1,804 research outputs found

    Two new Probability inequalities and Concentration Results

    Full text link
    Concentration results and probabilistic analysis for combinatorial problems like the TSP, MWST, graph coloring have received much attention, but generally, for i.i.d. samples (i.i.d. points in the unit square for the TSP, for example). Here, we prove two probability inequalities which generalize and strengthen Martingale inequalities. The inequalities provide the tools to deal with more general heavy-tailed and inhomogeneous distributions for combinatorial problems. We prove a wide range of applications - in addition to the TSP, MWST, graph coloring, we also prove more general results than known previously for concentration in bin-packing, sub-graph counts, Johnson-Lindenstrauss random projection theorem. It is hoped that the strength of the inequalities will serve many more purposes.Comment: 3

    Online Bin Covering with Limited Migration

    Get PDF
    Semi-online models where decisions may be revoked in a limited way have been studied extensively in the last years. This is motivated by the fact that the pure online model is often too restrictive to model real-world applications, where some changes might be allowed. A well-studied measure of the amount of decisions that can be revoked is the migration factor beta: When an object o of size s(o) arrives, the decisions for objects of total size at most beta * s(o) may be revoked. Usually beta should be a constant. This means that a small object only leads to small changes. This measure has been successfully investigated for different, classical problems such as bin packing or makespan minimization. The dual of makespan minimization - the Santa Claus or machine covering problem - has also been studied, whereas the dual of bin packing - the bin covering problem - has not been looked at from such a perspective. In this work, we extensively study the bin covering problem with migration in different scenarios. We develop algorithms both for the static case - where only insertions are allowed - and for the dynamic case, where items may also depart. We also develop lower bounds for these scenarios both for amortized migration and for worst-case migration showing that our algorithms have nearly optimal migration factor and asymptotic competitive ratio (up to an arbitrary small epsilon). We therefore resolve the competitiveness of the bin covering problem with migration

    Vector Bin Packing with Multiple-Choice

    Full text link
    We consider a variant of bin packing called multiple-choice vector bin packing. In this problem we are given a set of items, where each item can be selected in one of several DD-dimensional incarnations. We are also given TT bin types, each with its own cost and DD-dimensional size. Our goal is to pack the items in a set of bins of minimum overall cost. The problem is motivated by scheduling in networks with guaranteed quality of service (QoS), but due to its general formulation it has many other applications as well. We present an approximation algorithm that is guaranteed to produce a solution whose cost is about lnD\ln D times the optimum. For the running time to be polynomial we require D=O(1)D=O(1) and T=O(logn)T=O(\log n). This extends previous results for vector bin packing, in which each item has a single incarnation and there is only one bin type. To obtain our result we also present a PTAS for the multiple-choice version of multidimensional knapsack, where we are given only one bin and the goal is to pack a maximum weight set of (incarnations of) items in that bin

    A classification scheme for bin packing theory

    Get PDF
    Classifications of published research place new results in a historical context and in so doing identify open problems. An example in wide use classifies results in scheduling theory according to a scheme originated by Graