

G⇒ H ∈ P.

Let P{Gn,p ∈ P} denote the probability that a random graph Gn,p generated according to Gn,p

satisfies graph property P. For a monotone (increasing or decreasing) graph property, P, increasing

the edge probability p ∈ [0, 1] will cause a corresponding transition of P{Gn,p ∈ P} between 0 and 1.

Similarly, P{Gn,r ∈ P} (analogously defined using Gn,r and Gn,r) for a monotone graph property will

also experience a transition as the edge distance r ∈ [0,∞) increases. In this case, it is of interest to

study the behavior of the limiting probability limn→∞ P
{
Gn,p(n) ∈ P

}
and limn→∞ P

{
Gn,r(n) ∈ P

}

in response to the choice of p(n) and r(n), respectively. We will use P{P} as a short form for

P
{
Gn,p(n) ∈ P

}
or P

{
Gn,r(n) ∈ P

}
and use a general edge function e(n) as a stand in for either p(n)

or r(n)2. Note, thresholds of RG graphs on R2 are more easily expressed as the square of the edge

distance r(n)2 as opposed to r(n). A threshold function e∗(n) for graph property P, when it exists,

helps determine the limiting behavior of P{P} for choices of edge function e(n) relative to e∗(n). As

in [18], we use the phrase ‘P holds asymptotically almost surely (a.a.s.)’ to mean limn→∞ P{P} = 1

and the phrase ‘P holds asymptotically almost never (a.a.n.)’ to mean limn→∞ P{P} = 0. The

asymptotic equivalence of two functions is denoted f(n) ∼ g(n), that is limn→∞ f(n)/g(n) = 1. We

use the phrase ‘asymptotically positive’ to describe f(n) if ∃n0 : f(n) > 0,∀n > n0. Finally, let

Φ(x) be the c.d.f. of a standard normal r.v., and let nk = n!/(n− k)! denote the falling factorial.

Chapter 2: GMS Tput in Random Graphs 2.2 Model & Definitions
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2.2.1 Threshold Functions

First, we restate threshold function definitions in [19] for a graph property P using edge function

e(n), threshold function e∗(n), and the asymptotic notation of [20].

Definition 2.3 (Threshold Function). e∗(n) is a threshold function for monotonically increasing

graph property P if:

lim
n→∞

P{P} =





0, e(n) ∈ o(e∗(n))

1, e(n) ∈ ω(e∗(n))

. (2.1)

Definition 2.4 (Regular Threshold Function). e∗(n) can be called a regular threshold function if

there exists a distribution function F (x) for 0 < x <∞ such that at any of F ’s points of continuity,

x:

e(n) ∼ xe∗(n)⇒ lim
n→∞

P{P} = F (x). (2.2)

F (x) is known as the threshold distribution function for graph property P.

When satisfied, Def. 2.3 covers the limiting behavior of P{P} for all e(n) that lie an order of

magnitude away from threshold e∗(n). Conversely, any function e(n) ∈ Θ(e∗(n)) is also a threshold

function of graph property P. Def. 2.3 has also been called a weak, or coarse, threshold function

[21, 16, 18]. When Def. 2.4 applies, we can control the limiting value of P{P} to the extent that

F (x) allows. This can be accomplished by choosing e(n) to be a multiplicative factor x of e∗(n).

The two ‘statements’ of a threshold function:

e(n) ∈ o(e∗(n))⇒ lim
n→∞

P{P} = 0

e(n) ∈ ω(e∗(n))⇒ lim
n→∞

P{P} = 1,

are commonly referred to as the 0-statement and the 1-statement, as they dictate when P holds

with limiting probability 0 or 1. For a monotone decreasing property, the 0- and 1-statements are

appropriately reversed.

Chapter 2: GMS Tput in Random Graphs 2.2 Model & Definitions
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2.2.2 Sharp Threshold Functions

Stronger variations of the weak threshold have been defined, called either sharp, strong, or very

strong threshold functions [21, 22, 18]. We restate sharp threshold function definitions in [19] using

e(n), e∗(n), and the asymptotic notation of [20].

Definition 2.5 (Sharp Threshold Function). A (e∗(n), α(n)) pair is a sharp threshold function for

monotonically increasing graph property P if α(n) ∈ o(e∗(n)), α(n) is asymptotically positive, and:

lim
n→∞

P{P} =





0, e(n) ∈ e∗(n)− ω(α(n))

1, e(n) ∈ e∗(n) + ω(α(n))

. (2.3)

When satisfied, Def. 2.5 covers the limiting behavior of P{P} for all e(n) that lie an additive

factor (greater than order α(n)) away from e∗(n). Conversely, any function e(n) ∈ e∗(n)+O(α(n)) is

also a sharp threshold function of graph property P. Also note: by itself, e∗(n) is a regular threshold

function, that is, e∗(n) satisfies Def. 2.4 with ‘degenerate’ distribution function F (x) = 1{x > 1}

[19]. When presented alone (without α(n)), e∗(n) is still referred to as a sharp/strong threshold

function [18], perhaps prompting [22] to propose the term ‘very strong’ to denote a (e∗(n), α(n))

pair.

Definition 2.6 (Regular Sharp Threshold Function). A sharp threshold function (e∗(n), α(n)) is a

regular sharp threshold function if there exists a distribution function F (x) for −∞ < x <∞ such

that for any of F ’s points of continuity, x:

e(n) ∼ e∗(n) + xα(n)⇒ lim
n→∞

P{P} = F (x). (2.4)

F (x) is known as the sharp-threshold distribution function for graph property P.

When Def. 2.6 applies, we may control the limiting value of P{P} to the extent that F (x) allows

by choosing e(n) to be e∗(n) plus a term asymptotically equivalent to xα(n).

Chapter 2: GMS Tput in Random Graphs 2.2 Model & Definitions
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Table 2.1: Graph Properties

Symbol Property

Plop satisfies LoP (Thm. 2.1)

Pedge contains no more than 2n edges

PL
lop contains no cycles

PU
lop contains no cycles of lengths {k ≥ 6, k 6= 7}

Pconn is connected

Pgiant(β) largest component has normalized size ≥ β, β ∈ (0, 1)

Pgiant ∃β > 0: largest component has normalized size ≥ β

2.2.3 Graph Properties

We are interested in several graph properties listed in Tab. 2.1. We first list results from Birand

et al. [7] establishing i) a set of forbidden subgraphs that characterizes Local Pooling Plop under

primary interference constraints, and ii) a simple upper bound on the number of edges permitting

Local Pooling, Pedge. We then establish some useful properties and bounds of Plop, namely separate

sufficient and necessary properties for Local Pooling, PL
lop and PU

lop. Later, thresholds for these three

properties Pedge, PL
lop, and PU

lop will be compared with thresholds for two connectivity properties,

Pconn and Pgiant.

Theorem 2.1 (Local Pooling Plop [7, Thm. 3.1]). A graph Gn ∈ Plop if and only if it contains no

subgraphs within the set F = {Ck|k ≥ 6, k 6= 7} ∪ {Ds,t
k |k ≥ 0; s, t ∈ {5, 7}}, where Ck is a cycle of

length k ≥ 3 and Ds,t
k is a union of cycles of lengths s and t joined by a k-edge path (a ‘dumbbell’).

Lemma 2.1 (Pedge Necessary for Plop [7, Lem. 3.6]). Pedge is a necessary condition for graph

property Plop.

Lemma 2.2 (Plop Monotonicity). Plop is a monotone decreasing property.

Proof. See App. A.2.
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Since Plop is a monotone property, we are assured of the existence of a threshold function (for

both ER graphs [23, Thm. 1.24] and RG graphs [24, Thm. 1.1]). While we establish a regular

threshold for Plop in ER graphs (Thm. 2.2), we note that a threshold function for Plop in RG graphs

is not currently known to us. In the latter case, separate necessary and sufficient conditions bound

the subset Plop (Lem. 2.3) as well as the probability P{Plop} (Lem. 2.4). These bounds will hold

regardless of the random graph model (ER or RG) employed, and are used later in our numerical

results (§2.6).

Lemma 2.3 (Separate Sufficient and Necessary Conditions for Plop). PL
lop and PU

lop are sufficient

and necessary properties for Plop, respectively, producing nested subsets:

PL
lop ⊆ Plop ⊆ PU

lop. (2.5)

Proof. See App. A.3.

Lemma 2.4 (Probability Bounds for Plop). Under any choice of p(n) (r(n)) used to generate ER

(RG) graphs on n nodes:

P
{
PL

lop

}
≤ P{Plop} ≤ P

{
PU

lop

}
, ∀n ∈ Z+. (2.6)

Proof. See App. A.4.

We will also look to establish statistics on the LoP factor, σ ∈ [0, 1], for specific random graph

families. In this regard, Lem. 2.5 and Lem. 2.6 will prove helpful.

Lemma 2.5 (σ-LoP Bounds [3, 10]). For an arbitrary graph G, its LoP factor σ(G) adheres to the

following bounds:

1

2
≤ σ(G) ≤ σ(H), ∀H ⊆ G. (2.7)

Proof. The lower bound of 1/2 is immediate from [3]. The upper bound follows from [7, Def. 2.5],

a reformulation of [10, Def. 6].
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Lemma 2.6 (σ-LoP of C6k [7]). σ(C6k) = 2/3,∀k ∈ N+.

Proof. Under primary interference, the interference graph of G is its line graph. The line graph of

any cycle Ck is itself. The result follows immediately by a specialization of [7, Lem. 5.1] with 6k in

place of n.

2.3 ER Graphs

In this section, we examine several properties of interest for ER graphs. We first provide a regular

sharp threshold function for Pedge, a necessary property for Plop. We also find that a regular

threshold and distribution function can be directly established for property Plop by considering the

presence of forbidden subgraphs in F . We extend this argument to bound the support of the LoP

factor σ(Gn,p(n)) as well as its expectation. Known threshold functions for connectivity and giant

components are re-stated for comparison with that of Plop. We show that the threshold function

for Plop is incompatible with the known regular threshold function for Pgiant(β) — that is, choosing

p(n) so that Pgiant(β) holds a.a.s. implies that Plop holds a.a.n.. It then follows that the stricter

notion of connectivity is also incompatible with Plop.

2.3.1 Local Pooling

If we want to keep the expected number of edges in Gn,p(n) to be exactly 2n, we should set p(n) =

4/(n − 1). This naturally suggests a threshold function of p∗(n) = 1/n. This is indeed a threshold

function for Pedge (as are p∗(n) = 4/(n − 1) and p∗(n) = 4/n). While not particularly novel, we

include Prop. 2.1 as we have not come across a citation for the result.

Proposition 2.1 (Regular Sharp Threshold for Pedge in Gn,p(n)). The pair (p∗(n) = 4/n, α(n) =

2
√

2n/n2) is a regular sharp threshold function for graph property Pedge with distribution function

F (x) = Φ(−x) (flipped Normal).

Proof. See App. A.5.

Note, the condition Pedge is not sufficient for Plop and only provides an upper bound on a

threshold function for Plop. We improve upon this by considering established thresholds for the
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presence of individual forbidden subgraphs (such as cycles and dumbbells) in Gn,p(n). Note, the

threshold for the existence of edge-induced subgraphs in ER graphs is related to the maximum

density of edges to vertices of the subgraph [18]. Cycles of a given length, being less ‘dense’, will

tend to occur at a lower threshold p(n) ∼ 1/n than dumbbells. By focusing on just the set of

forbidden cycles, we find that these individual thresholds combine to form a ‘semi-sharp’ regular

threshold function for Plop, similar in form to the threshold for all cycles [19, Thm. 5b]. This is

formalized by Thm. 2.2.

Theorem 2.2 (Regular Threshold for Plop in Gn,p(n)). p
∗(n) = 1/n is a regular threshold function

for graph property Plop, with distribution function:

F (x) =





√
1− x exp

(∑
k∈K

xk

2k

)
, x < 1

0, x ≥ 1

(2.8)

where K = {1, 2, 3, 4, 5, 7}.

Proof. See App. A.6.

Thm. 2.2 provides the limiting behavior of P{Plop} when p(n) is chosen relative to 1/n. In the

case that p(n) is asymptotically larger than 1/n, we have that Plop is satisfied a.a.n.. However,

in order to guarantee that Plop is satisfied a.a.s., p(n) must be chosen o(1/n). Thus, we have

established how to choose p(n) in order to asymptotically satisfy Plop with probability between 0

and 1. Correspondingly, Thm. 2.2 can be weakened to provide a threshold function for property

Plop.

Corollary 2.1 (Threshold Function for Plop in Gn,p(n)). p
∗(n) = 1/n is a threshold function for

Plop.

Proof. See App. A.7.

In dense networks above the threshold p∗(n) = 1/n, we find that the support for the LoP factor

is bounded between 1/2 and 2/3:
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Proposition 2.2 (σ-LoP Bounds in Gn,p(n)). When p(n) ∼ c/n, c > 1, the limiting behavior of the

LoP factor σ may be bounded as follows:

lim
n→∞

P
{

1/2 ≤ σ(Gn,p(n)) ≤ 2/3
}

= 1. (2.9)

Proof. See App. A.8.

Theorem 2.3 (E[σ] Bounds in Gn,p(n)). Let p(n) ∼ c/n. The limiting behavior of E
[
σ(Gn,p(n))

]

may be bounded by.

1

2
(1 + Fl(c)) ≤ lim

n→∞
E
[
σ(Gn,p(n))

]
≤ 1

3
(2 + Fu(c)) (2.10)

where:

Fl(x) =





√
1− x exp

(∑
k∈K

xk

2k

)
, x < 1

0, x ≥ 1

, (2.11)

Fu(x) =





(1− x6)1/12, x < 1

0, x ≥ 1

(2.12)

with K = {1, 2, 3, 4, 5, 7}.

Proof. See App. A.9.

Note, when p(n) ∼ c/n and c > 1, bounds on the expected value of σ(G) are a primarily a

function of the restricted support provided by Prop. 2.2. A visualization of the bounds is provided

in Fig. 2.2, which prove to be quite tight for c < 1.

2.3.2 Connectivity and Giant Components

Previously established results provide a sharp threshold function for connectivity in ER graphs:

Lemma 2.7 (Regular Sharp Threshold for Pconn inGn,p(n) [25, 17]). The pair (p∗(n) = log(n)/n, α(n) =

1/n) is a regular sharp threshold function for graph property Pconn with distribution function F (x) =
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exp(− exp(−x)) (Gumbel).

We can also loosen our restriction that G be connected and look at threshold functions for the

formation of giant components in random graphs. A giant component exists if the largest connected

components contains a positive fraction of the vertices of G as n → ∞. Janson et al. provide a

relevant threshold function p∗(n) = c(β)/n for the existence of a giant component with normalized

size β ∈ (0, 1) [18, Thm. 5.4]. We find that the same threshold function easily applies to the existence

of a giant component of size at least β.

Corollary 2.2 (Regular Threshold for Pgiant(β) in Gn,p(n) [18]). Let β∗ ∈ (0, 1), then p∗(n) =

c(β∗)/n is a regular threshold function for graph property Pgiant(β
∗), with distribution function

F (x) = 1{x > 1}, where:

c(β) =
1

β
ln

(
1

1− β

)
. (2.13)

Proof. See App. A.10.

Given the facts that that i) Plop and Pgiant are monotone decreasing and increasing, resp., and

ii) their respective threshold functions do not ‘overlap’ (recall that c(β) > 1), we present a statement

of mutual exclusion between the two properties:

Theorem 2.4 (Mutual Exclusion of Plop and Pgiant(β) in Gn,p(n)). In ER graphs with edge proba-

bility function p(n) and desired giant component size β ∈ (0, 1):

lim
n→∞

p(n)

1/n
≥ 0⇒ lim

n→∞
P{Plop ∩ Pgiant(β)} = 0. (2.14)

Proof. See App. A.11.

Note that the threshold for connectivity has a higher order than that of giant components

(log(n)/n vs. c(β)/n), thus, we expect (and find) that properties Plop and Pconn exhibit an identical

mutual exclusion:
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Figure 2.1: The limiting behavior of the graph properties in Tab. 2.1 along the design space of
functions p(n) chosen relative to established threshold functions for ER graphs. Listed from top
to bottom are i) the graph properties, ii) their limiting probabilities relative to an established
threshold function, iii) the established threshold function.

Corollary 2.3 (Mutual Exclusion of Plop and Pconn in Gn,p(n)). In ER graphs with edge probability

function p(n):

lim
n→∞

p(n)

1/n
≥ 0⇒ lim

n→∞
P{Plop ∩ Pconn} = 0. (2.15)

Proof. Pgiant(β) is necessary for connectivity Pconn, thus: P{Plop ∩ Pconn} ≤ P{Plop ∩ Pgiant(β)}.

Mutual exclusion between Plop and Pconn follows immediately from Thm. 2.4.

We note that the set of p(n) covered by Thm. 2.4 and Cor. 2.3 is a rather large class, covering

all functions that can be placed into an asymptotic relationship with 1/n. This includes o(1/n)

and ω(1/n), but leaves out certain functions that contain periodic components (e.g., (sin(n) +

1)/n). We note that these ‘sinusoidal’ functions may oscillate across the threshold 1/n for certain

graph properties of interest and do not make sense to employ when attempting to satisfy monotone

properties in ER graphs. We also note that a more elegant, larger characterization of the set of p(n)

that satisfy this mutual exclusion may exist (particularly for Pconn, whose threshold lies at a higher

order than that of Plop). Refer to Fig. 2.1 for a visual comparison of the limiting behavior of the

properties in Tab. 2.1 in ER graphs.

2.4 RG Graphs

In this section, we examine several properties of interest for RG graphs. We first provide a regular

sharp threshold function for Pedge, a necessary property and threshold upper bound for Plop. We

obtain a tighter threshold upper bound for Plop by considering the presence of forbidden subgraphs

in F . This upper bound is sufficient to prove the threshold for Plop is incompatible with known
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regular threshold function r∗(n)2 = log(n)/(πn) for Pconn — that is, choosing r(n)2 so that Plop

holds a.a.s. implies that Pconn holds a.a.n.. Further, relaxing our desire for connectivity from Pconn

to Pgiant lowers the regular threshold function from log(n)/(πn) to λc/n with λc ∈ (0,∞). However,

we find that this is insufficient to prevent the incompatibility of Plop with Pgiant.

2.4.1 Local Pooling

Proposition 2.3 (Regular Sharp Threshold for Pedge in Gn,r(n)). The pair (r∗(n)2 = 4/(πn), α(n) =

2
√

2n/(πn2)) is a regular sharp threshold function for graph property Pedge with sharp-threshold

distribution function F (x) = Φ(−x) (flipped Normal).

Proof. See App. A.12.

Remark 2.1. The leading term of the threshold in Prop. 2.3 was motivated by solving an expression

for the expected number of edges in Gn,r(n) for r(n)2. The second term of the threshold is specifically

chosen such that all multiplicative factors other than −x cancel out from scaling (a) and subsequent

standardization (d) in the proof.

Proposition 2.4 (Upper Bound for Plop in Gn,r(n)). When r∗(n)2 ∼ c/n6/5, an upper bound for

LoP may be expressed:

lim sup
n→∞

P{Plop} ≤ exp

(−(πc/4)5

6!

)
(2.16)

Proof. See App. A.13.

Remark 2.2. Unlike the case of ER graphs where cycles of all orders began appearing at the same

threshold p(n) ∼ 1/n, the RG thresholds of forbidden subgraphs in F are more spread out (order

k vertex-induced subgraphs yielding an order k edge-induced forbidden subgraph begin to appear at

r(n)2 ∼ n−k/(k−1)). For Prop. 2.4, we wished to find the tightest upper bound for Plop that was

amenable to asymptotic analysis. Thus, we first restricted our attention to the lowest order vertex-

induced subgraphs (subgraphs of order 6). Second, we noted that evaluating µΓ6
for all feasible, order

6 graphs that contain the forbidden edge-induced C6 appears to be neither analytically tractable nor
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computationally viable, so we apply a second upper bound by focusing on a specific vertex-induced

subgraph, the complete graph K6, and derive an easy upper bound for µK6
.

The upper bound in Prop. 2.4 yields a 0-statement:

Corollary 2.4 (0-statement for Plop in Gn,r(n)). When r(n)2 ∈ ω
(
1/n6/5

)
, limn→∞ P{Plop} = 0.

Proof. This follows immediately from Prop. 2.4.

Due to fact that all forbidden subgraphs contain at least 6 or more vertices, it does not seem

likely that a corresponding 1-statement would hold at a lower threshold than r∗(n)2 ∼ 1/n6/5. Thus,

we are led to make the following conjecture:

Conjecture 2.1 (Threshold for Plop in Gn,r(n)). r
∗(n)2 = 1/n6/5 is a threshold function for graph

property Plop.

The difficulty in proving this conjecture lies in establishing a sufficient condition whose probability

lower bounds P{Plop} while maintaining enough tractability to take its limit as n → ∞. In terms

of applying the same proof strategy as used for ER graphs, we note that the FKG inequality does

not appear readily applicable. We note that none of the results presented in this chapter depends

on this conjecture.

Similar to the case for ER graphs, the asymptotic support for the LoP factor for dense RG

networks (above the threshold r∗(n)2 = 1/n6/5) also lies between 1/2 and 2/3:

Proposition 2.5 (σ-LoP Bounds in Gn,r(n)). When r(n)2 ∈ ω
(
1/n6/5

)
, the limiting behavior of the

LoP factor σ may be bounded as follows:

lim
n→∞

P
{

1/2 ≤ σ(Gn,r(n)) ≤ 2/3
}

= 1. (2.17)

Proof. See proof in App. A.17.

Theorem 2.5 (E[σ] Bounds in Gn,r(n)). Let r(n)2 ∼ c/n6/5. We may bound the limiting behavior
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Figure 2.2: Limiting bounds (n→∞) on E[σ(G)] in ER graphs when p(n) ∼ c/n (left), and
RG graphs when r(n)2 ∼ c/n6/5 (right).

of E
[
σ(Gn,r(n))

]
as a function of x.

1

2
≤ lim
n→∞

E
[
σ(Gn,r(n))

]
≤ 1

3

(
2 + exp

(
− (πc/4)5

6!

))
. (2.18)

Proof. See proof in App. A.18.

In Fig. 2.2, we present a visual comparison of the limiting behavior of E[σ] for both ER and

RG graphs. These bounds are provided by Thm. 2.3 and Thm. 2.5, respectively. We note that the

tighter bounds for ER graphs is afforded by the coinciding cycle subgraph thresholds at p(n) ∼ 1/n.

2.4.2 Connectivity and Giant Components

Previously established results provide a regular sharp threshold function for connectivity and a

regular threshold for giant components in RG graphs:

Lemma 2.8 (Regular Sharp Threshold for Pconn inGn,r(n) [26]). The pair (r∗(n)2 = log(n)/(πn), α(n) =

1/(πn)) is a regular sharp threshold function for graph property Pconn with sharp-threshold distribu-

tion function F (x) = e−e−x (Gumbel).

Lemma 2.9 (Regular Threshold for Pgiant in Gn,r(n) [26]). r∗(n)2 = λc/n is a regular threshold

function for graph property Pgiant with threshold distribution function F (x) = 1{x > 1}, where

λc ∈ (0,∞) is the critical percolation threshold.
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Figure 2.3: The limiting behavior of the graph properties in Tab. 2.1 along the design space
of functions r(n)2 chosen relative to established threshold functions for RG graphs. Listed
from top to bottom are i) the graph properties, ii) their limiting probabilities relative to an
established threshold function or 0-statement in the case of Plop, iii) the established threshold
function.

Given the facts that that i) Plop and Pgiant are monotone decreasing and increasing proper-

ties respectively, and ii) their respective 0-statements ‘overlap’, we present a statement of mutual

exclusion between the two properties:

Theorem 2.6 (Mutual Exclusion of Plop and Pgiant in Gn,r(n)). In RG graphs with edge radius

function r(n):

lim
n→∞

r(n)2

1/n
≥ 0⇒ lim

n→∞
P{Plop ∩ Pgiant} = 0. (2.19)

Proof. See App. A.16.

Again, in the case of RG graphs, the threshold for connectivity has a higher order than that of

giant components (log(n)/(πn) vs. λc/n), thus, we expect (and find) that properties Plop and Pconn

exhibit an identical mutual exclusion:

Corollary 2.5 (Mutual Exclusion of Plop and Pconn in Gn,r(n)). In RG graphs with edge radius

function r(n):

lim
n→∞

r(n)2

1/n
≥ 0⇒ lim

n→∞
P{Plop ∩ Pconn} = 0. (2.20)

Proof. Pgiant is necessary for connectivity Pconn, thus P{Plop ∩ Pconn} ≤ P{Plop ∩ Pgiant}. Mutual

exclusion between Plop and Pconn follows immediately from Thm. 2.6.

In the case of RG graphs, we note that the threshold for Plop must lie at a lower order than both

that of Pgiant and Pconn, whereas in ER graphs, Plop and Pgiant were both located at 1/n. Refer to

Fig. 2.3 for a visual comparison of the limiting behavior of the properties in Tab. 2.1 in RG graphs.
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2.5 Algorithms for Bounding Plop

Birand et al. [7] outline an O(n)-time exact algorithm checking whether or not a graph with n

vertices satisfies Plop under primary interference constraints. At a high-level, the algorithm involves

decomposition of the graph into bi-connected components and checking each component for certain

characteristics; among these is a test for ‘long’ cycles (in order to exclude forbidden cycle lengths).

Our analytical results suggest that the formation of cycles are the major factor prohibiting LoP in

ER and RG random graphs, so we have implemented algorithms to check for necessary and sufficient

conditions for LoP in random graphs (PL
lop and PU

lop). Our simulations are performed in Matlab,

where we make use of MatlabBGL [27] for graph decomposition into connected components and

depth-first-search. These following algorithms and their supporting functions are listed in Listing 1

and are centered around the detection of long cycles.

HasCycleEq accepts an input graph G, a cycle-length k, and a maximum number of iterations

I and reports whether or not a cycle of length k exists within G. HasCycleEq relies directly upon

a randomized algorithm, denoted AYK, proposed by Alon et al. [28, Thm. 2.2], which iteratively

generates random, acyclic, directed subgraphs of G and tests for cycles via the subgraph’s adjacency

matrix. If no cycles of length k are found after the Ith iteration, we have HasCycleEq report

that no length k cycles exist in G, which may be a false negative. As a result, HasCycleEq is

suitable for use in upper-bounding the probability of the non-existence of forbidden cycles, namely

in PlopU.

HasCycleGeq accepts an input graph G, a minimum cycle-length K, and a maximum number

of iterations I and reports whether or not a cycle of length K or greater exists within G. In general,

the decision problem formulation (also known as the long-cycle problem) is NP-hard, but polynomial

for fixed-parameter k. We make use of a result by Gabow and Nie [29, Thm. 4.1]; for K > 3, depth-

first-search DFS may be used to detect the existence of cycles of length longer than 2K − 4 by

examining the back-edges discovered by DFS. Note, a DFS back-edge of length K − 1 implies the

existence of a length K cycle. Thus, if a ‘long’ back-edge is found by DFS, we may report that such

a cycle exists (line 7). In the event that DFS fails to detect long backedges, a long simple cycle
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(if it exists) will have length between K and 2K − 4 [29, Thm. 4.1]. For each length k within this

range, we call the randomized algorithm in HasCycleEq, thus HasCycleGeq may also report

false negatives. Alternately, when K = 3, HasCycleGeq is an exact algorithm (lines 8-10 involving

HasCycleEq are short-circuited) that checks for the existence of any cycle. This is accomplished

by running DFS and examining the resulting tree for back-edges of length 2 or longer. In the event

no such back-edges are found, we may conclude that graph G is cycle-free.

Finally, we discuss PlopL and PlopU. PlopL checks for the existence of any cycles and calls

HasCycleGeq directly. For the reasons discussed above, PlopL is an exact (not randomized)

algorithm and suitable for lower bounding the probability of satisfying LoP conditions. PlopU

checks for the existence of forbidden cycles. For forbidden cycles of length 6, we call HasCycleEq,

while for fobidden cycles of length 8 or longer, we call HasCycleGeq. For this reason, the curves

displayed for PU
lop in later figures are an upper bound for PU

lop (which can be improved by increas-

ing the number of allowed iterations, I), but nevertheless yield valid upper bounds for Plop and

additionally demonstrate the mutual exclusivity between Plop and Pgiant in ER and RG graphs.

Remark 2.3. One could obtain a tighter sufficient condition PL
lop (and thus a tighter lower bound)

by restricting cycles of length k ≥ 5 instead of all cycles. We have not done so for the following

reasons: i) the use of HasCycleGeq with K = 5 will not produce an exact answer (but instead

an upper bound on PL
lop), and ii) we are more concerned and satisfied with characterizing an upper

bound for Plop and its interaction with connectivity requirements.

2.6 Numerical Results

The analytical results presented thus far are asymptotic (n→∞). In this section, we compare the

analytical mutual exclusion of LoP and giant components with that of numerical results for finite

network sizes and find that this exclusion occurs rather quickly as the network grows in size.

2.6.1 ER Graphs

In Fig. 2.4, we see that the numerical results generally match their analytical limits at n = 104. In

particular, as n→∞, the numerical curves associated with Pgiant(β) become increasingly sigmoidal
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Figure 2.4: Probabilities of graph properties occurring in ER graphs are plotted as a function
of c where the edge probability is chosen according to p(n) = c/n. Asymptotic (as n → ∞),
analytical (A) probabilities are plotted in dashed lines. Numerical (N) probabilities are plotted
in solid lines with 95% confidence intervals generated from S = 103 i.i.d. graphs of size n = 104.
PlopU was configured to use a maximum of I = 104 iterations.

about c ≈ 1.15 when β is set to a rather conservative value of 0.25. Also note that the effect of

increasing the minimum required giant component size β serves to shift the associated curves in

Fig. 2.4 to the right, further negating any chance of both satisfying local pooling and having a giant

component. Regarding Plop, when c < 1, we note that there is good agreement with the numerical

upper bound and the gap with the lower bound is readily explained by Rem. 2.3. When c > 1, there

are noticeable ‘tails’ on the numerical bounds, and we are inclined to attribute the existence of the

tails to the notion that graphs of a finite size n may only reliably capture the limiting behavior of

small cycles, perhaps much smaller than n.1

In Fig. 2.5, we focus on edge probability functions p(n) = c/n with parameter 1 ≤ c ≤ 1.15,

which falls between the asymptotic thresholds for Plop and Pgiant(0.25) (see Fig. 2.4). For each edge

probability function within this regime, we plot the probability that an ER graph satisfies both PU
lop

and Pgiant(0.25) as a function of the network size, n. We observe that the exclusion between PU
lop

and Pgiant develops rather rapidly.

1By appropriately restricting conditions PL
lop and PU

lop to cycles of lengths less than finite K ≈ 20, the resulting

threshold distribution functions more closely match the presented numerical results.
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Figure 2.5: Numerical probability of satisfying both PU
lop and Pgiant(0.25) in ER graphs plotted

as a function of n where the edge probability is chosen according to p(n) = c/n. Numerical
probabilities are computed with 95% confidence intervals generated from S = 104 i.i.d. graphs.
PlopU was configured to use a maximum of I = 103 iterations.

2.6.2 RG Graphs

Unlike the case of ER graphs, we note that the RG graph bounds and thresholds for Plop and

Pgiant(β) (respectively) must necessarily occur at edge radius functions of different orders of n.

For this reason, we provide two subplots in Fig. 2.6 that are analogous to Fig. 2.4 and separately

consider edge radius functions r(n)2 = c/n6/5 and r(n)2 = c/n. Intuitively, for edge radius function

r(n)2 = c/n6/5, we expect to see (and also observe) two phenomenon as the parameter n increases:

the probability of PU
lop should show convergence towards a non-zero threshold distribution function

(if Conj. 2.1 is true) while the probability of Pgiant(β) should converge to zero. Similarly, for edge

radius function r(n)2 = c/n we observe the opposite phenomenon: the probability of Pgiant(β) begins

to converge to a non-zero threshold distribution function (near c = 1.5) when r(n)2 = c/n, while

the probability of PU
lop converges to zero for all c at this choice of r(n)2.

While we lack threshold distribution functions for both PU
lop and Pgiant, we include the established

upper bound for Plop (Prop. 2.4) for comparison and plot each numerical curve for increasing network

sizes n = {102, 103, 104}. We note that the bound in Prop. 2.4 forbids only vertex-induced complete

graphs of order 6 (K6) which is looser than PU
lop which forbids edge-induced cycles of lengths k ≥
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Figure 2.6: Probabilities of graph properties occurring in RG graphs are plotted as a function
of c where the edge radius is chosen according to r(n)2 = c/n6/5 (left) and r(n)2 = c/n (right).
Numerical (N) probabilities are plotted according to the legend with 95% confidence intervals
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a maximum of I = 103 iterations. An additional asymptotic upper bound for Plop is plotted in
solid grey (left).

6, k 6= 7 from the set F . The combination of plots in Fig. 2.6 serve to demonstrate the mutual

exclusion between Plop and Pgiant as n→∞.

In Fig. 2.7, we focus on both edge radius functions selected for Fig. 2.6, and instead parameterize

by c. Appropriate parameter values are chosen to explore the area in the gaps presented in Fig. 2.6.

For each edge radius function within this regime, we plot the probability that an RG graph satisfies

both PU
lop and Pgiant(0.25) as a function of the network size, n. We observe that the exclusion

between PU
lop and Pgiant develops even more quickly than in the case of ER graphs. The increase in

speed at which this exclusion develops is likely due to the separation in order between the thresholds

functions that give rise to Plop and Pgiant, which was not present in ER graphs.

2.7 Conclusions

In this chapter, we investigated the achievable fraction of the capacity region of Greedy Maximal

Scheduling via an analytical tool known as Local Pooling. We provided rigorous characterizations of

the LoP factor in large networks modeled as Erdős-Rényi (ER) and random geometric (RG) graphs

under the primary interference model. We employed threshold functions to establish critical values
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Figure 2.7: Numerical probability of satisfying both PU
lop and Pgiant(0.25) in RG graphs

plotted as a function of n where the edge radius is chosen according to r(n)2 = c/n6/5 (left)
and r(n)2 = c/n (right). Numerical probabilities are computed with 95% confidence intervals
generated from S = 105 i.i.d. graphs. PlopU was configured to use a maximum of I = 103

iterations.

for either the edge probability or communication radius to yield useful bounds on the range and

expectation of the LoP factor as the network grows large in size. For sufficiently dense random

graphs, we found that the LoP factor is bounded between 1/2 and 2/3, while sufficiently sparse

random graphs permit GMS optimality (the LoP factor is 1) with high probability. We observed

that edge densities permitting connectivity generally admit cycle subgraphs which forms the basis

for the LoP factor upper bound of 2/3 and concluded with simulations that explored this aspect. In

the regime of small network sizes, our simulation results suggest the probability that an ER or RG

graph satisfies LoP and is connected decays rather quickly with the size of the network.

Avenues for future investigation of LoP include a more rigorous examination of the rate of

convergence of the probabilities of these graph properties to their asymptotic values. Additionally,

examining the fraction of nodes/edges/components in the network satisfying LoP (σ = 1) may help

in identifying simple topology control techniques to increase the LoP factor (e.g., removal of edges

to break forbidden cycles in non-LoP satisfying components or addition of edges to patch smaller

LoP-satisfying components together).
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Listing 1 Pseudo-code checking for PL
lop and PU

lop

function HasCycleEq(G,k,I)

return AYK(G,k,I)

function HasCycleGeq(G,K,I)

TDFS ← DFS(G)

5: if LongestBackedge(TDFS) ≥ (K − 1) then

return true

else

for k = K to 2K − 4 do

if HasCycleEq(G,k,I) then

10: return true

return false

function PlopL(G,I)

return HasCycleGeq(G,3,I)

function PlopU(G,I)

15: if HasCycleGeq(G,8,I) then

return true

else

return HasCycleEq(G,6,I)
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Chapter 3: On the Joint Impact of Beamwidth and Orientation Error on
Throughput in Directional Wireless Poisson Networks

3.1 Introduction

In a wireless communications network, directional antennas can help increase received signal power

while simultaneously reducing interference. Antenna arrays that are steerable mechanically, electri-

cally, or via switched-beams, can further improve networks performance by dynamically redirecting

transmitted energy based on the network state. The performance analysis of directional antennas

in large scale wireless communications systems over the last few decades has made use of a variety

of models, assumptions, and analytical tools. However, much of the previous work assumes either

perfect sector selection or beamsteering.

We anticipate the presence of several tradeoffs affecting network throughput and transmission

capacity as antenna beamwidth decreases, stemming from sources of imperfect antenna configuration,

beamforming, and selection [30, 31, 32, 33, 34]. Assuming constant transmitted power, decreasing

beamwidth will result in a higher gain within the antenna’s main beam. As the beamwidth decreases,

fewer interferers significantly affect the typical receiver, but their individual effects are stronger.

Additionally, as the beamwidth decreases, properly aligning the transmitter and receiver becomes

more difficult, but when both are aligned, the desired signal strength increases.

In this work, we study these tradeoffs in an ad hoc wireless network setting, modeled by a bipolar

Poisson Point Process (PPP). We employ stochastic geometry to investigate optimal beamwidths

that maximize throughput-based metrics in the presence of an assumed orientation error distribution.

We now categorize and review related work in this area.

3.1.1 Related Work

Early works [35, 36] have studied the maximum throughput and expected forward progress of

ALOHA and Carrier Sense Multiple Access (CSMA) systems using the protocol model with ap-

propriately chosen interference zones. In particular, under Poisson ALOHA networks with antenna
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Figure 3.1: A wireless network with directional antennas employed on transmitter and re-
ceiver pairs (dotted lines). When subjected to orientation error, transmitters and receivers may
correctly direct their beam (black nodes), or they may miss their intended counterpart (white
nodes).

beamwidth β, C.-J. Chang and J.-F. Chang [35] found that certain routing schemes achieve a max-

imum throughput gain on the order of 1
β . A second set of works [37, 38, 39, 40, 41] focused on

throughput capacity of directional wireless networks, extending the seminal work of Gupta and Ku-

mar [42]. Specifically, Yi et al. [38] found throughput gains of O
(

1
αβ

)
in random networks employing

the protocol interference model with transmitter and receiver beamwidths of α and β, respectively.

More recently, several works [43, 44, 45, 46] have analyzed directional wireless networks with

stochastic geometry, which offers a rich framework [47, 48] for modeling effects such as physical

interference (SINR) and fading. Hunter et al. [43] studied spatial diversity schemes in ad hoc

networks and found that static transmit and receive beamforming with M ideal sector antennas

without sidelobes yields transmission capacity gains of Θ(M2) over omni-directional antennas. Singh

et al. [44] developed insights into medium access control design for highly directional networks by

examining outage using protocol and physical interference models. Wang and Reed [45] incorporated

directional antennas into the analysis of coverage in multi-tier heterogeneous cellular networks.

Akoum et al. [46] were motivated by the rise of millimeter wave (mmWave) technology and studied

achievable coverage and rates of mmWave beamsteering.

All of the works reviewed thus far assumed either perfect sector selection or perfect beamsteering.

Even the point-to-destination scheme of C.-J. Chang and J.-F. Chang [35] modeled perfect orien-

tation towards the destination, despite leading to outages when no feasible next hop falls within

the transmitter’s sector. We note that antenna orientation error can affect the distribution of gains
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between interferers and the typical receiver. While gain distributions have been used to study the

interaction between arbitrary interferers and the typical receiver [45, 46], we are aware of no work

that incorporates orientation error into a stochastic geometry based analysis.

However, we note several works that do explicitly account for error in directional wireless net-

works [49, 50, 32, 51]. Specifically, the effect of beam-pointing error can be associated with an

averaged, normalized radiation pattern with a wider main lobe and higher sidelobes than the origi-

nal normalized pattern without error [49, 50]. Shen and Pearson [49] investigated coupled oscillator

beam-steering arrays and the effects of per-array-element phase error on beam-pointing error. Li et

al. [50] discussed uniform linear array (ULA) beamforming error stemming from direction of arrival

(DOA) estimation, spatial (or angular) spread of the transmitted signal, antenna array element per-

turbation, and mutual coupling of array elements. They analyzed outage and noted a degradation

in performance due to error sources of increasing magnitude. Vakilian et al. [51] studied the impact

of DOA estimation error, angular spread, and beamwidth on bit error rate. They noted that narrow

beamwidths can exhibit higher bit error rates than wider beamwidths when subjected to a large

enough DOA error.

3.1.2 Contributions

The rest of this chapter is summarized as follows. §3.2 introduces our wireless network model. §3.3

explores the success probability of a typical transmitter under arbitrary radiation patterns (Prop. 3.1)

and sectorized patterns (Cor. 3.2 and Cor. 3.3). §3.4 and §3.5 study network metrics spatial through-

put and transmission capacity, respectively. We derive closed form expressions for spatial throughput

(Prop. 3.2) and transmission capacity (Prop. 3.4) under ideal sector antennas without sidelobes and

arbitrary orientation error distributions. We find that concavity of the cumulative orientation error

distribution is sufficient for both monotonicity of spatial throughput (Prop. 3.3) and unimodality of

transmission capacity (Prop. 3.5) when expressed as functions of antenna beamwidth. A comparison

of our analytical results with that of numerical results involving more complex radiation patterns is

provided in §3.6. We conclude our work and outline future avenues of research in §3.7. Finally, for

clarity, long proofs are presented in App. B.
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3.2 Model

We model a wireless network with Φ̂ = {(xi,mi)}, a marked, homogeneous, bipolar Poisson Point

Process (PPP) of intensity λ > 0. Φ̂ models the placement and orientation of transmitter-receiver

pairs, where the members of each pair are separated by distance parameter d > 0. The ground

set {xi} ⊂ R2 represents the transmitter (TX) locations, while the i.i.d. marks {mi} (formally

defined in §3.2.3) encode the receiver (RX) locations and antenna orientation errors. For notational

convenience, we will denote the resulting RX locations with {yi} ⊂ R2, where RX i is associated

(paired) with TX i. In the following subsections, we detail the rest of our model.

3.2.1 Gain Patterns

Each TX and RX is equipped with a 2-dimensional antenna gain pattern G : [−π, π) → R+. The

input angle to G(·) is provided relative to the antenna’s boresight, or ‘forward’ direction. For

simplicity, we will assume the gain pattern is symmetric about the boresight angle: G(−θ) = G(θ).

Further, we will consider parameterized antenna radiation patterns such that the total radiated

power (TRP) remains constant over the parameter space; equivalently:

TRP ≡
∫ π

−π

G(θ)

2π
dθ = 1. (3.1)

3.2.2 Antenna Orientation & Error

Let θ̂x,y = ∠(y − x) be the angle of the vector from location x to location y relative to the positive

x-axis. Thus, for a given TX-RX pair i, θ̂xi,yi is the orientation of the RX about its paired TX. We

assume that each communication device may steer its gain pattern G(·) via a simple rotation of the

pattern about the device’s location. Thus, under the assumption of perfect orientation, the boresight

of antennas on TX i and RX i would be aligned directly along θ̂xi,yi and θ̂yi,xi respectively. However,

in order to study the effect of antenna misconfiguration on network performance, we introduce

additive error εx into the orientation of a beam originating from location x, measured relative to

the perfect orientation angle. For simplicity, we will consider error distributions symmetric about

zero degrees. Finally, let θxi,yj and θyj ,xi be the angles between TX i and RX j relative to their
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Figure 3.2: TX/RX positions are in circles with boresight angles marked by solid arrows.
Relevant angles are marked by gray dashed arrows, while gain input angles are black dashed
arrows.

respective boresight angle. These angles are the gain input angles used to compute the gain between

two communication devices, and can be expressed as:

θxi,yj = θ̂xi,yj − (θ̂xi,yi + εxi)

θyj ,xi = θ̂yj ,xi − (θ̂yi,xi + εyj ), (3.2)

and are visualized by Fig. 3.2. Note: if i = j, the gain input angles between TX-RX pair i are

simply θxi,yi = −εxi and θyi,xi = −εyi .

3.2.3 Marks on the Process

The marks of the process are {mi = (θ̂xi,yi , εxi , εyi)} and consist of the following:

• {θ̂xi,yi ∼ [−π, π]}, the uniformly distributed orientation of each RX about its paired TX. Note:

the marks encode the RX locations {yi} ⊂ R2 via {θ̂xi,yi} and d,

• {εxi ∼ fε : [−εmax, εmax] → R+}, the random orientation error of each TX’s beam toward its

paired RX, with zero-mean and bounded absolute error εmax ≤ π, and

• {εyi ∼ fε : [−εmax, εmax] → R+}, the random orientation error of each RX’s beam toward its

paired TX, with zero-mean and bounded absolute error εmax ≤ π.
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3.2.4 Communication Model

Finally, we model signal propagation using large-scale, distance-based pathloss with Rayleigh fading.

The signal power at RX j from TX i is given by:

Pi,j = PtHi,jG(θxi,yj )G(θyj ,xi)d
−α
i,j , (3.3)

where Pt is a fixed global power assignment across all transmitters, Hi,j is the Rayleigh fading

coefficient between TX i and RX j with Hi,j ∼ Exp(1), G(θxi,yj ) and G(θyj ,xi) are the gains

produced by TX i and RX j respectively in the direction of each other, α > 2 is the large-scale

pathloss constant, and di,j is the distance from TX i to RX j (note: di,i = d).

A transmission between TX-RX pair j is considered successful if the signal-to-interference-plus-

noise ratio (SINR) falls above a defined SINR threshold β > 0: SINRj = Pj,j/(Ij + η), where η ≥ 0

is the background noise power and Ij =
∑
i6=j Pi,j is the sum interference power at RX j. The

probability of success ps of transmission j is then given by ps = P{SINRj ≥ β}. Unless otherwise

noted, common parameters used to generate all figures and numerical results are α = 3, β = 4,

d = 100 meters, η = 10−12 Watts, and Pt = 1 Watt.

3.3 A Typical Transmission

In this section, we discuss the success probability of a typical TX-RX pair o with the receiver located

at the origin. This is possible due to Slivnyak’s Theorem (Theorem 8.1 [52]) applied to the PPP Φ̂,

which says that the reduced Palm distribution of Φ̂ is equivalent to the original distribution of Φ̂.

Here, the reduced Palm distribution of interest first conditions Φ̂ on the locations of xo and yo and

subsequently removes both points in order to provide analysis on the sum interference generated by

Φ̂ and observed at yo.

3.3.1 Induced Gain Distributions

As Wang and Reed [45] note, the antenna gains produced between arbitrary TX/RXs in a PPP are

random variables due to their random positions. In this work, we additionally allow the TX/RX
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orientations to vary independently of their positions via εxi and εyi . As a consequence, the random

gains produced between the typical TX-RX pair, denoted GT and GR, are:

GT(θxo,yo) = GT(εxo), εxo ∼ f|ε|

GR(θyo,xo) = GR(εyo), εyo ∼ f|ε|. (3.4)

Equations in (3.4) are due to the simplification of (3.2) when i = j = o. It is sufficient to consider

a distribution on the absolute orientation error, f|ε|, due to our assumption of a symmetric gain

pattern G(·). Additionally, the random gains produced between an arbitrary TX at xi and the

typical RX at yo, denoted GTI
and GRI

are:

GTI
(θxi,yo), θxi,yo ∼ [−π, π]

GRI
(θyo,xi), θyo,xi ∼ [−π, π], (3.5)

due to fact that (3.2) contains the sum of circular r.v.’s, where one of the summands in each sum

(θ̂xo,yo or θ̂xi,yi) is uniformly distributed over the circle, thus the sum is also uniformly distributed

over the circle [53]. In effect, the above four gains have been expressed independently of the geometry

of the points in Φ̂. The distributions on the gains will be useful when computing the success

probability of a typical transmission.

Remark 3.1. In this chapter, we restrict our attention to absolute orientation error c.d.f.s, F|ε|,

that are twice differentiable and concave over bounded support [0, εmax] with εmax ≤ π. Concave

distributions are equivalently the set of monotonically decreasing distributions F ′′|ε|(x) = f ′|ε|(x) ≤

0,∀x ∈ (0, εmax). This is a reasonable class of distributions to model sources of error, especially if

increasingly large errors are expected to occur with decreasing likelihood. The assumption of twice dif-

ferentiability is made to avoid distracting analytical corner cases. From the assumptions of concavity

and the support, it follows that f|ε|(x) > 0,∀x ∈ [0, εmax) and F|ε|(x) > 0,∀x ∈ (0, εmax]. Finally,

we will make use of truncated distributions ( e.g., exponential truncated to [0, π]) and parameterize
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them by their mean (prior to truncation) in the text and figures.

3.3.2 Success Probability

We begin with Prop. 3.1, which provides a general formulation of the typical transmission success

probability under arbitrary gain patterns and error distributions.

Proposition 3.1 (Success of a Typical Transmission). In a network modeled by Φ̂ with intensity λ >

0, TX-RX separation distance d, gain pattern G(·), pathloss constant α > 2, background noise η ≥ 0,

SINR threshold β, orientation error distribution f|ε|, and Rayleigh fading, the success probability ps

of a typical transmission can be expressed as:

ps =

∫ ∞

0+

∫ ∞

0+

exp

(
−λπκ

(
β

gTgR

)2/α

E
[
G

2/α
TI

]
E
[
G

2/α
RI

]
d2

)
∗

exp

(
− βdαη

PtgTgR

)
fGT(gT) fGR(gR) dgTdgR, (3.6)

where κ = Γ(1+2/α)Γ(1−2/α) and both E
[
G

2/α
TI

]
and E

[
G

2/α
RI

]
are the 2/α-moments of the random

gains produced between an arbitrary interferer and the typical RX.

Proof. See proof in App. B.1.

As Wang and Reed [45] note, the joint gain distribution fGTI
(gTI) fGRI

(gRI) can be interpreted as

a thinning probability. The expression λfGTI
(gTI

) fGRI
(gRI

) represents the intensity of transmitters

from Φ̂ that produce a combined gain of gTI
gRI

with the typical receiver at yo. Further, if we

ignore fading and approximate the sum interference (Io) with the dominant interference, 1 success

under each such thinned PPP would require that no interferers exist within a void zone of radius

(
β
gTI

gRI

gTgR

)1/α

d around the typical receiver. The integral inside the exponent can be interpreted as

a product of void probabilities across the independent, thinned PPPs.

With the appropriate assumptions, Prop. 3.1 can be related back to the success probability under

omni-directional antennas [47].

1See Prop. 3.6 and Prop 4.2 from [54]. Under these assumptions, κ can be effectively treated as 1.
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Corollary 3.1 (Success with Omni-directional Antennas [47]). Let an omni-directional antenna

be described by G(θ) = 1,∀θ ∈ [−π, π]. If such antennas are employed in a network described by

Prop. 3.1, the success probability ps of a typical TX-RX pair is:

ps = e−λπκβ
2/αd2

e−
βdαη
Pt , (3.7)

where κ = Γ(1 + 2/α)Γ(1− 2/α).

Proof. Under omni-directional antennas G(θ) = 1, the four gain distributions are equivalently:

GT ∼ GR ∼ GTI
∼ GRI

∼ fG(g) = δ(g − 1), where δ(·) is the Dirac delta function. It immediately

follows that E
[
G

2/α
TI

]
= E

[
G

2/α
RI

]
= 1. Finally, apply these gain distributions and moments into

(3.6) of Prop. 3.1.

3.3.3 Ideal Sectors

Let Gideal(θ) be an ideal sector antenna with a gain pattern defined by beamwidth ω ∈ (0, 2π), main

beam gain g1, and sidelobe gain g2 with 0 ≤ g2 < 1 < g1:

Gideal(θ) =





g1 = 2π−(2π−ω)g2

ω if |θ| ≤ ω/2

g2 else

. (3.8)

A visualization of this pattern is provided in Fig. 3.3. Note: the TRP of (3.8) is held constant at Pt

over the parameter space of ω and g2. Lem. 3.1 provides the four distributions and 2/α-moments of

the sector pattern gains between the typical RX and both the typical TX and an arbitrary interfering

TX.

Lemma 3.1 (Ideal Sector Gain Distributions). In a network modeled by Φ̂ with ideal sector antennas

described by (3.8), the gain distributions are given by:

fGT(g) = fGR(g) = ūδ(g − g2) + uδ(g − g1), (3.9)

fGTI
(g) = fGRI

(g) = p̄δ(g − g2) + pδ(g − g1), (3.10)
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Figure 3.3: A symmetric, sector pattern with beamwidth ω, mainbeam gain g1, and sidelobe
gain g2.

where p = ω
2π , p̄ = 1 − p, u = F|ε|(ω/2) and ū = 1 − u. Further, the 2/α-moments of the gain

distributions between an arbitrary interferer and the typical receiver are:

E
[
G

2/α
TI

]
= E

[
G

2/α
RI

]
= p̄g

2/α
2 + pg

2/α
1 . (3.11)

Proof. Apply the ideal sector pattern (3.8) to the gain distributions in (3.4) and (3.5). Since (3.8)

produces either gains g1 and g2 over all possible input angles, the resulting gain distributions are

discrete. The moments of the discrete gain r.v.’s are readily computed.

We note that p and p̄ can be interpreted as the main beam hit rate and miss rate, respectively,

between interferers and the typical receiver ultimately due to their uniform orientation with respect

to one another. On the other hand, u and ū are the main beam hit and miss rates, respectively,

between the typical TX-RX pair solely determined by their orientation errors.

Corollary 3.2 (Success with Ideal Sectors). If sectors described by (3.8) with non-zero sidelobes

(g2 > 0) are employed in a network described by Prop. 3.1, the success probability ps of a typical
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TX-RX pair is:

ps = u2e
−λπκβ2/αd2

(
p+p̄

(
g2
g1

)2/α
)2

e
− βdαη
Ptg

2
1 +

2uūe
−λπκβ2/αd2

(
p
(
g1
g2

)1/α
+p̄
(
g2
g1

)1/α
)2

e−
βdαη
Ptg1g2 +

ū2e
−λπκβ2/αd2

(
p
(
g1
g2

)2/α
+p̄

)2

e
− βdαη
Ptg

2
2 . (3.12)

where κ, p, p̄, u, and ū are as defined in Prop. 3.1 and Lem. 3.1.

Proof. Apply the gain distributions and moments from Lem. 3.1 to (3.6) of Prop. 3.1.

From Cor. 3.2, the three summands in (3.12) correspond to cases involving the typical TX and

RX; i) both the typical TX and RX hit each other w.p. u2, ii) one hits and the other misses w.p.

2uū, or iii) both miss each other w.p. ū2. In each summand, the last exponential term relates to

the transmission failure rate due to noise under Rayleigh fading, 1 − e−
βdαη
PtgTgR , and differs due to

the gains between the typical TX-RX pair. Finally, in each summand, the first exponential term

contains a quadratic term in p and p̄. This term offers some intuitive interpretations once expanded,

where p2 and 2pp̄ and p̄2 represent the cases describing the hit/miss interaction between an arbitrary

interferer and the typical RX and can be thought of as thinning probabilities of the interferers in

Φ̂. If we ignore fading and approximate sum interference with dominant interference, the ratio of

variables g1 and g2 represent adjustments to void distances/probabilities for the dominant interferer

based on its hit/miss interaction with the typical RX.

Finally, if we assume perfect control over the strength of the sidelobes g2 = 0, we can simplify

the success probability further, as given by Cor. 3.3.

Corollary 3.3 (Success with Ideal Sectors without Sidelobes). If sectors described by (3.8) with

zero sidelobes (g2 = 0) are employed in a network described by Prop. 3.1, the success probability ps

of a typical TX-RX pair is:

ps = u2e−λπκβ
2/αd2p2

e
− βdαη
Ptg

2
1 . (3.13)

Proof. Apply the gain distributions and moments from Lem. 3.1 to (3.6). Note: g2 = 0 and the
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Figure 3.4: Sample success curves ps(λ) plotted against intensity of active transmitters λ.
Orientation error |ε| is set to zero in the left set of grouped plots; in the right set of grouped
plots, orientation error |ε| is modeled using a half-normal distribution with mean ε̄ = 3 degrees.
Curves include the cases of omni-directional antennas; ideal sector antennas with sidelobes
(g2) with beamwidth ω and sidelobe gain g2 specified in each subplot; and ideal sector antennas
without sidelobes (g2 = 0) with the indicated beamwidth ω specified in each subplot.

lower limits of the double integration are 0+.

The results of Cor. 3.3 offer a nice interpretation when compared to the omni-directional results

of Cor. 3.1. First, an arbitrary interferer and the typical RX will hit each other w.p. p2 which acts

to thin the original process of interferers. Second, within this thinned process, the typical TX-RX

pair will hit each other with rate u2.

A comparison of the success probabilities established in Cor. 3.1, Cor. 3.2, and Cor. 3.3 can be

seen in Fig. 3.4. The degree to which the success under ideal sector antennas with sidelobes can be

approximated by that of sectors without sidelobes greatly depends on the system parameters ω, F|ε|,

and g2. Without orientation error, the three types of radiation patterns in Fig. 3.4, omni-directional,

sectors without sidelobes, and sectors with sidelobes produce neatly ordered success curves. Further-

more, success without sidelobes is the largest because any energy allocated to sidelobes is essentially

wasted between the typical TX-RX pair in the absence of orientation error. Finally, ps → 1 as the

network intensity λ (and interference) approaches zero.

When orientation error is introduced, the success curves in Fig. 3.4 are no longer guaranteed to

be ordered. In fact, the two sector types produce a crossing, where the presence of sidelobes is ben-

eficial in low density networks, but harmful in high density networks. The presence of sidelobes not
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only allows interference to be generated and received, but also permits successful communications

when antennas are misaligned. In low density networks, interference is minimal, resulting in a net

benefit from sidelobes. Regardless of the presence of error, sector antennas tend to increase a typical

transmission’s success for higher spatial intensities λ over that of omni directional antennas. Addi-

tionally, sectors with and without sidelobes produce similar success curves when i) the beamwidth is

sufficiently larger than the mean orientation error, or ii) the sector sidelobe is sufficiently suppressed.

As the network intensity λ approaches zero, success of sectors without sidelobes is upper bounded

by the typical TX-RX hit rate u2 = F 2
|ε|(ω/2) which decreases as the beamwidth narrows.

3.4 Maximizing Spatial Throughput

The spatial throughput of a network described by Prop. 3.1 is the maximum spatial intensity of

successful transmissions. Spatial throughput (TP) is found by the maximization of λps(λ) over the

spatial intensity of active transmitters λ:

TP = max
λ>0

λps(λ). (3.14)

Spatial throughput can be achieved by an appropriate tradeoff of the intensity of active trans-

mitters λ with the transmission success rate ps(λ) (a monotone decreasing function of λ). Prop. 3.2

provides the optimal spatial intensity of active transmitters λ∗ and the resulting success rate ps(λ
∗)

that achieves TP for networks that employ ideal sector without sidelobes.

Proposition 3.2 (TP using Sectors without Sidelobes). If sectors described by (3.8) with zero

sidelobes (g2 = 0) are employed in a network described by Prop. 3.1, the network’s spatial throughput

is TPs = λ∗ps(λ∗), where:

ps(λ
∗) = u2e

−1− βdαη
Ptg

2
1 , λ∗ =

1

p2πκd2β2/α
. (3.15)

Proof. See proof in App. B.2.

Examining Prop. 3.2, the dependence of ps(λ
∗) and λ∗ on ω is such that ps(λ

∗)→ 0 and λ∗ →∞
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as the beamwidth is decreased ω → 0. It stands to reason that if ps(λ) decreases slowly enough in

ω, the product (spatial throughput) may be driven higher by a narrowing beamwidth. Along these

lines, we have found that spatial throughput TPs can be increased arbitrarily, despite the presence

of orientation error, under the class of concave, twice differentiable error distributions F|ε|. This

notion is formalized by Prop. 3.3.

Proposition 3.3 (Concave F|ε| Implies Monotonicity of TPs in Beamwidth). Let sectors described by

(3.8) with zero sidelobes (g2 = 0) be employed in a network described by Prop. 3.1. If the orientation

error c.d.f. F|ε| is concave over [0, π], then TPs is monotone increasing as ω → 0.

Proof. See proof in App. B.3.

In the proof of Prop. 3.3, we use the fact that concavity of F|ε| implies
f|ε|(x)

F|ε|(x) ≤ 1
x before

establishing TPs monotonicity, producing the following nested subsets of error distributions:

{F|ε| : F|ε| concave, twice diff.} ⊂
{
F|ε| :

f|ε|(x)

F|ε|(x)
≤ 1

x
,∀x > 0

}
⊂ {F|ε| : TPs monotone}. (3.16)

The ratio,
f|ε|
F|ε|

= d
dx log

(
F|ε|
)
, is also known as the logarithmic derivative of F|ε|. We point out that

truncations of a distribution F|ε| are simply a linear scaling, and thus preserve concavity and leave

the logarithmic derivative of F|ε| unchanged. As a result, we can classify some error distributions

with infinite support (e.g., exponential) as satisfying Prop. 3.3 without having to first truncate

them. It is worth noting the possible connection with log-concavity for probability distributions, a

well studied subject [55].

A sample of c.d.f.s in the class covered by Prop. 3.3 are the uniform, exponential, and normal

c.d.f.s, all of which are concave, as stated by Cor. 3.4.

Corollary 3.4 (Error Distributions with Monotone TPs). If sectors described by (3.8) with zero

sidelobes (g2 = 0) are employed in a network described by Prop. 3.1 with orientation error modeled by

either i) uniform, ii) exponential, or iii) half-normal distributions, then TPs is monotone decreasing

in ω over [0, 2π].

Chapter 3: Tput in Dir. Wireless Networks 3.4 Max. Spatial Throughput



44

0

b

1

0 a π

F|ε|(x) vs. x

0

b

1

0 a π

xf|ε|(x)
F|ε|(x)

vs. x

Figure 3.5: Sample distribution F|ε|(x) given by (3.17) with a = 0.5, b = 0.5, c1 = 15, c2 = 1.

Proof. It is enough to show that F|ε|(x) is concave over x ∈ [0, π] (omitted for brevity). By Prop. 3.3,

it follows that TPs(ω) is monotone decreasing in ω over (0, 2π].

Remark 3.2. While sufficient, concavity of the error distribution F|ε| is not necessary for throughput

monotonicity. Consider the following error distribution on [0, π] with a ‘dimple’ at (a, b):

F|ε|(x) =





b(1−e−c1x)
1−e−c1a 0 ≤ x ≤ a

b+
(1−b)(1−e−c2(x−a))

1−e−c2(π−a) a < x ≤ π
(3.17)

Fig. 3.5 displays (3.17) with parameter values such that F|ε| is non-concave. However, the example

satisfies
xf|ε|(x)

F|ε|(x) ≤ 1,∀x > 0 and thus yields monotone TPs.

For completeness, Cor. 3.5 provides the spatial throughput for networks employing omni-directional

antennas, a well studied scenario [47, 54].

Corollary 3.5 (TP using Omni-directional Antennas). If omni-directional antennas are employed

in a network described by Prop. 3.1, the network’s spatial throughput is TPo = λ∗ps(λ∗), where:

ps(λ
∗) = e−1− βdαηPt , λ∗ =

1

πκd2β2/α
. (3.18)

Proof. See proof in App. B.4.

Comparing Prop. 3.2 and Cor. 3.5 when background noise is negligible (η ≈ 0), the gain in TP
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by the use of sectors without sidelobes over omni-directional antennas is:

TPs

TPo
=
u2

p2
∝
F 2
|ε|(ω/2)

ω2
, (3.19)

after expanding g1, u, and p in terms of ω. As the main beam becomes narrower and stronger,

ω → 0, the TP gain is affected by decreasing beamwidth in two opposing ways. First, the optimal

spatial intensity of active transmitters is increased by factor p2 = 4π2

ω2 equal to the interferer thinning

probability. Second, the success rate at this intensity decreases by factor u2 = F 2
|ε|(ω/2) equal to the

hit rate of the typical TX/RX pair. In the absence of orientation error (u = 1), the use of sectorized

transmitters with omni-directional receivers produces a TP gain of 1/p ∝ 1/ω, which mirrors similar

throughput gains derived by C.-J. Chang and J.-F. Chang [35].

3.5 Maximizing Transmission Capacity

Spatial throughput is often achieved by increasing the spatial intensity of active transmitters at

the expense of the success rate of the transmissions. The transmission capacity (TC) of a network

described by Prop. 3.1 is the maximum spatial intensity of successful transmissions subject to a

maximum outage constraint pe:

TC = max
λ>0,ps(λ)≥1−pe

λps(λ). (3.20)

As it has been well established for transmission capacity [54], the monotonicity of ps in λ allows

us to solve this maximization by taking the inverse of ps(λ), which yields the intensity of active

transmitters that achieves success rate 1− pe:

TC = λ(pe)(1− pe). (3.21)

Prop. 3.4 extends the analysis of transmission capacity to networks with orientation error and

ideal sector antennas without sidelobes.
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Proposition 3.4 (TC using Sectors without Sidelobes). If sectors described by (3.8) with zero

sidelobes (g2 = 0) are employed in a network described by Prop. 3.1, the transmission capacity

subject to maximum outage pe is given by TCs = λ∗(1− pe) where:

λ∗ =
log
(
u2(1−pη,s)

1−pe

)

p2πκd2β2/α
, (3.22)

and pη,s = 1− e−
βdαη

Ptg
2
1 is the failure rate due to background noise under Rayleigh fading.

Proof. See proof in App. B.5.

Unlike the monotonicity results obtained for spatial throughput in §3.4, the additional outage

constraint of transmission capacity combined with antenna orientation error prohibits TCs from

being monotone increasing with the narrowing of antenna beamwidth ω → 0. Ignoring background

noise (η ≈ 0) for the moment, the argument to the logarithm in (3.22) is F 2
|ε|
(
ω
2

)
/(1 − pe) when

expanded in terms of ω. It follows that when ω < 2F−1
|ε|
(√

1− pe
)
, the transmission capacity

expression will be negative, TCs < 0. This can be interpreted in the following manner: there is a

minimum threshold for beamwidth, beyond which the typical TX/RX hitting probability u2 becomes

smaller than the required success rate 1− pe. In this beamwidth regime, the transmission capacity

outage constraint cannot be satisfied simply due to typical TX/RX misalignment, and transmission

capacity can effectively be considered zero.

Along the lines of maximizing TCs as a function of antenna beamwidth, we have found that

transmission capacity TCs is unimodal in ω under the class of concave, twice differentiable error

distributions F|ε|. This notion is formalized by Prop. 3.5.

Proposition 3.5 (Concavity of F|ε| Implies Unimodality of TCs). Let sectors described by (3.8)

with zero sidelobes (g2 = 0) be employed in a network described by Prop. 3.1 with outage constraint

pe > 0. If the orientation error c.d.f. F|ε| is concave over [0, π], then there exists a unique maximizer

of TCs within ω ∈
(

2F−1
|ε|
(√

1− pe
)
, 2εmax

]
.

Proof. See proof in App. B.6.
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Prop. 3.5 relies on the fact that TCs is monotone outside of the stated domain, while being

quasi-concave (unimodal) inside, producing a unique maximizer.

Following the results of Prop. 3.5, the location of the unique maximizer ω∗ of TCs can be

expressed based on conditions on f|ε| evaluated at the r.h.s. of its support ω/2 = εmax.

Corollary 3.6 (Conditions on the Maximizing ω∗ for TCs). Let sectors described by (3.8) with zero

sidelobes (g2 = 0) be employed in a network described by Prop. 3.1 with outage constraint pe > 0. If

the orientation error c.d.f. F|ε| is concave over [0, π], then the unique maximizer ω∗ of TCs has the

following properties:

• If f|ε|(εmax) ≥ log( 1
1−pe )
εmax

, then ω∗ = 2εmax.

• If f|ε|(εmax) <
log( 1

1−pe )
εmax

, then ω∗ ∈
(

2F−1
|ε|
(√

1− pe
)
, 2εmax

)
, and ω∗ is the unique solution

to the equation:

f|ε|(ω/2)

F|ε|(ω/2)
=

1

ω/2
log

(
F 2
|ε|(ω/2)

1− pe

)
. (3.23)

Proof. See proof in App. B.7.

Interestingly, Cor. 3.6 indicates that ω∗ depends only on the outage constraint pe and the error

distribution F|ε| and is independent of other system parameters α, β, η, d, and λ.

Remark 3.3. Cor. 3.6 implies that two opposite strategies may be required to separately maximize

spatial throughput and transmission capacity. Let F|ε| be concave with εmax = π and let f|ε|(εmax) ≥

log
(

1
1−pe

)
/εmax. By concavity of F|ε|, Prop. 3.3 implies that maximizing spatial throughput is

done with ω → 0. However, by the additional assumptions on f|ε|(εmax), Cor. 3.6 implies that

maximizing transmission capacity is achieved as ω → 2εmax = 2π. Fig. 3.6 shows error distributions

with parameter values such that the (normalized) spatial throughput and transmission capacity are

maximized by opposite extremes of beamwidth, ω → 0 and ω → 2π.

For completeness, Cor. 3.7 provides the transmission capacity for networks employing omni-

directional antennas, a well studied scenario [54].
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Figure 3.6: Sample error p.d.f.s, (Uniform, Exponential, and half-Normal) plotted over sup-
port |ε| ∈ [0, π] (top). Normalized spatial throughput TPs/TPo (bottom-left) and normalized
transmission capacity TCs/TCo (bottom-right) with outage pe = 0.15 plotted against an-
tenna beamwidth ω. The Uniform has a mean of ε̄ = 90 degrees, while the Exponential and
half-Normal are assigned a mean of ε̄ = 70 degrees. Note: the mean must be set large enough
to satisfy the first condition of Cor. 3.6.

Corollary 3.7 (TC using Omni-directional Antennas). If omni-directional antennas are employed

in a network described by Prop. 3.1, the transmission capacity subject to maximum outage pe is

TCo = λ∗(1−pe) where λ∗ =
log
(

1−pη,o
1−pe

)
πκd2β2/α and pη,o = 1−e−

βdαη
Pt is the failure rate due to background

noise under Rayleigh fading.

Comparing Prop. 3.4 and Cor. 3.7 when background noise is negligible η ≈ 0, we see that sector

antennas without sidelobes increase the transmission capacity by a factor of:

TCs

TCo
=

1

p2

log
(

u2

1−pe

)

log
(

1
1−pe

) ∝ 1

ω2
log

(
F 2
|ε|
(
ω
2

)

1− pe

)
, (3.24)

after expanding g1, u, and p in terms of ω. As the main beam becomes narrower and stronger, ω → 0,

the gain in transmission capacity differs from that of spatial throughput in (3.19). The success rate

is fixed at 1−pe, thus the realized gain is purely a function of an adjustment to the spatial intensity

of active transmitters. While this intensity contains a similar factor 1/p2 as (3.19), the numerator is
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now log
(
F 2
|ε|(ω/2) /(1− pe)

)
, instead of simply F 2

|ε|(ω/2), due to the fixed outage constraint. In the

absence of orientation error (u = 1) and the employment of sectorized transmitters, the transmission

capacity gain is 1/p2 ∝ 1/ω2. When the beamwidth ω is converted into an equivalent number of

sectors M covering the circle ω = 2π
M , we recover similar transmission capacity gains Θ(M2) derived

by Hunter et al. [43].

3.6 Results

In this section, we explore the relationship between mean orientation error, throughput maximizing

beamwidths, and maximum throughput using sector patterns based on those of i) Baccelli and

B laszczyszyn [48] and Akoum et al. [46], and ii) the spatial channel model used by 3GPP standards

[56]. Numerical methods are used to compute the success probability of the typical transmission as

well as the derived throughput metrics.

Based on [46], let Gtrans(θ) in (3.25) be an antenna gain pattern defined by 3dB-beamwidth ω,

main beam gain g1, and sidelobe gain g2 with 0 ≤ g2 < g1 and transition width γ:

Gtrans(θ) =





g1 = 2π−(2π−3/2γ−ω)g2

ω if |θ| ≤ θ1

g1 − g1

γ (|θ| − θ1) if θ1 < |θ| ≤ θ2

2g2

γ (|θ| − θ2) if θ2 < |θ| ≤ θ3

g2 if θ3 < |θ| ≤ π

, (3.25)

with θ1 = ω/2−γ/2, θ2 = ω/2+γ/2, and θ3 = ω/2+γ. In order to yield constant TRP, we place the

following restrictions on the pattern’s parameterization. The beamwidth and transition width must

jointly satisfy ω ∈ (0, 2π − 2γ) and γ ∈ (0,min{ω, π − ω/2}) so that the full transition from main

beam gain g1 to sidelobe gain g2 occurs within |θ| ∈ [0, π]. Finally, the sidelobe gain must satisfy

g2 ∈
[
0, 1/(1− 3γ

4π )
)

in order for the sidelobe to be smaller than the main lobe g2 < g1. See Fig. 3.7 for

a visualization of this pattern and relevant parameters. As the transition width decreases (γ → 0),

we recover the ideal sector pattern from (3.8) with an identical beamwidth ω. Similar to Lem. 3.1 we

provide four gain distributions and relevant moments of the sector pattern with transition width γ
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Figure 3.7: Sector patterns (3.25) (left) and (3.26) (middle) are plotted with 3-dB beamwidth
of ω, transition width γ, mainbeam gain g1 and sidelobe gain g2. Also shown is a superimposed
polar plot (right) of both patterns for common g2 = 0.35 and ω = 90 degrees.

in Lem. 3.2. The fact that the 2/α-moments are closed form helps simplify the numerical integration

needed to evaluate the typical transmission’s probability of success provided in Prop. 3.1.

Based on a 3GPP channel model [56], let G3GPP(θ) in (3.26) be an antenna gain pattern defined

by 3dB-beamwidth ω, max gain g1, and sidelobe gain g2 with 0 ≤ g2 < g1:

G3GPP(θ) =





g110−
3
10 ( |θ|ω/2 )

2

if |θ| ≤ θ1

g2 if θ1 < |θ| ≤ π
, (3.26)

with θ1 = ω/2
√

10/3 log10(g1/g2) representing the angle at which the mainbeam falls off to the

sidelobe level. Note: g1 is solved for numerically to yield normalized TRP, and the parameter space

of ω and g2 is necessarily restricted so that θ1 falls within [0, π]. See Fig. 3.7 for a visualization of

this pattern and relevant parameters.

Lemma 3.2 (Gain Distributions using Sectors with Transition Width). In a network modeled by Φ̂

with sector antennas described by (3.25), the gain distributions are given by:

fGT
(g) = fGR

(g) =
(
F|ε|(π)− F|ε|

(ω
2

+ γ
))

δ(g − g2) + F|ε|
(ω

2
− γ

2

)
δ(g − g1)+





γ
2g2
f|ε|
(
γ
2 + γg

2g2
+ ω

2

)
+ γ

g1
f|ε|
(
γ
2 −

γg
g1

+ ω
2

)
if 0 < g < g2

γ
g1
f|ε|
(
γ
2 −

γg
g1

+ ω
2

)
if g2 < g < g1

(3.27)
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fGTI
(g) = fGRI

(g) =

(
1− ω + 2γ

2π

)
δ(g − g2) +

(
ω − γ

2π

)
δ(g − g1)+





(g1+2g2)γ
2πg1g2

if 0 < g < g2

γ
πg1

if g2 < g < g1

. (3.28)

Further, the 2/α-moments of the gain distributions between an arbitrary interferer and the typical

receiver are:

E
[
G

2/α
TI

]
= E

[
G

2/α
RI

]
=

(
1− ω + γ

2π
− γ

(2 + α)π

)
g

2/α
2 +

(
ω + γ

2π
− 2γ

(2 + α)π

)
g

2/α
1 . (3.29)

Proof. (3.27) follows by transforming the error c.d.f. F|ε|(ε) by the gain pattern (3.25). (3.28) follows

by transforming a uniform c.d.f. over [0, π] by the gain pattern (3.25). Finally, (3.29) is evaluated

by taking the 2/α-moment of the arbitrary interferer gain distribution in (3.28).

In Fig. 3.8, we compare the network performance of several radiation patterns explored in this

chapter. The success rate of a typical transmission (top-left of Fig. 3.8) is provided with inset and

outset plots. The inset plot shows that the success curves generally tracked one another closely.

The outset plot magnifies differences between the curves that occur at higher success rates (≥ 95%).

As the transition width γ is decreased, we observe success rates fall, perhaps due to a ‘broadening’

of the antenna’s main beam that interferes with other transmissions more than it helps cope with

orientation error. As the sidelobe is decreased for all three sector patterns, the main beam is

strengthened and we note increased success under higher TX intensities (λ ≥ 10−5).

The throughput of the network (top-right of Fig. 3.8) shows the spatial intensity of successful

transmissions plotted against TX intensity for a fixed beamwidth of ω = 20 degrees and fixed mean

orientation error of ε̄ = 3 degrees. Higher throughputs are achieved at higher TX intensities using

the directional patterns over an omni-directional pattern. At this fixed beamwidth, the sidelobe

strength g2 appears to be the dominant factor (compare with transition width γ) in the behavior

of throughput. Throughput curves for all three patterns corresponding to stronger sidelobes (g2 =

10−1) produce lower throughput and maximizing TX intensity than smaller sidelobes (g2 = 10−3).
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Figure 3.8: Plotted are success probability (top-left), throughput as a function of transmitter
intensity λ (top-right), throughput maximized over λ (bottom-left), and outage-constrained
throughput maximized over λ (bottom-right). The legend includes omni-directional antennas;
ideal sector with sidelobe strength (g2); sector with sidelobe strength and transition width
(g2, γ); and the 3GPP sector with sidelobe strength (g2). Default parameters include pe = 0.15,
ω = 20 degrees, and g2 = 0.1. Orientation error |ε| is a half-normal distributed r.v. with a
mean of ε̄ = 3 degrees.

Spatial throughput (throughput maximized w.r.t. λ) plotted against antenna beamwidth ω

(bottom-left of Fig. 3.8), is shown for a fixed mean orientation error. As beamwidth is decreased

below 20 degrees, we begin to see a greater differentiation in TP achieved by each of the evaluated

radiation patterns. While the analytical result of TP-monotonicity in Prop. 3.3 is reflected numeri-

cally for ideal sectors without sidelobes (g2 = 0), the introduction of sidelobes and transition widths

into the directional radiation pattern does not preserve spatial throughput monotonicity.
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Transmission capacity (outage-constrained throughput maximized w.r.t. λ) plotted against an-

tenna beamwidth ω (bottom-right of Fig. 3.8) is also shown for a fixed mean orientation error. For

ideal sector patterns, as sidelobes are removed and transition width is narrowed, TC tends to increase

and the maximizing ω decreases to match the results obtained by ideal sectors without sidelobes.

For the 3GPP pattern, we note that the TC-maximizing beamwidth does not appear to vary with a

change in sidelobe strength. Additionally, the TC-unimodality in Prop. 3.5 is reflected numerically

for ideal sectors without sidelobes and appears to hold experimentally for all other shown radiations

patterns.

The outage constraint pe appears to enforce a sharp falloff in TC as beamwidth narrows (compare

with TP). This is explicitly observed in the ideal sector pattern without sidelobes. In this case,

missing the main beam, even slightly, provides no throughput benefit. In all patterns with small

sidelobes g2 = 10−3, the falloff in TC is very similar with the exception of a tail on the l.h.s.. The

TC-maximizing beamwidth appears more sensitive to the pattern type (ideal, trans, 3GPP) while

the maximum TC appears more sensitive to the sidelobe gain g2 ∈ {10−1, 10−3}. Ultimately, the

outage constraint prohibits blind throughput maximization w.r.t. λ at the expense of success, thus

lower throughput is realized with TC versus TP.

In Fig. 3.9, we explore the maximization of TP and TC (w.r.t. beamwidth ω) plotted against

mean orientation error (top-left and top-right of Fig. 3.9, respectively). In general, maximum spatial

throughput TP∗ and maximum transmission capacity TC∗ decrease as the uncertainty in orientation

increases and behave rather identically across radiation patterns. For the configurations plotted, the

sidelobe strength g2 is the dominant factor in separating the throughput curves.

The corresponding maximizing beamwidths ω∗ for both maximum throughput metrics (bottom-

left and bottom-right of Fig. 3.9) are also plotted against mean orientation error. Intuitively, the

TP- and TC-maximizing beamwidths tend to increase with an increased uncertainty in antenna

orientation. Also, as expected under ideal sectors without sidelobes, TP-monotonicity results in a

maximizing beamwidth of zero regardless of the mean orientation error. The addition of sidelobes and

transition widths into the sector pattern produces TP-maximizing beamwidths larger than zero, and

Chapter 3: Tput in Dir. Wireless Networks 3.6 Results
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Figure 3.9: Plotted are spatial throughput TP maximized over beamwidth (top-left), the
resulting TP-maximizing beamwidth (bottom-left), transmission capacity TC maximized over
beamwidth (top-right), and the resulting TC-maximizing beamwidth (bottom-right). The
legend, default parameters, and orientation error modeling are identical to that of Fig. 3.8.

the outage-constrained nature of TC∗ produces significantly larger optimal beamwidths than TP∗.

The sidelobe strength g2 seems to be the determining factor in grouping TP-maximizing beamwidth

curves, while the radiation pattern type (ideal, trans, 3GPP) appears to be the more dominant factor

in grouping TC-maximizing beamwidth curves. For the scenarios investigated, the TC-maximizing

beamwidth for the ideal sector without sidelobes seems to provide a good approximation for all other

ideal sectors with sidelobes and also serves as an upper bound for the remaining patterns (trans and

3GPP).

Remark 3.4. Interestingly, we see that both TP- and TC-maximizing beamwidths have a nearly
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linear relationship with the mean orientation error for all radiation patterns displayed. Assuming

truncated exponential orientation error, the optimality constraint (3.23) can be reparameterized by

the ratio ω/ε̄, indicating that ω∗ does indeed scale linearly with ε̄ under the assumption of ideal

sectors without sidelobes.

3.7 Conclusions

In this chapter, we introduced a model for capturing the effects of beam misdirection on coverage and

throughput in a directional wireless network using stochastic geometry. In networks employing ideal

sector antennas without sidelobes, we found that the moderate assumption of a concave orientation

error c.d.f. was sufficient to prove monotonicity and quasi-concavity (both with respect to antenna

beamwidth) of spatial throughput (TP) and outage-constrained transmission capacity (TC), respec-

tively. Our numerical results confirm this, but also show that monotonicity of spatial throughput is

not preserved for networks employing more complex antenna models. However, unimodality appears

to be maintained across the various radiation patterns studied for both throughput metrics, which

warrants further investigation.

While varying the sector pattern’s sidelobe strength and ‘sharpness’ of the beamwidth, we found

that the ideal sector pattern without sidelobes varied in its ability to approximate more complex pat-

terns. For instance, while the antenna sidelobe strength could greatly influence transmission capac-

ity maximized over antenna beamwidth, the resulting maximizing beamwidths for different sidelobe

strengths tended to be well approximated by that of the sector without sidelobes. There exist pos-

sible opportunities for upper bounding metrics (i.e., transmission capacity-maximizing beamwidth)

for complex radiation patterns by the use of simpler patterns (i.e., ideal sector antenna without

sidelobes).

Finally, we noted an apparent linear relationship between mean orientation error and throughput

maximizing beamwidths. This held across both throughput metrics and across the sector patterns

explored in this chapter, suggesting another interesting future direction of inquiry.
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Chapter 4: Minimizing the Bayes Risk of the Protocol Interference
Model in Wireless Poisson Networks

4.1 Introduction

Interference models are a key component in the simulation and design of large scale wireless networks

due to the shared nature of the medium. Several models have seen extensive use over the past

several decades, including the physical and protocol interference models [57]. Under the physical

interference model, successful reception requires constraints on the sum interference power observed

at the receiver, where the sum is taken over all sources of interference. In contrast, the protocol

interference model places constraints on the max power observed at the receiver from any one source

of interference.

Usage of the protocol model is typically parameterized by a guard zone distance around each

receiver. When the guard zone contains any source of interference, the transmission is declared as

being in outage; otherwise, for an empty guard zone, a transmission is declared as successful. As the

guard zone increases, the protocol model will become more conservative in declaring transmission

success (and falsely declaring outages with higher probability). As the guard zone decreases, the

protocol model will become more aggressive in declaring transmission success (and falsely rejecting

outages with higher probability). This invites the question: if one is to employ the protocol model

to simulate or design wireless networks, how should one choose the guard zone radius?

In this work, we recognize that this tradeoff fits nicely within the framework of binary hypothesis

testing. We treat the protocol interference model, parameterized by a guard zone distance, as a

decision rule to evaluate/predict physical model success; given the simple observation of the distance

from the receiver to the closest interferer, the protocol model must decide between success/outage

under the physical model. Under this framework, we may assign unique costs to correct and incorrect

protocol model decisions and employ Bayes estimation to find the guard zone that minimizes the

expected cost of the protocol model. We may additionally use this framework as a natural basis for



57

comparing several intuitive guard zone sizes. We now categorize and review related work.

4.1.1 Related Work

Several works have explored how to employ the protocol model within the context of scheduling and

higher layer network objectives [58, 59, 60]. Hasan and Andrews [58] study the protocol model as a

scheduling algorithm in CDMA-based wireless ad hoc networks. They comment that a guard zone

around each transmitter induces a natural tradeoff between interference and spatial reuse, affecting

higher layer performance metrics such as transmission capacity. They employ stochastic geometry

to derive a guard zone that maximizes transmission capacity. Shi et al. [59] examine the use of the

protocol model within a cross-layer optimization framework and provide a strategy for correcting

infeasible schedules generated under the protocol model by allowing transmission rate-adaptation

to physical model SINR. The sensitivity of the gap in predicted network performance between the

original and corrected schedules is measured against guard zone radius using simulations. Optimal

guard zones derived in our work may provide efficient protocol model operating points for this

algorithm. Zhang et al. [60] analyze the effectiveness of protocol model scheduling using a variety

of analytical, simulation, and testbed measurements.

We differentiate our work in the following way. Assuming a set of concurrent transmissions

has already been scheduled by the result of action of higher layers (MAC/NET), we focus on the

physical layer (PHY) problem of modeling their success/failure. As such, we emphasize that this

work analyzes the protocol model as an interference model, not as a feature of a communications

protocol that may be integrated into the operation of a wireless network.

In this work, the analytical results are primarily centered around the protocol interference model

accuracy in networks with active transmitter spatial distributions modeled by Poisson Point Pro-

cesses (PPP). These type of networks may be observed when Aloha scheduling is employed on an

initial PPP network, given that i) Aloha scheduling is analogous to independent thinning and ii)

an independently thinned PPP yields another PPP [52, Thm. 2.36]. We note more sophisticated

thinning processes on a PPP provide inroads to studying the spatial geometry of other scheduling al-

gorithms. For example, dependently thinning a PPP based on nearest neighbor distance constraints

Chapter 4: Bayes Risk of the Protocol Model 4.1 Introduction
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results in a Matérn Point Process (MPP) which draws a parallel with Carrier Sense Multiple Access

(CMSA) scheduling techniques. This concept has been extended to RTS/CTS scheduling techniques,

where the mean interference of such networks is analyzed by Zhong et al. [61]. Baccelli and Bermolen

[62] extend the concept of additive interference to the construction of MPPs, where the condition

for retaining points is refined to account for the additive effects of all nearby points.

We note works that deal directly with the protocol model as a model for interference [63, 64,

65]. Iyer et al. [64] compare several interference models in simulation and qualitatively discuss

the sacrifices in accuracy associated with abstracted interference models, including the protocol

model. Zorzi [63] analytically compare the outage rates under both the protocol and physical

models and note a close approximation under guard zones configured using dominant interference.

While a guard zone may be chosen to match the outage rates predicted by networks employing

the physical interference model, it is not immediately clear if such a guard zone also yields a high

degree of correlation between the subsets of transmissions that are predicted successful by both

models. On this front, Kang et al. [65] study the accuracy of the protocol model via simulation

and provide its false positive and false negative rates as a predictor for physical model feasibility.

Their model makes use of a dynamic scaling of guard zones on a per-transmission basis based on

SINR measurements, which differs from traditional scaling (via guard zone factor, ∆) based on

transmitter-receiver distances. Additionally, they touch upon the connection between the protocol

model and graph-theory based scheduling (independent sets on the conflict graph). We note that

while our work can be considered to use a global guard zone factor, we are able to express both

error rates analytically for Poisson networks and combine them appropriately to express the Bayes

risk associated with the protocol model. These error rates are key in understanding the correlation

in predictions of both the physical and protocol interference models.

Finally, both the protocol and physical interference models have been studied within the frame-

work of extremal and additive shot noise fields within stochastic geometry. Baccelli and B laszczyszyn

[47, Sec. 2.4] discuss the use of additive vs. extremal shot noise fields to model interference in wireless

networks represented as point processes. Max (extremal) interference finds use in bounding outage
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and transmission capacity under sum (additive) interference in PPPs with Aloha scheduling, as is

done in [54, Sec. 2.5].

4.1.2 Contributions

The rest of this chapter is summarized as follows. In §4.2, we introduce our wireless network

model, including both the physical and protocol interference models. In §4.3, we introduce a binary

hypothesis testing framework for evaluating the protocol model. For a wireless Poisson network, we

employ stochastic geometry to provide prior and posterior distributions (Lem. 4.1, Lem. 4.2, and

Prop. 4.1) of the related decision problem. The resulting Bayes risk, parameterized by guard zone

radius, is given in Prop. 4.2. We include a characterization of the optimal guard zone achieving

minimum Bayes risk in Thm. 4.1 and find that under a natural cost assignment, the total risk

is bounded above by the physical model’s outage rate Prop. 4.6. In §4.4, we provide the missed

detection and false alarm rates forming the receiver operating characteristic (ROC) curve associated

with the protocol model and compare the minimum risk guard zone with several other intuitive

operating points along the ROC curve. In regimes of low physical model outage, a guard zone

radius based on dominant interference incurs little additional error over the optimal guard zone

and correlates well with physical model feasibility. In §4.5, we extend this framework to directional

wireless Poisson networks and note parallel observations on the minimum Bayes risk (Thm. 4.2) and

bounds for the optimal and dominant interferer risks (Prop. 4.10). We conclude our work and outline

other interesting avenues for future research in §4.6. Finally, for clarity, long proofs are presented in

App. C.

4.2 Model

We model a wireless network with Φ̂ = {(xi,mi)}, a marked, homogeneous, bipolar Poisson Point

Process (PPP) of intensity λ > 0 in d-dimensional space Rd. Φ̂ models the placement and orientation

of transmitter-receiver pairs, where the members of each pair are separated by distance parameter

dT > 0. The ground set {xi} ⊂ Rd represents the transmitter (TX) locations, while the i.i.d.

marks {mi} are the relative locations of each RX about its paired TX. Let the p.d.f. of mi be the
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uniform distribution over the d-dimensional sphere with radius dT. Together the ground set and

marks encode the RX locations {yi ≡ xi +mi}. For notational convenience, we will refer to paired

TX-RXs by their shared index i.

In the following sections, we discuss the success probability of a typical TX-RX pair o with the

receiver located at the origin. This is possible due to Slivnyak’s Theorem [52, Thm. 8.1] applied to the

PPP Φ̂, which says that the reduced Palm distribution of Φ̂ is equivalent to the original distribution

of Φ̂. Here, the reduced Palm distribution of interest first conditions Φ̂ on the locations of xo and yo

and subsequently removes both points in order to provide analysis on the sum interference generated

by Φ̂ and observed at yo.

In the following subsections, we detail the rest of our model.

4.2.1 Physical Interference Model

We model signal propagation using large-scale, distance-based pathloss with Rayleigh fading. The

signal power at RX o from TX i is given by:

Pi,o ≡ Fi,od−αi,o , (4.1)

where Fi,o ∼ Exp(1) is the Rayleigh fading coefficient between TX i and RX o, α > 2 is the

large-scale pathloss constant, and di,o is the distance from TX i to RX o (note: do,o = dT).

A transmission between TX-RX pair o is considered successful under the physical interference

model if the signal-to-interference-plus-noise ratio (SINR) falls above a defined SINR threshold β > 0:

SINRo ≡ Po,o/(Io + η), where η ≥ 0 is the background noise power and Io ≡
∑
i 6=o Pi,o is the sum

interference power at RX o. Let r.v. H ≡ 1{SINRo ≥ β} represent the physical model feasibility of

a typical transmission o in Φ̂ and let the events {H0,H1} correspond to the two possible values for

H: {0, 1}.
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4.2.2 Protocol Interference Model

We will also consider the protocol interference model, characterized by a guard zone distance1 dI. A

transmission between TX-RX pair o is considered successful under the protocol interference model

iff there are no interfering TX’s within distance dI of RX o. In other words, all interferers must lie at

least dI away from RX o. Let r.v. D ≡ 1{di,o ≥ dI,∀i 6= o} represent the protocol model feasibility

of a typical transmission o in Φ̂ and let the events {D0,D1} correspond to the two possible values for

D: {0, 1}. By appropriately setting the guard zone dI, one may change how aggressive/conservative

the protocol model behaves when measuring transmission success. In the following sections, we will

quantify this tradeoff within the framework of binary hypothesis testing.

4.2.3 Notation

For convenience, we will make use of the following notation:

• cd, the volume of a d-dimensional unit ball, B(0, 1),

• κ = Γ(1 + δ)Γ(1− δ),

• δ = d/α,

• s = βdαT, and

• Iδ(x) ≡ (−1)1−δδB−x(1 + δ, 0) =
∫ x

0
δtδ/(1 + t)dt is a convenience function for a specific form

of the incomplete Beta function for x ≥ 0 and δ > 0.

4.3 Binary Hypothesis Testing

By simply employing the protocol model in place of the physical model, one is implicitly treating

protocol model feasibility D as the decision rule for estimating typical transmission success. In fact,

there are a family of decision rules parameterized by guard zone dI, and the suitability of D(dI) as

a predictor for H will vary with the choice of dI.

By employing a Bayesian hypothesis testing formulation, we may find a sophisticated choice for

dI. Define a non-negative, 2 × 2 cost matrix where element cij ≥ 0 is the cost of making decision

1Alternately, one may employ a guard zone factor ∆ of the TX-RX distance dT, producing (potentially unique)
guard zone distances: dI = (1 + ∆)dT. Under our model with a fixed TX-RX dT, these formulations are equivalent.
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D = i when hypothesis H = j is true. These costs may be chosen to suit the particular application

at hand; in this chapter, we will frequently assume a uniform cost matrix that does not penalize

correct decisions and uniformly penalizes incorrect decisions: c01 = c10 = 1 and c00 = c11 = 0.

Using the cost matrix, we may enumerate the conditional risks associated with the decision rule

D characterized by guard zone dI:

R0(dI) = c10P{D1|H0}+ c00P{D0|H0} (4.2)

R1(dI) = c11P{D1|H1}+ c01P{D0|H1} . (4.3)

These risks provide the expected costs of decision rule D conditioned on the value of H, the r.v. to

be estimated. Note, under a uniform cost model, R0(dI) and R1(dI) yield the false rejection (Type

I error) rate and the false acceptance (Type II error) rate, respectively.

The total expected cost of decision rule D, otherwise known as the Bayes risk, is the weighted

combination of conditional risks:

r(dI) = R0(dI)P{H0}+R1(dI)P{H1} . (4.4)

Given that our decision space is parameterized by the guard zone distance, a Bayes decision rule

d∗I minimizes the incurred Bayes risk over all possible decision rules:

d∗I ∈ argmindI≥0 r(dI). (4.5)

In the rest of this section, Lem. 4.1 and Lem. 4.2 provide the prior distributions on H and

D, while Prop. 4.1 provides the posterior distribution related to the estimation problem. Finally,

Thm. 4.1 provides a characterization of the Bayes rule achieving minimum risk associated with the

protocol model.

Lemma 4.1 (Distribution on H). The distribution of H, the physical model feasibility of a typical
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transmission o in Φ̂ is given by:

P{H1} = exp
(
−λcdκsδ − sη

)
, P{H0} = 1− P{H1} . (4.6)

Proof. This result follows from standard arguments in stochastic geometry [47, 48], but may also be

obtained from Prop. C.1 by letting the void zone radius approach zero: dI → 0.

Lemma 4.2 (Distribution on D). The distribution of D, the protocol model feasibility of a typical

transmission o in Φ̂ is given by:

P{D1} = exp
(
−λcdddI

)
, P{D0} = 1− P{D1} . (4.7)

Proof. P{D1} is the void probability of the d-dimensional guard zone of radius dI [52, Thm. 2.24].

Proposition 4.1 (Posterior Distribution). The posterior distribution of H given D is:

P{H1|D1} = e−A−C(dI)+B(dI) (4.8)

P{H0|D1} = 1− P{H1|D1} (4.9)

P{H1|D0} =
P{H1} − P{H1|D1}P{D1}

P{D0}
(4.10)

P{H0|D0} = 1− P{H1|D0} , (4.11)

where A = λcdκs
δ + sη, B(dI) = λcdd

d
I , and C(dI) = λcds

δIδ(d
α
I /s).

Proof. See proof in App. C.1.

Remark 4.1. Note that the posterior distributions are not well defined for dI = {0,∞}. When

dI = 0, the event D0 occurs w.p. 0. Alternately, when dI →∞, D1 occurs w.p. 0. However, neither

of these cases will affect our analysis of Bayes risk. Also, note that the chosen variables A, B(dI),

and C(dI) yield the following: P{H1} = e−A, P{D1} = e−B(dI), and P{D1|H1} = e−C(dI) (derived

from (4.8)).
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Proposition 4.2 (Bayes Risk). The Bayes risk of the protocol model decision rule dI for a typical

transmission in Φ̂ is given by:

r(dI) = c00 + (c01 − c00)e−A + (c10 − c00)e−B(dI) + (c11 + c00 − c10 − c01)e−A−C(dI), (4.12)

where A = λcdκs
δ + sη, B(dI) = λcdd

d
I , and C(dI) = λcds

δIδ(d
α
I /s).

Proof. The expression (4.4) for the Bayes risk may be expanded to obtain:

r(dI) = c00 + (c01 − c00)P{H1}+ (c10 − c00)P{D1}+ (c11 + c00 − c01 − c10)P{H1 ∩ D1} , (4.13)

where we additionally substitute expressions from Lem. 4.1, Lem. 4.2, and Prop. 4.1 to achieve

(4.12).

Theorem 4.1 (Minimum Bayes Risk). When c10 > c00, the Bayes rule d∗I minimizing Bayes risk

(4.5) is given by the solution to:

c00 − c10

c11 + c00 − c10 − c01
(1 + sd−αI ) = e−A−C(dI)+B(dI). (4.14)

The resulting Bayes risks under the Bayes rule d∗I is:

r(d∗I ) = c00 + (c01 − c00)e−A − (c10 − c00)s
e−B(d∗I )

(d∗I )α
, (4.15)

where A = λcdκs
δ + sη, B(dI) = λcdd

d
I , and C(dI) = λcds

δIδ(d
α
I /s).

Proof. See proof in App. C.2.

Remark 4.2. First, the condition c10 > c00 can be roughly interpreted to mean the assigned cost

of making a wrong decision is higher than the assigned cost of making a correct decision. This is a

rather benign condition and may be assumed common of typical applications of a Bayes estimation

framework. Second, a closed form expression for d∗I satisfying (4.14) is not currently known to us,
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but the proof for Thm. 4.1 assures us of its uniqueness. In all numerical examples tested thus far,

we have noted that (4.14) does indeed exist and is the Bayes rule. Finally, the uniform cost model

results in coefficient ratio 1/2 on the l.h.s. of (4.14).

4.4 Uniform Cost ROC Curve

Given Thm. 4.1, we now know how to find the guard zone d∗I that minimizes the protocol model’s

Bayes risk associated with predicting physical model feasibility. Clearly, deviating from d∗I in either

direction will result in an increase in the average risk, but will also trade off the two types of

conditional risk, R0(dI) and R1(dI). We analyze this tradeoff under a uniform cost model, which

reduces to one between the Type I rate (False Rejection Rate) and Type II rate (False Acceptance

Rate), denoted:

pI ≡ P{D1|H0} pII ≡ P{D0|H1} . (4.16)

Note: in this formulation, the null hypothesis H0 is equivalent to physical model infeasibility.

Proposition 4.3 (False Rejection Rate - Type I). The rate at which the null hypothesis H0 is falsely

rejected is given by:

pI =
e−B(dI) − e−A−C(dI)

1− e−A
, (4.17)

where A = λcdκs
δ + sη, B(dI) = λcdd

d
I , and C(dI) = λcds

δIδ(d
α
I /s).

Proof. Apply Bayes Theorem and substitute in remaining expressions from Lem. 4.1, Lem. 4.2, and

Prop. 4.1:

pI = P{D1|H0} =
(1− P{H1|D1})P{D1}

1− P{H1}
. (4.18)

Proposition 4.4 (False Acceptance Rate - Type II). The rate at which the null hypothesis H0 is

falsely accepted is given by:

pII = 1− e−C(dI), (4.19)
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where C(dI) = λcds
δIδ(d

α
I /s).

Proof. Take the complement, apply Bayes Theorem, and substitute in remaining expressions from

Lem. 4.1, Lem. 4.2, and Prop. 4.1:

pII = P{D0|H1} = 1− P{H1|D1}P{D1}
P{H1}

. (4.20)

Under the uniform cost model, we obtain the following Bayes risk expression from (4.4), now an

expression for the average probability of error, pE, of the protocol model as a function of the guard

zone:

pE(dI) = pIP{H0}+ pIIP{H1} . (4.21)

The total error rate, pE, provides a measure of how well H and D correlate with one another – it is

the average fraction of transmissions whose feasibility is predicted incorrectly by the protocol model.

Proposition 4.5 (Total Error). The rate at which protocol model feasibility D incorrectly predicts

physical model feasibility is given by:

pE(dI) = e−A + e−B(dI) − 2e−A−C(dI), (4.22)

where A = λcdκs
δ + sη, B(dI) = λcdd

d
I , and C(dI) = λcds

δIδ(d
α
I /s).

Proof. The result is obtained immediately from substituting uniform costs into (4.12).

Remark 4.3 (Limiting Behavior in dI). As dI → 0 and dI →∞, we observe a tradeoff between Type

I and Type II errors (see Fig. 4.1). For simplicity, we discuss this further under the assumption of a

uniform costs model. As dI → 0, the protocol model will declare all transmissions successful (rejecting

the null hypothesis w.p. 1); however, the protocol model will falsely reject H0 w.p. P{H0}, the

probability of physical model outage. On the other hand, as dI →∞, the protocol model will declare

all transmissions in outage (accepting the null hypothesis w.p. 1); however, the protocol model will
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falsely accept H0 w.p. P{H1}. Thus, in these limiting cases of dI, the total risk (4.21), is confined

by the success/failure probability of the protocol model (green dashed/dotted lines in Fig. 4.1).

4.4.1 Operating Points

Given the family of protocol model decision rules parameterized by guard zone radius dI, we wish to

compare the optimal guard zone d∗I to a few alternative operating points of the decision rule given

by Lem. 4.3, Lem. 4.4, and Lem. 4.5.

Lemma 4.3 (Dominant Interferer (DI) Guard Zone). A guard zone dI,DI set to exclude dominant

interferers is given by:

dI,DI =

(
d−αT

β
− η
)−1/α

. (4.23)

Proof. Such a guard zone should prevent the existence of a dominant interferer, i.e. an interferer

whose interference contribution is enough to violate the SINR threshold β. We consider the case

without fading and solve the following for dI:

SINRo =
d−αT

d−αI + η
= β. (4.24)

Lemma 4.4 (Mean-Matched (MM) Guard Zone). The guard zone dI,MM that matches the first

moment of D with that of H is given by:

dI,MM =

(
κsδ +

sη

λcd

)1/d

. (4.25)

Proof. Set the means of D and H equal to one another and solve for dI, making use of Lem. 4.1 and

Lem. 4.2:

E[D] = E[H] (4.26)

P{D1} = P{H1} (4.27)
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Lemma 4.5 (Equal Error (EE) Rate Guard Zone). The guard zone dI,EE that achieves equal Type

I and Type II error rates is given by:

dI,EE : 1 = e−A + e−B(dI) + e−C(dI) − 2e−A−C(dI). (4.28)

where A = λcdκs
δ + sη, B(dI) = λcdd

d
I , and C(dI) = λcds

δIδ(d
α
I /s).

Proof. Set pI = pII and solve for dI.

Remark 4.4 (Operating Point Ordering). In the absence of background noise (η = 0), we may

readily obtain dI,DI ≤ dI,MM, since κ ≥ 1. We then find that this hold true for all η ≥ 0. If β ≥ 1,

then we may further conclude that dT ≤ dI,DI ≤ dI,MM. However, the remaining points are hard to

place within this ordering as we do not have closed form solutions for d∗I and dI,EE.

Proposition 4.6 (Protocol Model Error Bounds). The risk (total error rate) associated with the

dominant interferer guard zone dI,DI may be bounded by the minimum Bayes risk and the outage

rate of the physical model:

pE(d∗I ) ≤ pE(dI,DI) ≤ 1− e−A = P{H0} . (4.29)

where A = λcdκs
δ + sη.

Proof. See proof in App. C.3.

Remark 4.5 (Limiting Behavior in λ, β). As a consequence of Prop. 4.6, the risk under both

the optimal guard zone d∗I and the dominant interferer guard zone dI,DI are bounded above the the

physical model outage rate P{H0}. Thus, any environmental parameter that yields lower outage rates

will necessarily lead to lower protocol model prediction error rates. In particular, this occurs with

decreasing transmitter density λ→ 0 and decreasing SINR threshold β → 0.

These operating points are now plotted and discussed in the next subsection.
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Figure 4.1: The protocol model ROC curve under a PPP is plotted (top-left) in black solid
and dashed lines for three outage rates (5%, 25%, 50%) and the equal error rate curve is plotted
in light blue dashes. Each protocol model ROC curve is plotted (top-right, bottom-left, and
bottom-right) component-wise against guard zone parameter dI; Type I and II conditional
error rates are plotted in blue, and total error rate in black. The physical model success and
failure rates are plotted in green dashes and dots to provide references for the asymptotic Bayes
risk as dI → 0 and dI →∞. In all plots, operating points dI,DI, dI,MM, dI,EE, and d∗I are plotted
as red markers.
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Figure 4.2: On the left, the guard zone operating points are plotted as a function of the
network density λ, covering network densities producing physical model outages between 1%
and 50%. On the middle, we show the total incurred by each of the operating points as a
function of network density. On the right, we show the cost of suboptimality, that is the
difference in risks between a suboptimal operating point and the optimal guard zone d∗I .

4.4.2 Results

In Fig. 4.1, we provide a sample plot of the protocol model ROC curve under a PPP in two forms

using parameters from Tab. 4.1. As the guard zone dI is increased, the ROC curve travels from

bottom-right to top-left as the false rejection rate is reduced in exchange for a higher rate of false

acceptance. As the network density is increased, the ROC curves indicate a drop in detection

performance, that is, the ROC curve are located further away from the origin. The intuition for

this effect comes from the increased significance of aggregate interference in dense networks. In the

parametric versions of the ROC curve in Fig. 4.1, we may observe the tradeoff in the Type I and

II conditional errors more clearly as a function of the guard zone. In high outage environments,

the total error rate becomes more sensitive to choices of protocol model guard zone in high outage

environments, and the optimal guard zone incurs an error rate as high as ∼ 30% when the physical

model outage rate is 50%. In this extreme case, the feasibility of nearly a third of the transmissions

in the network are incorrectly predicted by the protocol model under the optimal guard zone. In low

outage environments, both the dominant interferer guard zone and the optimal guard zone perform

quite well. Finally, we note that the tradeoff between Type I and Type II errors, as well as the

limiting behavior of Bayes risk, both respect the remarks made in Rem. 4.3 and Rem. 4.5.
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Table 4.1: Environment Parameters

Parameter Value Description

A 2500 arena side length (m)

d 2 dimension of the arena

cd=2 π volume of 2-dimensional unit ball

λ 5 ∗ 10−4 initial Poisson TX intensity, (per sq. m)

α 3 pathloss constant

dT 10 typical TX-RX distance (m)

β 5 SINR threshold (W/W)

η 0 background noise power (W)

In Fig. 4.2, we show how the operating points and their associated risks behave has a function

of the network density on a finer granularity of network densities. We note that for the displayed

intensities (yielding physical model outage rates from 1% to 50%), there is a proper ordering of

guard zones, and two constant guard zones (dominant interferer dI,DI and mean-matched dI,MM)

serve as bounds for the optimal guard zone d∗I . As the network density (and outage) decrease, we

observe that the error rate of the protocol model under the optimal guard zone is bounded by the

outage rate, predicted by Prop. 4.6. Further, we note that the dominant interferer guard zone, while

suboptimal, serves as a good approximation to the Bayes rule guard zone in low network density

regimes, where the additional cost of using the dominant interferer guard zone decays linearly in

decreasing network intensity and is quite small in low outage regimes of interest.

4.5 Directional Antennas

In this section, we extend the previous framework to the case of wireless Poisson networks employing

directional antennas. We note that the concept of a single guard zone must be relaxed to account for

the different antenna gains that are possible between the typical receiver and the interferers. As a

result, the guard zone distance dI is relaxed to a guard zone factor ∆ that is applied multiplicatively
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to the distance associated with dominant interferers (updated to reflect directional antennas). ∆ can

alternatively be thought of as a link budget margin added to or subtracted from the SINR threshold

β, which would also effectively adjust the dominant interferer distance. Once the guard zone factor

has been updated to reflect directional antenna patterns, we may compute the prior and posterior

distributions of H and D, as well as the posterior distribution of H given D, using a similar strategy

as in the previous case of omni-directional antennas. We note that the forms of the distributions do

not change significantly and only require minor updating of the exponents.

Let us now proceed and assume a network deployment where transmitters and receivers are

equipped with antennas with gain patterns GT (θ) = GR(θ). These gain patterns, combined with

the random orientations of the typical receiver and interferers in Φ̂ will induce gain distributions

denoted fG and FG over support G ∈ [0,∞). Under these distributions, it will be convenient to

define notation for the δth moment of the antenna gain pattern Gi(θ) normalized by its maximum

boresight gain Gi(0) = gmax, in a similar fashion to [45]:

G̃i ≡ E

[(
Gi
gmax

)δ]
(4.30)

Remark 4.6. Under omni-directional antennas, Gi(θ) = 1,∀θ and the normalized moment must

also be G̃i = 1.

As in the omni-directional physical interference model, the event H1 corresponds to the SINR

falling above threshold β:

P{H1} = P{SINRo ≥ β} , (4.31)

with:

Pi,o ≡ Fi,oGT,i,oGR,i,od−αi,o (4.32)

Io ≡
∑

i 6=o
Pi,o (4.33)

SINRo ≡
Po,o
Io + η

=
Fo,og

2
maxd

−α
T∑

i 6=o Fi,oGT,i,oGR,i,od
−α
i,o + η

, (4.34)
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where Pi,o represents the received power from transmitter i at receiver o and accounts for the antenna

gains between TX i and RX o, Io represents the sum interference power at RX o, and SINRo is the

updated signal-to-interference-plus-noise-ratio. Note that perfect orientation is assumed between

each paired transmitter and receiver, hence gains gmax are employed in the numerator of the SINR.

We now introduce a slightly modified protocol interference model, where the eventD1 corresponds

to the absence of any interferers producing a significant level of interference, tuned by guard zone

factor ∆:

P{D1} = P

{
di,o ≥ ∆

(
GT,i,oGR,i,o

g2
max

)1/α

β1/αdT,∀i 6= o

}
. (4.35)

In this case, the dominant interferer distance is derived without background noise and fading. We

additionally replace an explicit guard zone radius dI with a guard zone factor ∆ that scales the

dominant interferer distance. Note that the dominant interferer distance is itself a function of the

gain levels associated with each interferer.

Remark 4.7. Under omni-directional antennas, we have gmax = GT,i,o = GR,i,o = 1 and we

recover the condition di,o ≥ ∆β1/αdT. This represents a circular guard zone that is comprised of a

multiplicative factor ∆ of the dominant interferer distance.

4.5.1 Priors and Posterior

In this section, we derive the prior and posterior distributions of the related estimation problem

under directional antennas. Lem. 4.6 and Lem. 4.7 provide the prior distributions on H and D,

while Prop. 4.7 provides the posterior distribution.

Lemma 4.6 (Distribution on H w/ Directional Antennas). The distribution of H, the physical

model feasibility of a typical transmission o in Φ̂ is given by:

P{H1} = exp

(
−λcdκsδG̃2 − sη

g2
max

)
. (4.36)

Proof. The success rate follows from the success rates established in Ch. 3, appropriately simplified

to the case of perfect orientation (r.v.’s GT and GR of Prop. 3.1 are now constants equal to gmax)
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and extended from the two-dimensional case to arbitrary dimension d.

Lemma 4.7 (Distribution on D w/ Directional Antennas). The distribution of D, the protocol

model feasibility of a typical transmission o in Φ̂ is given by:

P{D1} = exp
(
−λcdsδG̃2∆d

)
. (4.37)

Proof. In moving away from the case of omnidirectional antennas, the single circular guard zone

has now been turned into multiple guard zones, each with a radius dI tailored to a specific pair of

realizable gains between the typical rx and an arbitrary interferer:

dI(Gi, Gj) = ∆

(
GiGj
g2

max

)1/α

β1/αdT. (4.38)

Each guard zone is applied to an independently thinned version of Φ̂ with thinning rate equal to the

probability associated with the gain pair: fG(Gi)fG(Gj).

P{D1} =
∏

i,j

exp(− (λfG(Gi)fG(Gj)) cddI(Gi, Gj)) (4.39)

= exp


−

∑

i,j

(λfG(Gi)fG(Gj)) cddI(Gi, Gj)


 (4.40)

= exp
(
−λcdsδG̃2∆d

)
. (4.41)

Remark 4.8. Complementary to the explanation in the proof of Lem. 4.7, the event D1 can be

stochastically viewed as excluding all interferers from a ball around the typical receiver with radius:

dI =
(
sδG̃2∆d

)1/d

= ∆G̃2/dβ1/αdT. (4.42)

This radius can be obtained from the exponent of the void probability of (4.37).
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Proposition 4.7 (Posterior Distribution w/ Directional Antennas). The posterior distribution of

H given D is:

P{H1|D1} = e−A−C(∆)+B(∆), (4.43)

where A = λcdκs
δG̃2 + sη

g2
max

, B(∆) = λcds
δG̃2∆d, and C(∆) = λcds

δG̃2Iδ(∆
α).

Proof. See proof in App. C.4.

4.5.2 Bayes Risk

We now appropriately quantify the Bayes risk as a function of the guard zone factor, ∆.

Proposition 4.8 (Bayes Risk w/ Directional Antennas). The Bayes risk of the protocol model

decision rule ∆ for a typical transmission in Φ̂ is given by:

r(∆) = c00 + (c01 − c00)e−A + (c10 − c00)e−B(∆) + (c11 + c00 − c10 − c01)e−A−C(∆), (4.44)

where A = λcdκs
δG̃2 + sη

g2
max

, B(∆) = λcds
δG̃2∆d, and C(∆) = λcds

δG̃2Iδ(∆
α).

Proof. The result is immediate from (4.13) and substituting expressions from Lem. 4.6, Lem. 4.7,

and Prop. 4.7.

Theorem 4.2 (Minimum Bayes Risk w/ Directional Antennas). When c10 > c00, the Bayes rule

∆∗ minimizing Bayes risk (4.5) is given by the solution to:

c00 − c10

c11 + c00 − c10 − c01
(1 + ∆−α) = e−A−C(∆)+B(∆). (4.45)

The resulting Bayes risks under the Bayes rule ∆∗ is:

r(∆∗) = c00 + (c01 − c00)e−A − (c10 − c00)
e−B(∆∗)

(∆∗)α
(4.46)

where A = λcdκs
δG̃2 + sη

g2
max

, B(∆) = λcds
δG̃2∆d, and C(∆) = λcds

δG̃2Iδ(∆
α).

Proof. See proof in App. C.5.
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4.5.3 Uniform Cost ROC Curve and Operating Points

Under uniform costs, the error rates and operating points of the protocol model decision rule may

be extended to the case of networks with directional antennas as well.

Proposition 4.9 (Error Rates w/ Directional Antennas). In a PPP with directional antennas, the

Type I, Type II, and total error rates of the protocol model as a detector for physical model outage

H0 are given by:

pI(∆) =
e−B(∆) − e−A−C(∆)

1− e−A
(4.47)

pII(∆) = 1− e−C(∆) (4.48)

pE(∆) = e−A + e−B(∆) − 2e−A−C(∆), (4.49)

where A = λcdκs
δG̃2 + sη

g2
max

, B(∆) = λcds
δG̃2∆d, and C(∆) = λcds

δG̃2Iδ(∆
α).

Proof. Proof strategies mirror those of networks with omni-directional antennas and are updated

with new exponents A, B(∆), and C(∆) accordingly following the proofs of Prop. 4.3, Prop. 4.4,

and Prop. 4.5.

Lemma 4.8 (Operating Points w/ Directional Antennas). In a PPP with directional antennas,

the Dominant Interferer (DI), Mean-Matched (MM), and Equal-Error (EE) Rate guard factors are

given by:

∆DI = 1 (4.50)

∆MM =

(
κ+

sδ−1η

λcdG̃2g2
max

)1/d

(4.51)

∆EE : 1 = e−A + e−B(∆) + e−C(∆) − 2e−A−C(∆), (4.52)

where A = λcdκs
δG̃2 + sη

g2
max

, B(∆) = λcds
δG̃2∆d, and C(∆) = λcds

δG̃2Iδ(∆
α).

Proof. The dominant interferer guard factor is simply 1 due to the construction of the protocol model

for wireless networks with directional antennas. The mean-matched guard factor and equal-error
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guard factor are updated accordingly following the proofs of Lem. 4.4 and Lem. 4.5.

Proposition 4.10 (Protocol Model Error Bounds w/ Directional Antennas). In a PPP with direc-

tional antennas, the risk (total error rate) associated with the dominant interferer guard zone dI,DI

may be bounded by the minimum Bayes risk and the outage rate of the physical model:

pE(∆∗) ≤ pE(∆DI) ≤ 1− e−A = P{H0} . (4.53)

where A = λcdκs
δG̃2 + sη

g2
max

.

Proof. See proof in App. C.6.

4.5.4 Results

In this section, we study the sensitivity of the protocol model decision rule to changing antenna

beamwidth in networks employing directional antennas. For simplicity, we will assume the network

employs ideal sector antennas, as shown in (3.8) and Fig. 3.3, with no sidelobes (g2 = 0). In this

case, the gain moments shown in (4.30) simplify to G̃ = ω
2π , establishing the dependence of the Type

I and II error rates on the antenna beamwidth employed within the network.

In Fig. 4.3, we provide a sample plot of the protocol model ROC curve under a PPP in two

forms using parameters from Tab. 4.1. As the guard zone factor ∆ is increased, the ROC curve

travels from bottom-right to top-left as the false rejection rate is reduced in exchange for a higher

rate of false acceptance. As the antenna beamwidth is decreased, the ROC curves move closer to the

origin, indicating improved detection performance. The intuition is that in the regime of narrower

beamwidths, transmissions become isolated from one another and outage is typically caused by

a single interferer close to the typical receiver. In the parametric versions of the ROC curve of

Fig. 4.3, we observe very similar patterns as in the case of omni-directional antennas (Fig. 4.1),

further supporting the notion that protocol model detection performance is tightly keyed to the

outage rates predicted by the physical interference model.

In Fig. 4.4, we show how the operating points and their associated risks behave has a function

of the antenna beamwidth. We note that for the displayed beamwidths (yielding physical model
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Figure 4.3: The protocol model ROC curve under a PPP network with directional antennas
is plotted (top-left) in black solid and dashed lines for three outage rates (5%, 25%, 50%)
and the equal error rate curve is plotted in light blue dashes. Each protocol model ROC curve
is plotted (top-right, bottom-left, and bottom-right) component-wise against guard zone
factor ∆; Type I and II conditional error rates are plotted in blue, and total error rate in black.
The physical model success and failure rates are plotted in green dashes and dots to provide
references for the asymptotic Bayes risk as ∆ → 0 and ∆ → ∞. In all plots, operating points
∆DI, ∆MM, ∆EE, and ∆∗ are plotted as red markers.

outage rates from 1% to 50%), there is a proper ordering of guard zones factors, and the two constant

operating points (dominant interferer ∆DI and mean-matched ∆MM) again serve as bounds for the
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Figure 4.4: On the left, the guard zone operating points are plotted as a function of antenna
beamwidth ω, covering network densities producing physical model outages between 1% and
50%. On the middle, we show the total prediction error incurred by each of the decision
rule operating points as a function of antenna beamwidth. On the right, we show the cost
of suboptimality, that is the difference in risks between a suboptimal operating point and the
optimal guard zone ∆∗.

optimal guard zone factor ∆∗. As antenna beamwidth (and outage) decreases, we observe that

the error rate of the protocol model under the optimal guard zone is bounded by the outage rate,

predicted by Prop. 4.10. Further, we note that the dominant interferer guard zone, while suboptimal,

serves as a good approximation to the Bayes rule guard zone in low network density regimes, where

the additional cost of using the dominant interferer guard zone decays linearly in decreasing network

intensity and is quite small in low outage regimes of interest.

4.6 Conclusions

In this chapter, we studied the application of the protocol interference model in place of the more

complex physical interference model in order to evaluate transmission success/outage in wireless

networks. Under the protocol model, a transmission is successful iff there are no interferers within

a specified guard zone around the receiver. While a guard zone may be chosen to match the outage

rates predicted by networks employing the physical interference model, it was not immediately clear

if such a guard zone also yields a high degree of correlation between the subsets of transmissions

that are predicted successful by both models. To study this question, we recognize that the protocol

model, parameterized by a guard zone radius, forms a family of decision rules for estimating the

physical model feasibility of a typical transmission and cast the problem as binary hypothesis testing

Chapter 4: Bayes Risk of the Protocol Model 4.6 Conclusions



80

framework. For wireless Poisson networks, we employ stochastic geometry to determine the esti-

mation problem’s prior and posterior distributions, and proceed to characterize the optimal guard

zone that minimizes the protocol model prediction error. Finally, several intuitive guard zones for

the protocol model, based on natural constraints and modeling objectives, are compared with the

optimal guard zone. We find that error rates under the optimal guard zone are tightly coupled to

the underlying physical model outage rates of the network. Additionally, in low outage regimes, we

show that a guard zone based on dominant interference not only serves as a good approximation

for the physical model outage probability, but it can also achieve close to optimal performance as a

predictor of the feasibility of individual transmission attempts.
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Chapter 5: Conclusions

In this thesis, we addressed questions with the high-level goal to increase our understanding of the

throughput performance and limitations of existing wireless communications techniques, as well as to

characterize how our modeling assumptions influence the predicted throughput performance of such

systems. The thesis was organized into three tasks that are primarily concerned with characterizing

and maximizing throughput performance in such networks, with a secondary focus on the interference

models employed therein. These tasks were investigated using random graph theory and stochastic

geometry as a core set of analytical tools.

In Ch. 2, we studied the throughput ratio of a low-complexity, greedy scheduling technique in

wireless communications networks. The randomized structure of wireless networks was hypothesized

to be prohibitive to the throughput optimality of such a scheduling algorithm called Greedy Maximal

Scheduling (GMS). In investigating this position, we employed threshold functions to characterize

the sensitivity of the throughput ratio to the density of edges in large networks modeled as ER

and RG graphs under the primary interference model. For sufficiently dense, large random graphs,

we found that the throughput ratio is bounded between 1/2 and 2/3 and concluded that GMS is

suboptimal with high probability in this regime. However, in the opposite regime of sparse random

graphs, we demonstrated that GMS optimality, if permitted, must necessarily come at the cost of

network connectivity.

While this work provides some needed answers regarding performance guarantees of greedy max-

imal scheduling (GMS) in random graph families of interest, there are several logical next steps

forward. Our results suggest that if a network designer wanted to construct a random graph via its

natural construction parameter (e.g., edge communication radius), he or she cannot achieve both

throughput optimality and connectivity simultaneously. Relevant here would be more advanced

topology construction depending on the initial edge density of the network, such as the addition

of edges to enable connectivity while preserving throughput optimality, or the removal of edges to
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break up forbidden subgraphs while maintaining connectivity. However, adjusting the topology of a

given graph also changes the dimensions of the stability region under the assumed single-hop traffic

model. Of primary importance is an enhanced framework for comparing the stability regions (i.e.,

throughput ratios) of a network graph with two different sets of edges. Work in this area will also

likely require a relaxation of the model to study stability regions under multi-hop traffic, which itself

contains many open and difficult questions.

In Ch. 3, we focused on the maximization of spatial throughput in large wireless networks em-

ploying directional antennas subject to orientation error. We proposed that such maximization over

a configurable antenna beamwidths would result in an optimal beamwidth that navigated a trade-

off between interference reduction and transmitter/receiver antenna misalignment. To this end, we

defined a stochastic geometry based model that captured the effects of beam misdirection on cov-

erage and throughput in large wireless networks. This framework yielded explicit expressions for

communication outage as a function of network density and antenna beamwidth for idealized sector

antenna patterns, which confirmed the existence of a throughput-optimizing antenna beamwidth.

We additionally supplemented our analytical findings with matching numerical trends across more

realistic antenna patterns.

This work represents a significant first step in incorporating beamsteering and orientation errors

into stochastic geometry based approaches to analyze the throughput performance of wireless net-

works. In order to increase the relevance of this work to network designers, there are several directions

to pursue. First, the assumption of Rayleigh fading, originally made for analytical tractability, may

be relaxed to more general fading models. While this relaxation may result in increased computa-

tional complexity, it is appropriate in the regime of highly directional antennas and/or high frequency

antenna arrays whose fading profiles may differ significantly from the multipath characterization as-

sociated with Rayleigh fading. Additionally, it is of great interest to characterize orientation error

distributions for existing and emerging algorithms and techniques for antenna beamsteering, mode

selection, pointing, etc. New error distributions may then be incorporated into the outage model

developed in this work.
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In Ch. 4, we turned our attention to the reconciliation of the protocol and physical interference

models, both of which are heavily used in the simulation and design of scheduling and networking

algorithms employed in wireless networks. We noted that that while a guard zone may be chosen to

match the outage rate (and thus, spatial throughput) predicted by networks employing the physical

interference model, it was not immediately clear if such a guard zone would also yield a high degree

of correlation between the subsets of transmissions that are predicted successful by both models.

We hypothesized that a properly configured protocol interference model can achieve both objectives

for most regimes of interest. In our investigation, we modeled the protocol interference model as

a binary decision rule to evaluate/predict physical model success of a typical transmission. Under

this framework, we employed Bayes estimation and stochastic geometry to characterize the optimal

guard zone that minimizes the prediction error rate associated with the protocol model decision

rule. In regimes of low physical model outage, we demonstrated that a guard zone radius based on

dominant interference incurs little additional error over the optimal guard zone and correlates well

with physical model feasibility, in support of our hypothesis. This framework was then extended to

the case of directional networks, where we were able to draw identical conclusions.

In regimes of higher physical model outage rates, it would be of interest to extend the protocol

model to account for secondary (or more) sources of interference to improve the protocol model’s

prediction error rates. This may involve parameterizing inner and outer guard zones such that no

interferers exist within the inner zone and one interferer may exist within the annulus formed by

both radii. Such an extension draws parallels with conflict hypergraphs that encode the effects of

multiple interferers on the feasibility of another transmission attempt via directed hyperedges. Also

of interest is the extension of the Poisson Point Process (PPP) assumption to more general point

processes that model more advanced scheduling algorithms. While PPPs are a natural model for

capturing the spatial characteristics of an Aloha scheduling algorithm, they lack spatial separation

between concurrent transmission attempts that is common of carrier sensing based scheduling tech-

niques. An alternative is the Matérn Point Process, which clears out interferer-free zones around

each transmitter in the spirit of modeling the carrier sensing process. However, MPPs are decidedly
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less tractable in this context, meaning that bounds or numerical explorations of the protocol model

prediction error rate are desirable first-order approaches.
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Appendix A: Proofs of Ch. 2

A.1 Ancillary Lemmas

Lem. A.1 and Lem. A.2 are used to prove Thm. 2.2 (App. A.6), while Lem. A.3 and Lem. A.4 are

used in the proof of Prop. 2.3 (App. A.12).

Lemma A.1 (Expected Forbidden Cycles in Gn,p(n)). When p(n) ∼ c/n, c < 1, the expected number

of forbidden cycles of F in Gn,p(n) obeys:

lim
n→∞

∑

6≤k≤n,
k 6=7

E[G(Ck)] = − log(
√

1− c)−
∑

k∈K

ck

2k
. (A.1)

Proof. Given the choice of p(n), it follows that:

∀δ > 0,∃nδ > 0 :
c− δ
n
≤ p(n) ≤ c+ δ

n
,∀n > nδ. (A.2)

The expected number of copies of a k-length cycle, Ck in Gn,p(n) can be expressed as a product

between the number of possible unlabelled cycles and the probability that each forms the desired

cycle, E[G(Ck)] = nk/(2k) ∗ p(n)k. Incorporating the bounds in (A.2) yields:

nk

2k

(c− δ)k
nk

≤ E[G(Ck)] ≤ nk

2k

(c+ δ)k

nk
. (A.3)

Next evaluate the following series when c < 1 and δ ∈ (0, 1− c):

lim
n→∞

n∑

k=1

nk

nk
(c+ δ)k

2k

(a)
=

∞∑

k=1

(c+ δ)k

2k
(A.4)

(b)
= − log(

√
1− (c+ δ)) (A.5)

(c)

≤ − log(
√

1− c) + ε. (A.6)
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where we apply (a) the monotone convergence theorem, (b) series convergence when c+ δ < 1, and

(c) continuity and monotonicity of log(
√

1− c) at c.

By a similar process on the lower bound series, and by controlling ε by choice of δ, we establish:

lim
n→∞

∑

6≤k≤n,
k 6=7

E[G(Ck)] = − log(
√

1− c)−
∑

k∈K

ck

2k
, (A.7)

where we subtract out a finite number of terms (K = {1, 2, 3, 4, 5, 7}) that were originally included

in (A.4) but do not correspond to forbidden cycle lengths.

Lemma A.2 (Expected Forbidden Dumbbells in Gn,p(n)). When p(n) ∼ c/n, c < 1, the expected

number of forbidden dumbbells of F in Gn,p(n) obeys:

lim
n→∞

n∑

k=0

(
E
[
G(D5,5

k )
]

+ E
[
G(D5,7

k )
]

+ E
[
G(D7,7

k )
])

= 0. (A.8)

Proof. Given p(n), it follows that:

∀δ > 0,∃nδ > 0 : p(n) ≤ c+ δ

n
,∀n > nδ. (A.9)

The expected number of dumbbells, Ds,t
k (unions of cycles of lengths s and t joined by a k-edge

path), assuming s 6= t and k ≥ 1 is:

E
[
G(Ds,t

k )
]

=
ns

2s

(n− s)t
2t

s(n− s− t)k−1tp(n)s+t+k

<
(c+ δ)s+t+k

4n
. (A.10)

where there are ns/(2s) unlabelled cycles Cs, (n− s)t/(2t) unlabelled cycles Ct from the remaining

n−s vertices, and s(n−s−t)k−1t ways of connecting Cs to Ct with a k-edge path using the remaining

n− s− t vertices. The probability that such a selection of vertices forms Ds,t
k is p(n)p+q+k.
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In the event the path contains no edges, k = 0, then the cycles share a common vertex:

E
[
G(Ds,t

0 )
]

=
ns

2s

(n− s)t−1

2
sp(n)s+t <

(c+ δ)s+t

4n
(A.11)

In this case, Ct is created using one vertex from Cs and a (t−1)-edge path from the remaining n−s

vertices.

Finally, if s = t, then E
[
G(Ds,t

k )
]

contains an additional factor of 1/2 due to symmetry, but

nevertheless is upper bounded by the expressions in (A.10) and (A.11).

It remains to show that expected number of all forbidden dumbbells is zero. Let ĉ = c + δ < 1

for an appropriate choice of δ ∈ (0, 1− c):

lim
n→∞

n∑

k=0

(
E
[
G(D5,5

k )
]

+ E
[
G(D5,7

k )
]

+ E
[
G(D7,7

k )
]) (a)

< lim
n→∞

ĉ10 + ĉ12 + ĉ14

4n

∞∑

k=0

ĉk
(b)
= 0, (A.12)

where we (a) apply bounds derived above and collect common factors, and (b) apply geometric series

convergence and evaluate the limit.

Lemma A.3 (Expected Edges in Gn,r(n)). If r(n)2 ∈ 2c/(πn) + x2
√
cn/(πn2) with x ∈ R, then the

mean number of edges Mn,r(n) in Gn,r(n) is:

E
[
Mn,r(n)

]
∈ cn+ x

√
cn+ o

(√
n
)
. (A.13)

Proof. This follows from a specialization of [26, Prop. 3.1] which provides the asymptotic mean of

a subgraph count of Gn,r(n) when r(n) ∈ o(1). We will not recreate the theory here, but instead

provide enough direction to allow the reader to follow along with [26]. The expected number of

edges (E
[
Mn,r(n)

]
) is given as:

E
[
Mn,r(n)

]
∼ µK2,R2r(n)d(k−1)nk, (A.14)

where the subgraph K2 (the complete graph on 2 vertices, i.e., an edge) has k = 2 vertices, d = 2 is
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the dimension of the space in which the points of Gn,r(n) reside, and µK2,R2 is computed as follows:

µK2,R2

(a)
=

1

2!

∫

R2
f(x)2dx

∫

R2
hK2

({0, x1})dx1 (A.15)

(b)
=

1

2

∫

R2
hK2({0, x1})dx1

(c)
=
π

2
. (A.16)

where (a) is simplified from [26] for the subgraph type K2, (b) follows from f(x) being the uniform

distribution over the unit square [−1/2, 1/2]2 used to generate i.i.d. vertex positions, and (c) follows

from hK2
(0, x1) being the indicator function on whether or not two vertices (one at the origin and

the other at x1) with unit edge distance form K2. To form K2, x1 must be within the unit disk

centered at the origin to connect to the vertex at the origin.

Finally, expanding µK2
r(n)2n2 and grouping o(

√
n) terms is sufficient.

Lemma A.4 (CLT for Edges in Gn,r(n)). If r(n)2 ∈ 2c/(πn) + 2
√
cnx/(πn2) with x ∈ R, then the

centered and scaled number of edges Mn,r(n) in Gn,r(n) converges in distribution to that of a centered

normal r.v.:

Mn,r(n) − E
[
Mn,r(n)

]

n1/2

D∼ N (0, c). (A.17)

Proof. This follows from a specialization of [26, Thm. 3.13] which provides a central limit theorem

for collections of subgraph counts of Gn,r(n) when limn→∞ nr(n)d → ρ ∈ (0,∞). The distribution

of the centered and scaled number of edges (Mn,r(n) − E
[
Mn,r(n)

]
)/
√
n is an asymptotic centered

normal with variance: 


k∑

j=1

ρ2k−j−1Φj(K2,K2)


− k2ρ2k−2µ2

K2
, (A.18)

where the subgraph K2 (the complete graph on 2 vertices, i.e., an edge) has k = 2 vertices, d = 2

is the dimension of the space in which the points of Gn,r(n) reside, µK2,R2 = π/2 is computed as

shown in the proof of Lem. A.3, and Φ1(K2,K2) simplifies to:

Φ1(K2,K2) =

∫

R2
hK2

(0, x2)dx2

∫

R2
hK2

(0, x3)dx3 = π2, (A.19)
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and Φ2(K2,K2) = µK2 .

Finally, note that for the given r(n)2, nr(n)2 ∼ ρ = 2c/π. Substituting Φ1, Φ2, µK2
, and ρ into

(A.18), we obtain the asymptotic variance:

ρ2Φ1(K2,K2) + ρΦ2(K2,K2)− 4ρ2µ2
K2

= ρµK2
= c. (A.20)

A.2 Lem. 2.2 (Plop Monotonicity)

Proof. Let G ∈ Plop. From Thm. 2.1, G contains no edge-induced forbidden subgraphs from F .

Let H ⊂ G by an appropriate removal of edges. The removal of edges from G cannot possibly

create edge-induced forbidden subgraphs where none existed before, therefore H ∈ Plop and Plop is

monotone decreasing as described by Def. 2.2.

A.3 Lem. 2.3 (Separate Sufficient and Necessary Cond. for Plop)

Proof. Since all forbidden subgraphs in F (Thm. 2.1) contain cycles, it immediately follows that

forbidding all cycles (PL
lop) is sufficient for Plop. Separately, forbidding any subset of subgraphs in

F is a necessary condition for Plop, therefore forbidding cycles of lengths k ≥ 6, k 6= 7 (PU
lop) is

necessary for Plop. Thus, the subsets of graphs on n vertices that satisfy PL
lop, Plop, PU

lop can be

nested in that order.

A.4 Lem. 2.4 (Probability Bounds for Plop)

Proof. Given p(n) (or r(n)) and n ∈ Z+, Gn,p(n) (or Gn,r(n)) is a random graph generated from a

distribution on Gn. Interpreted as events, the nesting of subsets PL
lop, Plop, PU

lop by Lem. 2.3 provides

the desired ordering of probabilities.
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A.5 Prop. 2.1 (Reg. Sharp Threshold for Pedge in Gn,p(n))

Proof. Let the r.v. Mn,p(n) (shortened to M) be the number of edges in graph Gn,p(n). We show

for the given choice of (p∗(n) = 2c/n, α(n) = 2
√
cn/n2) and F (x) = Φ(−x) that:

p(n) ∼ p∗(n) + xα(n)⇒ lim
n→∞

P{M ≤ cn} = F (x), (A.21)

holds for every point of continuity of F (x), x ∈ R.

Mn,p(n) has a binomial p.d.f.; for p(n) ∼ p∗(n) + xα(n), Mn,p(n) has mean and variance:

E
[
Mn,p(n)

]
=

(
n

2

)
p(n) = cn+ x

√
cn+ o

(√
n
)

(A.22)

Var
(
Mn,p(n)

)
=

(
n

2

)
p(n)(1− p(n)) = cn+ o(n) , (A.23)

by using the additional facts p(n) = 2c/n+ o(1/n) and p(n)2 = o(1/n).

Finally, for p(n) ∼ p∗(n) + xα(n):

P{M ≤ cn} (a)
= P

{
M − E[M ]√

Var(M)
≤ cn− E[M ]√

Var(M)

}
(A.24)

(b)
= P

{
M − E[M ]√

Var(M)
≤ −x

√
cn+ o(

√
n)√

cn+ o(n)

}
(A.25)

(c)
= Φ (−x+ o(1)) + o(1) (A.26)

(d)
= Φ(−x) + o(1) , (A.27)

where we (a) standardize Mn,p(n), (b) expand using (A.22) and (A.23), (c) asymptotically simplify

the inequality’s r.h.s. and apply the CLT to the standardized Mn,p(n), and (d) apply continuity of

the standard normal c.d.f., Φ(x).

Thus, for the specific case when c = 2, we conclude:

lim
n→∞

P
{
Gn,p(n) ∈ Pedge

}
= lim
n→∞

P{M ≤ 2n} = Φ (−x) . (A.28)
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A.6 Thm. 2.2 (Reg. Threshold for Plop in Gn,p(n))

Proof. Let Γ be a connected graph. Let the r.v. G(Γ) be the number of copies of Γ in graph Gn,p(n).

Let AΓ = {G(Γ) > 0} be the event that there are one or more copies of Γ in Gn,p(n). We show for

the given p∗(n) and F (x), that:

p(n) ∼ xp∗(n)⇒ lim
n→∞

P{Plop} = F (x), (A.29)

holds for every point of continuity of F (x), x ∈ R.

Suppose p(n) ∼ xp∗(n). We first upper bound P{Plop}:

lim
n→∞

P{Plop}
(a)

≤ lim
n→∞

P





⋂

6≤k≤K,
k 6=7

ACk





(b)
= exp


−

∑

6≤k≤K,
k 6=7

xk

2k


 , (A.30)

where (a) follows by forbidding only cycles in F up to length K ≤ n, and (b) is a consequence of [17,

Cor. 4.9] which shows that when p(n) ∼ x/n, a finite-length random vector of cycle subgraph counts

{G(Ck)} converges in distribution to that of independent Poisson r.v.’s with means {λk = xk/(2k)}.

Now, considering the upper bound, suppose x ≥ 1. The series
∑∞
k=1 x

k/(2k) diverges to∞, thus

P{Plop} can be upper-bounded by arbitrarily small ε by a large enough choice of K. Note when

x = 1, the series becomes the harmonic series, which also diverges, albeit more slowly. Thus,

p(n) ∼ xp∗(n), x ≥ 1⇒ lim
n→∞

P{Plop} = 0. (A.31)

Alternatively, consider the upper bound when x < 1. The series
∑∞
k=1 x

k/(2k) converges to

− log(
√

1− x). Thus, for arbitrarily small ε, a sufficiently large choice for K will yield:

−
∑

6≤k≤K,
k 6=7

xk

2k
≤ log(

√
1− x) +

∑

k∈K

xk

2k
+ ε (A.32)
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where K = {1, 2, 3, 4, 5, 7}. Substituting (A.32) into (A.30), we obtain the following upper bound

for limn→∞ P{Plop}:

lim
n→∞

P{Plop} <
√

1− x exp

(∑

k∈K

xk

2k

)
+ ε′, (A.33)

where exp(ε) ≤ 1 + (e− 1)ε and the constants in front of ε can be rolled into ε′ > 0.

It remains to provide a lower bound when x < 1. We start by lower bounding P{Plop}:

P{Plop} = P

{⋂

Γ∈F
AΓ

}
(a)

≥
∏

Γ∈F
P
{
AΓ

}
(A.34)

(b)

≥
∏

Γ∈F
exp

(
− E[G(Γ)]

1− p(n)

)
(A.35)

= exp

(
− 1

1− p(n)

∑

Γ∈F
E[G(Γ)]

)
(A.36)

where (a) follows from the FKG Inequality applied to the set of monotone decreasing properties AΓ

on Gn,p(n) [18, Thm. 2.12], and (b) is the result of applying [18, Cor. 2.13] to each multiplicand to

obtain an exponential lower bound.

First, we note that:

lim
n→∞

1

1− p(n)
= 1 (A.37)

Second, by Lem. A.1 and Lem. A.2 (with p(n) ∼ x/n, x < 1), the limit of the sum of the expected

forbidden subgraph counts depends solely on cycles:

lim
n→∞

∑

Γ∈F
E[G(Γ)] = − log(

√
1− x)−

∑

k∈K

xk

2k
, (A.38)

with K = {1, 2, 3, 4, 5, 7}.

Thus, by making use of (A.37) and (A.38) in (A.36), the limiting probability of satisfying Plop

is lower bounded by:

lim
n→∞

P{Plop} ≥
√

1− x exp

(∑

k∈K

xk

2k

)
(A.39)

Finally, combining (A.33) and (A.39) produces our desired limit when x < 1.
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A.7 Cor. 2.1 (Threshold Function for Plop in Gn,p(n))

Proof. This, follows directly from the Thm. 2.2 and the monotonicity of property Plop. If p(n) ∈

ω(p∗(n)), there exists x > 1 for which p(n) is asymptotically greater than x/n. Alternately, if

p(n) ∈ o(p∗(n)), then p(n) is asymptotically less than x/n for all x > 0.

A.8 Prop. 2.2 (σ-LoP Bounds in Gn,p(n))

Proof. Let G = Gn,p(n). Let Γ and AΓ be as defined in App. A.6.

lim
n→∞

P{1/2 ≤ σ(G) ≤ 2/3} (a)
= lim

n→∞
P{σ(G) ≤ 2/3}

(b)

≥ 1− lim
n→∞

P

{ ∞⋂

k=1

AC6k

}
(c)
= 1, (A.40)

where (a) the lower bound is always true by Lem. 2.5, (b) the presence of any C6k is sufficient for

σ(G) ≤ 2/3 by Lem. 2.6, and (c) p(n) is above the joint threshold for the appearance of all C6k by

appropriate ‘thinning’ of the argument of Thm. 2.2 in App. A.6 to C6k and divergence of the series

for c > 1.

A.9 Thm. 2.3 (E[σ] Bounds in Gn,p(n))

Proof. For convenience, let G = Gn,p(n). We first consider the lower bound:

E[σ(G)] = E[σ(G)|G ∈ Plop]P{G ∈ Plop}+ E[σ(G)|G /∈ Plop]P{G /∈ Plop} (A.41)

(a)
= P{G ∈ Plop}+ E[σ(G)|G /∈ Plop] (1− P{G ∈ Plop}) (A.42)

(b)

≥ P{G ∈ Plop}+
1

2
(1− P{G ∈ Plop}) (A.43)

=
1

2
(1 + P{G ∈ Plop}) , (A.44)

where (a) σ(G) = 1 when G ∈ Plop, and (b) σ(G) ≥ 1/2 when G /∈ Plop. Finally, take the limit as

n→∞ and apply P{G ∈ Plop} → Fl(x) from Thm. 2.2.

We now apply a similar argument to the upper bound, but partition on the presence of the class

of cycles {C6k, k ∈ N+}, all of which result in σ ≤ 2/3. Let Γ and AΓ be as defined in App. A.6,
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and let A ≡ {∩∞k=1AC6k
} be the event that there exist no cycles C6k within G:

E[σ(G)] = E[σ(G)|A]P{A}+ E
[
σ(G)|A

]
P
{
A
}

(A.45)

(a)

≤ 2

3
(1− P

{
A
}

) + P
{
A
}

=
1

3

(
2 + P

{
A
})
, (A.46)

where (a) σ(G) ≤ 2/3 when A, and σ(G) ≤ 1 is always true. Evaluating the limit of P
{
A
}

can be

done using the same approach as the argument of Thm. 2.2 in App. A.6:

lim
n→∞

P

{
K⋂

k=1

C6k * G

}
=

K∏

k=1

exp

(
−x

6k

12k

)
= exp

(
−

K∑

k=1

x6k

12k

)
(A.47)

= exp

(
1

12
log(1− x6)

)
+ εK = (1− x6)1/12 + εK , (A.48)

when x ≤ 1 where εK can be driven lower by a larger choice of K. Otherwise, when x > 1, the series

in the exponent diverges (i.e., G is sure to contain a cycle in {C6k}).

A.10 Cor. 2.2 (Reg. Threshold for Pgiant(β) in Gn,p(n))

Proof. Given β∗ ∈ (0, 1), construct p∗(n) = c(β∗)/n using (2.13). We show that:

p(n) ∼ xp∗(n)⇒ lim
n→∞

P
{
Gn,p(n) ∈ Pgiant(β

∗)
}

= F (x), (A.49)

where F (x) = 1{x > 1} for all continuity points of F (x): R \ {1}.

Suppose p(n) ∼ xp∗(n), with x > 1. p(n) is asymptotically larger than p∗(n) and by monotonicity

of (2.13), there exists β ∈ (β∗, 1) such that:

∃n0 > 0,∀n > n0 : p(n) >
c(β)

n
>
c(β∗)
n

. (A.50)

Apply part ii) of [18, Thm. 5.4] to establish that the size of the largest component, denoted as
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Ln,p(n), converges in probability to βn:

∀ε > 0, lim
n→∞

P
{∣∣∣∣
Ln,p(n)

βn
− 1

∣∣∣∣ < ε

}
= 1. (A.51)

By choosing ε such that β∗ = (1− ε)β, the event
∣∣Ln,p(n)/(βn)− 1

∣∣ < ε is a subset of the event that

Ln,p(n) ≥ β∗n, giving us the upper bound:

P
{∣∣∣∣
Ln,p(n)

βn
− 1

∣∣∣∣ < ε

}
≤ P

{
Ln,p(n)

n
≥ β∗

}
. (A.52)

Since limn→∞ P
{∣∣Ln,p(n)/(βn)− 1

∣∣ < ε
}

= 1 and probabilities are bounded above by 1, we apply

the squeeze theorem and conclude that limn→∞ P
{
Ln,p(n)/n > β∗

}
= 1.

Alternately, suppose p(n) ∼ xp∗(n), with x < 1. p(n) is asymptotically smaller than p∗(n) and

by monotonicity of (2.13), there exists β ∈ (0, β∗) such that:

∃n0 > 0,∀n > n0 : p(n) <
c(β)

n
<
c(β∗)
n

. (A.53)

Again, we use [18, Thm. 5.4] to show that Ln,p(n) converges in probability to βn:

∀ε > 0, lim
n→∞

P
{∣∣∣∣
Ln,p(n)

βn
− 1

∣∣∣∣ < ε

}
= 1. (A.54)

By choosing ε such that (1 + ε)β = β∗, the event
∣∣Ln,p(n)/(βn)− 1

∣∣ < ε is a subset of the event that

Ln,p(n) < β∗n, giving us the upper bound:

P
{∣∣∣∣
Ln,p(n)

βn
− 1

∣∣∣∣ < ε

}
≤ 1− P

{
Ln,p(n)

n
≥ β∗

}
(A.55)

Since limn→∞ P
{∣∣Ln,p(n)/(βn)−

∣∣ < ε
}

= 1 and probabilities are bounded below by 0, we apply

the squeeze theorem and conclude that limn→∞ P
{
Ln,p(n)/n ≥ β∗

}
= 0.

Appendix A: Proofs of Ch. 2



100

A.11 Thm. 2.4 (Mutual Excl. of Plop and Pgiant(β) in Gn,p(n))

Proof. By Thm. 2.2, p(n) ∼ c/n, c > 1 implies that Plop holds a.a.n.. Therefore, p(n) ∼ c/n, c ≤ 1

is a necessary condition for Plop to hold a.a.s.. Under this necessary condition, we see that p(n) is

asymptotically less than c(β)/n since c(β) > 1 and by Cor. 2.2, Pgiant(β) holds a.a.n..

Thus, for p(n) ∼ c/n, ∀c ≤ 1:

0 ≤ lim
n→∞

P{Pgiant(β) ∩ Plop} ≤ lim
n→∞

P{Pgiant(β)} = 0 (A.56)

Alternately, for p(n) ∼ c/n, ∀c > 1:

0 ≤ lim
n→∞

P{Pgiant(β) ∩ Plop} ≤ lim
n→∞

P{Plop} = 0 (A.57)

In both cases, we can conclude that limn→∞ P{Pgiant(β) ∩ Plop} = 0.

A.12 Prop. 2.3 (Reg. Sharp Threshold for Pedge in Gn,r(n))

Proof. Let the r.v. Mn,r(n) (shortened to M) be the number of edges in graph Gn,r(n). We show

that for the given choice of (r∗(n)2 = 2c/(πn), α(n) = 2
√
cn/(πn2) and F (x) = Φ(−x) that:

r(n)2 ∼ r∗(n)2 + xα(n)⇒ lim
n→∞

P{M ≤ cn} = F (x), (A.58)

where F (x) = Φ(−x) for all continuous points of F (x): R.
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For r(n)2 ∼ r∗(n)2 + xα(n):

P{M ≤ cn} (a)
= P

{
M − E[M ]√

n
≤ cn− E[M ]√

n

}
(A.59)

(b)
= P

{
M − E[M ]√

n
≤ −x√c+ o(1)

}
(A.60)

(c)
= Φ

(−x√c+ o(1)√
c

)
+ o(1) (A.61)

(d)
= Φ (−x+ o(1)) + o(1) (A.62)

(e)
= Φ (−x) + o(1) , (A.63)

where we (a) standardize Mn,r(n), (b) apply Lem. A.3, (c) apply Lem. A.4 and standardize the

argument to the c.d.f., (d) results from asymptotic simplification, and (e) apply continuity of the

standard normal c.d.f., Φ(x).

Thus, for the specific case when c = 2, we conclude:

lim
n→∞

P
{
Gn,r(n) ∈ Pedge

}
= lim
n→∞

P{M ≤ 2n} = Φ (−x) . (A.64)

A.13 Prop. 2.4 (Upper Bound for Plop in Gn,r(n))

Proof. Let Γk be a feasible, connected, order k graph. Let Ge(Γk) and Gv(Γk) be the edge-induced

and vertex-induced subgraph counts of Γk on graph Gn,r(n), resp. Let AΓk = {Ge(Γk) ≥ 1} and

BΓk = {Gv(Γk) ≥ 1} be the events that there are one or more edge-induced or vertex-induced copies

of Γk in Gn,r(n), resp.

A necessary condition for Plop is the absence of edge-induced cycles of length 6, which can be

expressed as an intersection of a finite number of vertex-induced events, {BΓ6
}:

P{Plop} ≤ P
{
AC6

}
= P

{
∩Γ6∈YBΓ6

}
, (A.65)

where Y ≡ {Γ6 : Γ6 ⊆ K6, C6 ⊆ Γ6,Γ6 feasible}.
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By [26, Thm. 3.5], the finite collection of vertex-induced subgraph counts {Gv(Γ6)} converge to

independent Poisson r.v.’s with rates {λ = c5µΓ6
}, for our choice of r(n)2. The null probability of

the subgraph counts becomes:

lim
n→∞

P

{⋂

Γ6∈Y
BΓ6

}
=
∏

Γ6∈Y
e−c

5µΓ6 = exp

(
−c5

∑

Γ6∈Y
µΓ6

)
, (A.66)

where µΓ6 is computed from [26, Eq. 3.2] for each vertex-induced subgraph. We may upper bound

the exponential by considering a single term in the summation where Γ6 = K6 (the complete graph

on 6 vertices) has k = 6 vertices and then expressing a lower bound for µK6,R2 :

µK6,R2

(a)
=

1

6!

∫

R2
f(x)2dx

∫

R2
hK6({0, x1, ..., x5})dx1, ...,dx5 (A.67)

(b)
=

1

6!

∫

R2
hK6

({0, x1, ..., x5})dx1, ...,dx5

(c)

≥ (π/4)5

6!
, (A.68)

where (a) is simplified from [26, Eq. 3.2] for the subgraph type K6, (b) follows from f(x) being the

uniform distribution over the unit square [−1/2, 1/2]2 used to generate i.i.d. vertex positions, and

(c) follows from hK6(0, x1, . . . , x5) being the indicator function on whether or not six vertices (one

fixed at the origin) with unit edge distance form K6. The lower bound results when limiting the

placement of all five vertices to a disk of radius 1/2 centered at the origin. Under this assumption,

all six vertices are connected, form K6, and yield hK6(0, x1, . . . , x5) = 1.

A.14 Lem. 2.8 (Reg. Sharp Threshold for Pconn in Gn,r(n))

Proof. Let r.v. T = T(Gn,r(n)) be the minimum edge distance that yields a connected graph for

Gn,r(n). Thus, the graph Gn,r(n) is connected iff T ≤ r(n). Using a specialization of [26, Cor. 13.21],

we show that:

r(n)2 ∼ r∗(n)2 + xα(n)⇒ lim
n→∞

P{T ≤ r(n)} = F (x), (A.69)

where F (x) = e−e−x for all continuous points of F (x): R.
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For r(n)2 ∈ r∗(n)2 + xα(n) + o(α(n)):

P{T ≤ r(n)} (a)
= lim

n→∞
P
{
nπT 2 − log(n) ≤ x+ o(1)

}
(A.70)

(b)
= e−e−x+o(1)

+ o(1)
(c)
= e−e−x + o(1) (A.71)

where (a) follows from squaring both sides of the inequality and expanding r(n)2 in terms of the

given r∗(n)2 and α(n), (b) results from a specialization of [26, Cor. 13.21] (k = 0, dimension d = 2,

and p = 2-norm distance function) which shows that the scaled minimum connectivity distance

nπT 2− log(n) converges in distribution to a Gumbel distribution, and (c) follows from the continuity

of the Gumbel c.d.f..

Thus, for the given choice of r(n)2:

lim
n→∞

P
{
Gn,r(n) ∈ Pconn

}
= lim
n→∞

P{T ≤ r(n)} = e−e−x .

A.15 Lem. 2.9 (Reg. Threshold for Pgiant in Gn,r(n))

Proof. Given λc ∈ (0,∞), construct r∗(n)2 = λc/n. We show that:

r(n)2 ∼ xr∗(n)2 ⇒ lim
n→∞

P
{
Gn,r(n) ∈ Pgiant

}
= F (x),

for all points of continuity of F (x) ≡ 1{x > 1}: R \ {1}.

Suppose r(n)2 ∼ xr∗(n)2 with x ≥ 0. We have r(n)2 ∼ ρ/n with ρ = xλc. With h ∈

(0, 1/x), there exists a single, bounded population cluster at level h equal to the unit square

R1 = [−1/2, 1/2]2 ⊂ R2. Let L1 be the normalized size of the largest component of Gn,r(n). By

[26, Thm. 11.9], we have that L1 converges in probability to I(R1; ρ), since complete convergence

implies convergence in probability:

lim
n→∞

P{|L1/n− I(R1; ρ)| > ε} = 0,∀ε > 0, (A.72)
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where I(R1; ρ) = p∞(xλc) is the percolation probability under communication radius function

r∗(n)2 ∼ xλc/n.

Now, suppose that x < 1. By definition, the percolation probability is zero, and:

lim
n→∞

P{|L1/n− I(R1; ρ)| > ε} = 0,∀ε > 0 (A.73)

lim
n→∞

P{|L1/n| > ε} = 0,∀ε > 0 (A.74)

lim
n→∞

P
{
Gn,r(n) ∈ Pgiant(ε)

}
= 0,∀ε > 0 (A.75)

lim
n→∞

P
{
Gn,r(n) ∈ Pgiant

}
= 0. (A.76)

Alternately, suppose that x > 1. By definition, the percolation probability is positive, and:

1 = lim
n→∞

P{|L1/n− I(R1; ρ)| > ε} ,∀ε > 0 (A.77)

≤ lim
n→∞

P{L1/n ≥ I(R1; ρ)− ε} ,∀ε > 0 (A.78)

= lim
n→∞

P{L1/n ≥ p∞(xλc)− ε} ,∀ε ∈ (0, p∞(xλc)) (A.79)

= lim
n→∞

P
{
Gn,r(n) ∈ Pgiant(β)

}
,∀β ∈ (0, p∞(xλc)− ε) (A.80)

= lim
n→∞

P
{
Gn,r(n) ∈ Pgiant

}
. (A.81)

By the squeeze theorem, we conclude that limn→∞ P
{
Gn,r(n) ∈ Pgiant

}
= 1.

A.16 Thm. 2.6 (Mutual Excl. of Plop and Pgiant in Gn,r(n))

Proof. By Lem. 2.9, r(n)2 ∼ c/n, c < λc implies that Pgiant holds a.a.n.. Therefore, r(n)2 ∼ c/n, c ≥

λc is a necessary condition for Pgiant to hold a.a.s.. Under this necessary condition, we see that

r(n)2 ∈ ω(1/n6/5) and by Cor. 2.4, Plop holds a.a.n..

Thus, for r(n)2 ∼ c/n, ∀c ≤ λc:

0 ≤ lim
n→∞

P{Pgiant ∩ Plop} ≤ lim
n→∞

P{Pgiant} = 0 (A.82)

Appendix A: Proofs of Ch. 2



105

Alternately, for r(n)2 ∼ c/n,∀c > λc:

0 ≤ lim
n→∞

P{Pgiant ∩ Plop} ≤ lim
n→∞

P{Plop} = 0 (A.83)

In both cases, we can conclude that limn→∞ P{Pgiant ∩ Plop} = 0.

A.17 Prop. 2.5 (σ-LoP Bounds in Gn,r(n))

Proof. Let G = Gn,r(n).

lim
n→∞

P{1/2 ≤ σ(G) ≤ 2/3} (a)
= lim

n→∞
P{σ(G) ≤ 2/3} (A.84)

(b)

≥ lim
n→∞

P{C6 ⊆ G}
(c)
= 1. (A.85)

where (a) the lower bound is always true by Lem. 2.5, (b) the presence of C6 is sufficient for

σ(G) ≤ 2/3 by Lem. 2.6, and (c) r(n)2 is above the threshold for the appearance of C6, obtained

from the argument of Prop. 2.4 in App. A.13.

A.18 Thm. 2.5 (E[σ] Bounds in Gn,r(n))

Proof. Let G = Gn,r(n). The lower bound follows immediately from the support bound σ(G) ≥ 1/2

in Lem. 2.5. The upper bound can be derived:

E[σ(G)] = E[σ(G)|K6 ⊆ G]P{K6 ⊆ G}+ E[σ(G)|K6 * G]P{K6 * G} (A.86)

(a)

≤ 2

3
(1− P{K6 * G}) + P{K6 * G} (A.87)

=
1

3
(2 + P{K6 * G}) , (A.88)

where (a) σ(G) ≤ 2/3 when K6 ⊆ G (i.e., C6 ⊂ K6 and the presence of C6 is sufficient for

σ(G) ≤ 2/3) and σ(G) ≤ 1 is always true. Finally, we may upper bound limn→∞ P{K6 * G} with

exp
(
−(πc/4)5/6!

)
by applying portions of the argument of Prop. 2.4 in App. A.13.
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Appendix B: Proofs of Ch. 3

B.1 Prop. 3.1 (Success of a Typical Transmission)

Proof. A transmission is successful when the SINR is greater than or equal to β:

ps = P{SINRo ≥ β}
(a)
= P

{
Ho,o ≥

βdα

PtGT(εxo)GR(εyo)
Io

}
P
{
Ho,o ≥

βdαη

PtGT(εxo)GR(εyo)

}
(B.1)

(b)
=

∫ ∞

0+

∫ ∞

0+

E
[
e−sIo

]
e
− βdαη
PtgTgR fGT(gT) fGR(gR) dgTdgR, (B.2)

where we (a) expand SINRi ≥ β, isolate Ho,o, and apply the memoryless property of Ho,o, and (b)

marginalize the gains between the typical TX and RX; the first term is the Laplace transform of the

interference evaluated at s = βdα

PtgTgR
; the second term is the c.c.d.f. of Ho,o.

Following along with Section 5.1.7 [52], we work with E
[
e−sIo

]
, an expectation over Φ, the fading

variables Hi,o, and the gains between interferers and the typical RX {GTI
(θ̂xi,yo)} and {GRI

(θ̂yo,xi)}:

LI(s) = EΦ̂

[ ∏

xi∈Φ

e−sPtGTI
(θ̂xi,yo )GRI

(θ̂yo,xi )Hi,od
−α
i,o

]
(B.3)

(a)
= EΦ

[ ∏

xi∈Φ

EGTI
,GRI

,H

[
e−sPtGTI

GRI
Hd−αi,o

]]
(B.4)

(b)
= EΦ

[ ∏

xi∈Φ

v(‖xi‖)
]

(B.5)

(c)
= e−

∫∞
0

(1−v(x))λ(x)dx (B.6)

= e
−
∫∞
0

EGTI
,GRI

,H

[
1−e

−sPtGTI
GRI

Hx−α
]
λ(x)dx

, (B.7)

where we (a) leverage the independence of x, H, GTI
, and GRI

by bringing the latter three into the

product and dropping the fading and gain indexing, (b) collapse Φ̂ into a one-dimensional PPP on

R+ with intensity λ(x) = λ2πx,∀x ∈ R+ and define v(x) = EGTI
,GRI

,H

[
e−sPtGTI

GRI
Hx−α

]
, and (c)

recognize that a mean of a product of v(x) over the collapsed Φ̂ is a probability generating functional

(pgfl) of the process; an explicit solution is given by Campbell’s Theorem for PPPs.
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Again mirroring the developments in [52], we work with the integral inside the exponential, x,

GTI
, GRI

, and H are independent, so their expectations can be evaluated separately:

∫ ∞

0

EGTI
,GRI

,H

[
1− e−sPtGTI

GRI
Hx−α

]
λ(x)dx (B.8)

(a)
=EGTI

,GRI
,H

[∫ ∞

0

(1− e−sPtGTI
GRI

Hx−α)λ(x)dx

]
(B.9)

=EGTI
,GRI

,H

[
λπ

∫ ∞

0

(1− e−sPtGTI
GRI

Hx−α)2xdx

]
(B.10)

(b)
=EGTI

,GRI

[
λπΓ(1 + 2/α)Γ(1− 2/α)(sPtGTIGRI)

2/α
]

(B.11)

(c)
=λπΓ(1+2/α)Γ(1−2/α)(sPt)

2/αE
[
G

2/α
TI

]
E
[
G

2/α
RI

]
. (B.12)

In (a), we exchange the order of integration over GTI , GRI , and H with that of x. Next, (b)

follows from Section 5.1.7 of [52] in the case of Rayleigh fading with omni-directional antennas. The

substitution of the integration variables, integration by parts, evaluation of the resulting integral,

and finally taking the expectation over H produces:

EH
[
λcd

∫ ∞

0

(1− e−ŝHx
−α

)dxd−1dx

]
= λcdΓ(1 + δ)Γ(1− δ)ŝδ, (B.13)

where d is the dimension of the space in which the points of Φ reside, δ = d/α and cd is a constant

depending on d. In our case, d = 2 and it follows that δ = 2/α and c2 = π. By substituting

ŝ = sPtGTI
GRI

and taking the expectation of both sides of (B.13) w.r.t. GTI
and GRI

, we complete

this step. Finally, in (c), we find that the expectations over GTI and GRI reduce to taking moments

of each r.v., (as noted in [45]).

Now, the Laplace transform can be expressed:

LI(s) = E
[
e−sIo

]
= e
−λπΓ(1+2/α)Γ(1−2/α)(sPt)

2/αE
[
G

2/α
TI

]
E
[
G

2/α
RI

]
. (B.14)
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With s = βdα

PtgTgR
, we express success probability of a transmission between the typical pair o:

ps =

∫ ∞

0+

∫ ∞

0+

E
[
e−sIo

]
e
− βdαη
PtgTgR fGT

(gT) fGR
(gR) dgTdgR (B.15)

=

∫ ∞

0+

∫ ∞

0+

e
−λπΓ(1+2/α)Γ(1−2/α)(sPt)

2/αE
[
G

2/α
TI

]
E
[
G

2/α
RI

]
e
− βdαη
PtgTgR fGT(gT) fGR(gR) dgTdgR. (B.16)

B.2 Prop. 3.2 (TP using Sectors without Sidelobes)

Proof. The first and second derivatives of λps(λ) are:

d

dλ
λps(λ) = (1−Aλ)Ce−λA−B (B.17)

d2

dλ2
λps(λ) = (Aλ− 2)ACe−λA−B , (B.18)

where A = πκd2β2/αp2, B = βdαη
Ptg2

1
, and C = u2. A single root of the first derivative exists at

λ∗ = 1/A, while the second derivative, when evaluated at λ∗, is negative:

d2

dλ2
λps(λ)

∣∣∣∣
λ=λ∗

= −ACe−1−B ≤ 0, (B.19)

due to A > 0, e−1−B > 0, and C = u2 = F 2
|ε|
(
ω
2

)
> 0 when ω > 0. Thus, due to the first and second

derivative tests, we have that λ∗ is the global maximizer of λps(λ).

B.3 Prop. 3.3 (Concave Error Distribution Implies Monotonicity of TPs

in Beamwidth)

Proof. We rewrite spatial throughput (3.15) by expanding u, p, g1 in terms of x = ω/2 and study

TPs(x) over x ∈ [0, π]. Specifically, we show that TPs(x) is monotone decreasing over (0, π]. To do

so, we will need TPs and its derivative w.r.t. x:

TPs(x) =
F 2
|ε|(x) e−Bx

2

Ax2
(B.20)

TP′s(x) = −2e−Bx
2

F|ε|(x)

Ax3

(
(1 +Bx2)F|ε|(x)− xf|ε|(x)

)
, (B.21)

Appendix B: Proofs of Ch. 3



109

with non-negative constants A = 1
π eκd

2β2/α and B = βdαη
π2Pt

. Since
2e−Bx

2
F|ε|(x)

Ax3 > 0 for all x ∈ (0, π],

it suffices to show:

0 ≤
(
(1 +Bx2)F|ε|(x)− xf|ε|(x)

)
(B.22)

f|ε|(x)

F|ε|(x)
≤ 1

x
+Bx, ∀x ∈ (0, π]. (B.23)

in order to prove spatial throughput is monotone decreasing in x, TP′s(x) ≤ 0.

By the assumption of concavity over [0, π], F|ε| evaluated at y ∈ [0, π] lies below its first order

Taylor series approximation centered at x ∈ [0, π]:

F|ε|(y) ≤ F|ε|(x) + f|ε|(x) (y − x), ∀x, y ∈ [0, π]. (B.24)

After setting y = 0, F|ε|(0) = 0, rearranging the result, and adding a positive quantity Bx2 to the

r.h.s., we can conclude our proof:

f|ε|(x)

F|ε|(x)
≤ 1

x
<

1

x
+Bx2, ∀x ∈ (0, π]. (B.25)

B.4 Cor. 3.5 (TP using Omni-directional Antennas)

Proof. The proof of Prop. 3.2 can be used with A = πκd2β2/α, B = βdαη
Pt

, and C = 1. Since A,

e−B , and C are all positive, λ∗ = 1/A is the global maximizer of λps(λ).

B.5 Prop. 3.4 (TC with Sectors without Sidelobes)

Proof. Rewrite (3.13) as ps = Ce−λA−B , where A = πκd2β2/αp2, B = βdαη
Ptg2

1
, and C = u2. Solving

for λ yields λ(pe) = log
(
Ce−B

(1−pe)

)
/A. Note that e−B = 1 − (1 − e−B), and let pη = 1 − e−B , which

represents fading outage due to background noise. Multiplying λ(pe) by the success rate (1 − pe)

provides the maximum intensity of successful transmissions, subject to outage pe.
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B.6 Prop. 3.5 (Concavity of Error Distribution Implies Unimodality of
TCs)

Proof. We rewrite transmission capacity (3.22) by expanding u, p, g1 in terms of x = ω/2 and study

TCs(x) over x ∈ (0, π]. Specifically, we show that TCs(x) is i) monotone increasing over (0, xl], ii)

quasiconcave over [xl, xu], and iii) monotone decreasing over (xu, π], where xl = F−1
|ε|
(√

1− pe
)

and

xu = εmax. Once these three facts are established and combined with the continuity of TCs over

(0, π], we can readily conclude that the unique maximizer of TCs lies between (xl, xu] and that TCs

is quasiconcave (unimodal) over this domain. To do so, we will need TCs and its first two derivatives

w.r.t. x:

TCs(x) =
A

x2
(2 log(F (x)) +B)−AC (B.26)

TC′s(x) =
2A

x2

(
f(x)

F (x)
− 2 log(F (x)) +B

x

)
(B.27)

TC′′s (x) =
2A

x3

(
3

2 log(F (x)) +B

x
− 4f(x)

F (x)
− xf(x)2

F (x)2
+
xf ′(x)

F (x)

)
, (B.28)

with positive constants A = π(1−pe)
κd2β2/α , B = log

(
1

1−pe

)
, and C = βdαη

Ptπ2 . Note: TCs is smooth at xl

and TC′s(xl) > 0, but may not be differentiable (i.e., have a sharp turn) at xu.

For i), note that 2 log(F (x)) +B is monotone increasing in x due to the monotonicity of F and

log. It follows that when x ≤ xl:

2 log(F (x)) +B ≤ 2 log(F (xl)) +B (B.29)

≤ 2 log
(
F
(
F−1
|ε|

(√
1− pe

)))
+B (B.30)

= log(1− pe) + log(1/(1− pe)) = 0. (B.31)

Substituting this bound into (B.27), we obtain the desired monotonicity of TCs:

TC′s(x) ≥ 2A

x2

f(x)

F (x)
> 0, ∀x ∈ (0, xl). (B.32)
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For ii), we use a sufficient condition for quasiconcavity from Boyd and Vandenberghe [66]:

TC′s(x) = 0⇒ TC′′s (x) < 0, ∀x ∈ (xl, xu). (B.33)

In words, if all stationary points are associated with local maxima, then only a single stationary

point exists, which necessarily provides the global maximum. Let x∗ ∈ (xl, xu) be a stationary point

of TCs. From (B.27), TCs(x
∗) = 0 implies:

2 log(F (x∗)) +B

x∗
=
f(x∗)
F (x∗)

. (B.34)

Simplify (B.28) at this stationary point by substitution of the above equality:

TC′′s (x∗) =
2A

(x∗)3

(
− f(x∗)
F (x∗)

− x∗f(x∗)2

F (x∗)2
+
x∗f ′(x∗)
F (x∗)

)
. (B.35)

Over (xl, xu), we have F (x) > 0, f(x) > 0, and f ′(x) ≤ 0, thus TC′′s (x∗) < 0 and TCs is unimodal

over (xl, xu) and thus [xl, xu] by continuity of TCs.

For iii), note that F (x) = 1 and f(x) = 0 for all x > xu. Thus, (B.27) can be simplified:

TC′s(x) =
−2AB

x3
< 0, ∀x ∈ (xu, π]. (B.36)

Finally, since TCs is increasing on (0, xl] and decreasing on (xu, π], the maximization of TCs(x)

can be reduced to searching over the remaining unimodal portion of TCs: (xl, xu].

B.7 Cor. 3.6 (Conditions on the Maximizing ω∗ for TCs)

Proof. First, by Prop. 3.5 and its proof in App. B.6, we know that TCs(x) with x = ω/2 is unimodal

and contains a unique maximizer within: x∗ ∈
(
F−1
|ε|
(√

1− pe
)
, εmax

]
.

TCs(x) may have a sharp turn at x = εmax, so we take the left derivative of TCs using (B.27).
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Since F (εmax) = 1, we have:

TC′s(ε
−
max) = lim

x→ε−max

TC′s(x) =
2A

ε2max

(
f(εmax)− B

εmax

)
, (B.37)

with positive constants A = π(1−pe)
κd2β2/α , B = log

(
1

1−pe

)
.

First, when f(εmax) < B
εmax

, we have TC′s(ε
−
max) < 0 and the maximizing x∗ must lie strictly less

than εmax. Second, when f(εmax) > B
εmax

, we have TC′s(ε
−
max) > 0 and the maximizing x∗ must be

exactly εmax due to the unimodality of TCs over the rest of
(
F−1
|ε|
(√

1− pe
)
, εmax

]
. Lastly, when

f(εmax) = B
εmax

, we have TC′s(ε
−
max) = 0. We then take the left second derivative of TCs at εmax

using (B.28), and since εmax is a stationary point of TCs, we can apply (B.34):

TC′′s (ε−max) = lim
x→ε−max

TC′′s (x) (B.38)

=
2A

ε3max

(
3

2 log(F (εmax)) +B

εmax
− 4f(εmax)

F (εmax)
− εmaxf(εmax)2

F (εmax)2
+
εmaxf

′(ε−max)

F (εmax)

)
(B.39)

=
2A

ε3max

(
− f(εmax)

F (εmax)
− εmaxf(εmax)2

F (εmax)2
+
εmaxf

′(ε−max)

F (εmax)

)
(B.40)

=
2A

ε3max

(
−f(εmax)− εmaxf(εmax)2 + εmaxf

′(ε−max)
)
, (B.41)

where F (εmax) = 1. Since εmax > 0, f(εmax) > 0, and f ′(ε−max) ≤ 0, we conclude that TC′′s (ε−max) < 0

and TCs is concave down at ε−max. Thus, the maximizing x∗ must be exactly εmax due to the

unimodality of TCs over the rest of
(
F−1
|ε|
(√

1− pe
)
, εmax

]
.

B.8 Cor. 3.7 (TC with Omni-directional Antennas)

Proof. The proof of Prop. 3.4 can be used with A = πκd2β2/α, B = βdαη
Pt

, and C = 1.
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Appendix C: Proofs of Ch. 4

C.1 Prop. 4.1 (Posterior Distribution)

Proof. We first address P{H1|D1} and then simply express all other probabilities in terms of P{H1|D1}

it using standard probabilistic arguments.

Observe that the homogeneous PPP Φ̂ conditioned on the event D1 is stochastically equivalent

to a PPP Φ̂dI
with a radially isotropic intensity function that excludes TXs within distance dI from

the origin: λdI(x) = λ1 {‖x‖ ≥ dI}. We proceed to characterize the probability of success of the

typical transmission under Φ̂dI
:

P{H1|D1} = P{SINRo ≥ β} (C.1)

(a)
= P{Fo,o ≥ βdαTIo}P{Fo,o ≥ βdαTη} (C.2)

(b)
= LIo(s, dI) exp(−sη) , (C.3)

where we (a) expand SINRo, isolate Fo,o, and apply the memoryless property of Fo,o, and (b)

recognize the first term is the Laplace transform of Io from PPP Φ̂dI
with s = βdαT and the second

term is the c.c.d.f. of Fo,o.

Finally, we employ Prop. C.1 below to solve LIo(s, dI) evaluated at s with transmitter-free void

zone radius dI.

Proposition C.1 (Laplace Transform for PPP with Void Ball). Let Φ̂dI
be a marked PPP on Rd

with isotropic intensity function λdI(x):

λdI
(x) = λ1{‖x‖ ≥ dI} , λ > 0, (C.4)

which excludes points within a disk of radius dI about the origin. The Laplace transform of the
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resulting sum interference Io observed at the origin is:

LIo(s, dI) =
exp
(
−λcdκsδ

)
exp
(
−λcdsδIδ(dαI /s)

)

exp
(
−λcdddI

) (C.5)

where Iδ(x) =
∫ x

0
δtδ/(1 + t)dt is a convenience function for a specific form of the incomplete Beta

function.

Proof. We now follow the text of [52, p.103], adapting to the scenario at hand. The sum interference

is:

Io =
∑

x∈Φ̂dI

Fxl(x), (C.6)

with l(x) = x−α as the distance function and Fx ∼ Exp(1) as the fading marks.

The Laplace transform can be manipulated as follows:

LIo(s, dI) = EΦ̂dI

[
e−sIo

] (a)
= EΦ̂dI



∏

x∈Φ̂dI

e−sFxl(x)


 (C.7)

(b)
= EΦdI


 ∏

x∈ΦdI

EF
[
e−sF l(x)

]

 (C.8)

(c)
= EΦdI


 ∏

xi∈ΦdI

v(‖xi‖)


 (C.9)

(d)
= exp

(
−
∫ ∞

0

(1− v(r)) λ̃do(r)dr

)
(C.10)

(e)
= exp

(
−EF

[∫ ∞

0

(
1− e−sF l̃(r)

)
λ̃dI

(r)dr

])
, (C.11)

where (a) the sum Io results in a product of exponentials, (b) the expectation over F is brought into

the product, while the indexing on F is dropped, (c) ΦdI
is mapped [52, Thm. 2.34] to one dimension

with intensity λ̃dI
(r) = λdI

(r)cddr
d−1 and distance function l̃(‖x‖) ≡ l(x) with v(r) = EF

[
e−sF l̃(r)

]
,

(d) the mean of a product v(r) over the collapsed ΦdI is a probability generating functional (pgfl)

of the process [52, Thm. 4.9], (e) v(r) is substituted back and the order of integration over r and F

is exchanged.

Appendix C: Proofs of Ch. 4



115

Conditioned on F = f , the innermost integral of (C.11) becomes:

∫ ∞

0

(
1− e−sf l̃(r)

)
λ̃dI

(r)dr = λcd

∫ ∞

dI

(
1− e−sfr

−α)
drd−1dr (C.12)

(a)
= λcd

∫ ∞

dαI

(
1− e−sf/y

)
δyδ−1dy (C.13)

(b)
= λcd

∫ d−αI

0

(
1− e−sfx

)
δx−δ−1dx (C.14)

(c)
= λcdb

−δ ((bsf)δΓ(1− δ) + δE1+δ(bsf)− 1
)
, (C.15)

by (a) first substituting y ← rα, (b) substituting x ← y−1, (c) substituting b = d−αI for conve-

nience and integrating by parts. Note, Γ(s) =
∫∞

0
ts−1e−tdt is the gamma function and Es(x) =

∫∞
1

e−xtt−sdt is the generalized exponential function.

We make use of the following identities:

Γ(s, x) = (s− 1)Γ(s− 1, x) + xs−1e−x (C.16)

Es(x) = xs−1Γ(1− s, x), (C.17)

where Γ(s, x) =
∫∞
x
ts−1e−tdt is the upper incomplete gamma function.

Taking the expectation of (C.15) over f (using Mathematica 10):

λcdb
−δEF

[
(bsf)δΓ(1− δ) + δE1+δ(bsf)− 1

]
(C.18)

= λcd

(
sδπδ csc(πδ) + sδ(−1)1−δδB−1

bs
(1 + δ, 0)− b−δ

)
(C.19)

= λcdΓ(1 + δ)Γ(1− δ)sδ + λcds
δIδ(

1

bs
)− λcdb−δ, (C.20)

where Iδ(x) is a particular form of the incomplete Beta function, Bx(a, b) =
∫ x

0
ta−1(1− t)b−1dt:

Iδ(x) ≡ (−1)1−δδB−x(1 + δ, 0) =

∫ x

0

δtδ

1 + t
dt, ∀x, δ ≥ 0. (C.21)

Finally, substituting (C.20) into (C.11) and expanding b = d−αI yields the desired Laplace trans-
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form.

C.2 Thm. 4.1 (Minimum Bayes Risk)

Proof. Let A = λcdκs
δ + sη, B(dI) = λcdd

d
I , and C(dI) = λcds

δIδ(d
α
I /s). For convenience, we will

refer to r(dI), B(dI) and C(dI) without arguments, and all derivatives will be taken w.r.t. dI. The

expression for Bayes risk and its first and second derivatives are (Mathematica 10):

r = c00 + (c01 − c00)e−A + (c10 − c00)e−B + (c11 + c00 − c10 − c01)e−A−C (C.22)

r′ = −(c10 − c00)B′e−B − (c11 + c00 − c10 − c01)C ′e−A−C (C.23)

r′′ = (c10 − c00)
(
(B′)2 −B′′

)
e−B + (c11 + c00 − c10 − c01)

(
(C ′)2 − C ′′

)
e−A−C , (C.24)

with:

B′ = δαλcdd
δα−1
I B′′ =

(δα− 1)

dI
B′ (C.25)

C ′ =
dαI

s+ dαI
B′ C ′′ =

(δα− 1)(s+ dαI ) + sα

dI(s+ dαI )
C ′. (C.26)

The first order stationary points of r are:

d∗I = 0 (C.27)

d∗I : −(c10 − c00)
B′

C ′
e−B = (c11 + c00 − c10 − c01)e−A−C . (C.28)

When c10 > c00, we show that there is a unique d∗I that minimizes r. To do so, we employ a

sufficient condition for quasi-convexity from Boyd and Vandenberghe [66, Eq. 3.22]:

r′(dI) = 0 =⇒ r′′(dI) > 0, ∀dI ∈ (0,∞). (C.29)
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Thus, for all positive roots d∗I > 0, (C.28) must hold, and we substitute into (C.24):

r′′|d∗I = (c10 − c00)
(
(B′)2 −B′′

)
e−B + (c11 + c00 − c10 − c01)

(
(C ′)2 − C ′′

)
e−A−C (C.30)

= (c10 − c00)
(
(B′)2 −B′′

)
e−B − (c10 − c00)

B′

C ′
(
(C ′)2 − C ′′

)
e−B (C.31)

= (c10 − c00)B′e−B
((

B′ − B′′

B′

)
−
(
C ′ − C ′′

C ′

))
(C.32)

= (c10 − c00)B′e−B
(

(B′ − C ′) +

(
C ′′

C ′
− B′′

B′

))
(C.33)

> 0, (C.34)

where c10 − c00 > 0, B′ > 0, e−B > 0, and:

B′ − C ′ =
sB′

s+ dαI
> 0

C ′′

C ′
− B′′

B′
=

sα

dI(s+ dαI )
> 0. (C.35)

Thus, we may conclude that r is quasi-convex over dI ∈ (0,∞). Due to the strict inequality

in (C.29), we further conclude that (C.28) yields a unique solution corresponding to the global

minimizer d∗I to the Bayes risk r.

C.3 Prop. 4.6 (Protocol Model Error Bounds)

Proof. The lower bound immediately follows from the optimality of d∗I . We now address the upper

bound:

pE(dI) = e−A + e−B(dI) − 2e−A−C(dI) (C.36)

(a)

≤ e−A + e−B(dI) − 2e−2Ae−2C(dI) (C.37)

(b)

≤ e−A + e−B(dI) − 2e−2Ae−2B(dI) (C.38)

=
(

e−A − e−B(dI)
)2

(C.39)

=
(

e−B(dI)
(

1− e−(A−B(dI))
))2

, (C.40)
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where we obtain (a) from A ≥ 0 and C(dI) > 0, and (b) from C(dI) ≤ B(dI) due to the fact that

the integrand of Iδ(d
α
I /s) may be upper bounded by δtδ−1.

We now show that under the choice dI,DI, A − B(dI,DI) ≥ 0. Note that the guard zone may be

rewritten from (4.23) as:

dI,DI =
sδ

(1 + sη)δ
. (C.41)

Next, we substitute the above into the expression A−B(dI,DI):

A−B(dI,DI) = λcdκs
δ + sη − λcdddI,DI (C.42)

= λcds
δ

(
κ− 1

(1 + sη)δ

)
+ sη ≥ 0, (C.43)

due to the fact that κ ≥ 1 and 1/(1 + sη)δ ≤ 1 for relevant parameter regimes, and the remaining

terms are all positive. We now continue to bound the total error rate:

pE(dI,DI) ≤
(

e−B(dI)
(

1− e−(A−B(dI))
))2

(C.44)

(a)

≤
(

1− e−(A−B(dI))
)2

(C.45)

(b)

≤ 1− e−(A−B(dI,DI)) (C.46)

≤ 1− e−A = P{H0} , (C.47)

where (a) follows from B(dI) ≥ 0, and (b) follows from the fact that A − B(dI,DI) ≥ 0 and thus

1− e−(A−B(dI,DI)) ∈ [0, 1].

C.4 Prop. 4.7 (Posterior Distribution w/ Directional Antennas)

Proof. We first address P{H1|D1} and then simply express all other probabilities in terms of P{H1|D1}

using standard probabilistic arguments.

Let the homogeneous PPP Φ̂ conditioned on the event D1 be denoted Φ̂D1 . We proceed to
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characterize the probability of success of the typical transmission under Φ̂D1 :

P{H1|D1} = P{SINRo ≥ β} (C.48)

(a)
= P

{
Fo,o ≥

βdαT
g2

max

Io

}
P
{
Fo,o ≥

βdαT
g2

max

η

}
(C.49)

(b)
= LIo(s̃,∆) exp(−s̃η) , (C.50)

where we (a) expand SINRo, isolate Fo,o, and apply the memoryless property of Fo,o, and (b)

recognize the first term is the Laplace transform of Io from PPP Φ̂D1
with s̃ = s/g2

max = βdαT/g
2
max

and the second term is the c.c.d.f. of Fo,o.

Finally, we employ Prop. C.2 below to solve LIo(s̃,∆) evaluated at s̃ with guard zone factor ∆

associated with the conditioned event D1.

Proposition C.2 (Laplace Transform for PPP under D1 w/ Directional Antennas). Let the homo-

geneous PPP Φ̂ conditioned on the event D1 with guard zone factor ∆ be denoted Φ̂D1
. The Laplace

transform of the resulting sum interference Io observed at the origin is:

LIo(s̃,∆) =
exp
(
−λcdκsδG̃2

)
exp
(
−λcdsδG̃2Iδ(∆

α)
)

exp
(
−λcdsδG̃2∆d

) (C.51)

where Iδ(x) =
∫ x

0
δtδ/(1 + t)dt is a convenience function for a specific form of the incomplete Beta

function.

Proof. First, observe that the points retained by Φ̂D1
must satisfy the guard factor constraint in

(4.35), i.e., given the independent gains between each point and the typical receiver, gT and gR

resp., the point must be outside the following guard zone distance:

dI(gT , gR) = ∆

(
gT gR
g2

max

)1/α

β1/α. (C.52)

We now follow the text of [52, p.103], adapting to the scenario at hand. The sum interference is:
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Io =
∑

x∈Φ̂dI

FxGT,xGR,xl(x), (C.53)

with l(x) = x−α as the distance function, Fx ∼ Exp(1) as the fading marks, and GT,x ∼ fGT and

GR,x ∼ fGR as the gain marks.

The Laplace transform can be manipulated as follows:

LIo(s̃,∆) = EΦ̂D1

[
e−s̃Io

] (a)
= EΦ̂∆


 ∏

x∈Φ̂D1

e−s̃FxGT,xGR,xl(x)


 (C.54)

(b)
= EΦD1


 ∏

x∈ΦD1

EF,GT ,GR
[
e−s̃FGTGRl(x)

]

 (C.55)

(c)
= EΦD1


 ∏

xi∈ΦD1

v(‖xi‖)


 (C.56)

(d)
= exp

(
−
∫ ∞

0

(1− v(r)) λ̃∆(r)dr

)
(C.57)

(e)
= exp

(
−EF,GT ,GR

[∫ ∞

0

(
1− e−s̃FGTGR l̃(r)

)
λ̃∆(r)dr

])
, (C.58)

where (a) the sum Io results in a product of exponentials, (b) the expectation over F is brought

into the product, while the indexing on F is dropped, (c) ΦD1 is mapped [52, Thm. 2.34] to one

dimension with intensity λ̃∆(r) = λ∆(r)cddr
d−1 and distance function l̃(‖x‖) ≡ l(x) with v(r) =

EF,GT ,GR
[
e−s̃FGTGR l̃(r)

]
, (d) the mean of a product v(r) over the collapsed ΦD1

is a probability

generating functional (pgfl) of the process [52, Thm. 4.9], (e) v(r) is substituted back and the order

of integration over r and F,GT , GR are exchanged.
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Conditioned on F = f , GT = gT , and GR = gR the innermost integral of (C.58) becomes:

∫ ∞

0

(
1− e−s̃fgT gR l̃(r)

)
λ̃∆(r)dr

= λcd

∫ ∞

dI(gT ,gR)

(
1− e−s̃fgT gRr

−α)
drd−1dr (C.59)

(a)
= λcd

∫ ∞

dI(gT ,gR)α

(
1− e−s̃f/y

)
δyδ−1dy (C.60)

(b)
= λcd

∫ dI(gT ,gR)−α

0

(
1− e−s̃fx

)
δx−δ−1dx (C.61)

(c)
= λcdb

−δ ((bs̃fgT gR)δΓ(1− δ) + δE1+δ(bs̃fgT gR)− 1
)
, (C.62)

by (a) first substituting y ← rα, (b) substituting x ← y−1, (c) substituting b = dI(gT , gR)−α

for convenience and integrating by parts. Note, Γ(s) =
∫∞

0
ts−1e−tdt is the gamma function and

Es(x) =
∫∞

1
e−xtt−sdt is the generalized exponential function.

We make use of the following identities:

Γ(s, x) = (s− 1)Γ(s− 1, x) + xs−1e−x (C.63)

Es(x) = xs−1Γ(1− s, x), (C.64)

where Γ(s, x) =
∫∞
x
ts−1e−tdt is the upper incomplete gamma function.

Taking the expectation of (C.15) over f (using Mathematica 10):

λcdb
−δEF

[
(bs̃fgT gR)δΓ(1− δ) + δE1+δ(bs̃fgT gR)− 1

]
(C.65)

= λcd

(
(s̃gT gR)δπδ csc(πδ) + (s̃gT gR)δ(−1)1−δδB −1

bs̃gT gR

(1 + δ, 0)− b−δ
)

(C.66)

= λcdΓ(1 + δ)Γ(1− δ)(s̃gT gR)δ + λcd(s̃gT gR)δIδ(
1

bs̃gT gR
)− λcdb−δ (C.67)

= λcdΓ(1 + δ)Γ(1− δ)(s̃gT gR)δ + λcd(s̃gT gR)δIδ(∆
α)− λcdb−δ, (C.68)
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where Iδ(x) is a particular form of the incomplete Beta function, Bx(a, b) =
∫ x

0
ta−1(1− t)b−1dt:

Iδ(x) ≡ (−1)1−δδB−x(1 + δ, 0) =

∫ x

0

δtδ

1 + t
dt, ∀x, δ ≥ 0. (C.69)

and 1/(bs̃gT gR) = ∆α.

Taking the expectation of (C.68) over gT and gR followed by expansion of s̃ = s/g2
max yields:

λcdΓ(1 + δ)Γ(1− δ)s̃δE
[
GδT
]
E
[
GδR
]

+ λcds̃
δE
[
GδT
]
E
[
GδR
]
Iδ(∆

α)− λcdEGT ,GR
[
b−δ
]

(C.70)

= λcdλcdκs
δG̃2 + λcdλcds

δG̃2Iδ(∆
α)− λcdλcdsδG̃2∆d. (C.71)

Finally, substituting (C.71) into (C.58) yields the desired Laplace transform.

C.5 Thm. 4.2 (Minimum Bayes Risk w/ Directional Antennas)

Proof. Let A = λcdκs
δG̃2 + sη

g2
max

, B(∆) = λcds
δG̃2∆d, and C(∆) = λcds

δG̃2Iδ(∆
α). For conve-

nience, we will refer to r(∆), B(∆) and C(∆) without arguments, and all derivatives will be taken

w.r.t. ∆. The expression for Bayes risk and its first and second derivatives are (Mathematica 10):

r = c00 + (c01 − c00)e−A + (c10 − c00)e−B + (c11 + c00 − c10 − c01)e−A−C (C.72)

r′ = −(c10 − c00)B′e−B − (c11 + c00 − c10 − c01)C ′e−A−C (C.73)

r′′ = (c10 − c00)
(
(B′)2 −B′′

)
e−B + (c11 + c00 − c10 − c01)

(
(C ′)2 − C ′′

)
e−A−C , (C.74)

with:

B′ = δαλcds
δG̃2∆δα−1 B′′ =

δα− 1

∆
B′ (C.75)

C ′ =
∆α

1 + ∆α
B′ C ′′ =

(δα− 1)(1 + ∆α) + α

∆(1 + ∆α)
C ′. (C.76)
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The first order stationary points of r are:

∆∗ = 0 (C.77)

∆∗ : −(c10 − c00)
B′

C ′
e−B = (c11 + c00 − c10 − c01)e−A−C . (C.78)

When c10 > c00, we show that there is a unique ∆∗ that minimizes r. To do so, we employ a

sufficient condition for quasi-convexity from Boyd and Vandenberghe [66, Eq. 3.22]:

r′(∆) = 0 =⇒ r′′(∆) > 0, ∀∆ ∈ (0,∞). (C.79)

Thus, for all positive roots ∆∗ > 0, (C.78) must hold, and we substitute into (C.74):

r′′|d∗I = (c10 − c00)
(
(B′)2 −B′′

)
e−B + (c11 + c00 − c10 − c01)

(
(C ′)2 − C ′′

)
e−A−C (C.80)

= (c10 − c00)
(
(B′)2 −B′′

)
e−B − (c10 − c00)

B′

C ′
(
(C ′)2 − C ′′

)
e−B (C.81)

= (c10 − c00)B′e−B
((

B′ − B′′

B′

)
−
(
C ′ − C ′′

C ′

))
(C.82)

= (c10 − c00)B′e−B
(

(B′ − C ′) +

(
C ′′

C ′
− B′′

B′

))
(C.83)

> 0, (C.84)

where c10 − c00 > 0, B′ > 0, e−B > 0, and:

B′ − C ′ =
B′

1 + ∆α
> 0

C ′′

C ′
− B′′

B′
=

α

∆(1 + ∆α)
> 0. (C.85)

Thus, we may conclude that r is quasi-convex over ∆ ∈ (0,∞). Due to the strict inequality

in (C.79), we further conclude that (C.78) yields a unique solution corresponding to the global

minimizer ∆∗ to the Bayes risk r.

Appendix C: Proofs of Ch. 4



124

C.6 Prop. 4.10 (Protocol Model Error Bounds w/ Directional Antennas)

Proof. The lower bound immediately follows from the optimality of ∆∗. We now address the upper

bound following the same strategy as in App. C.3:

pE(∆) ≤
(

e−B(∆)
(

1− e−(A−B(∆))
))2

, (C.86)

where in this case we also have C(∆) ≤ B(∆), again due to the fact that the integrand of Iδ(∆
α)

may be upper bounded by δtδ−1.

We now show that under the choice ∆DI = 1, A−B(∆DI) ≥ 0.

A−B(∆DI) = λcdκs
δG̃2 +

sη

g2
max

− λcdsδG̃2∆d
DI (C.87)

= λcds
δG̃2 (κ− 1) + sη ≥ 0, (C.88)

due to the fact that κ ≥ 1. We now continue to bound the total error rate:

pE(∆DI) ≤
(

e−B(∆DI)
(

1− e−(A−B(∆DI))
))2

(C.89)

(a)

≤
(

1− e−(A−B(∆))
)2

(C.90)

(b)

≤ 1− e−(A−B(∆DI)) (C.91)

≤ 1− e−A = P{H0} , (C.92)

where (a) follows from B(∆) ≥ 0, and (b) follows from the fact that A − B(∆DI) ≥ 0 and thus

1− e−(A−B(∆DI)) ∈ [0, 1].
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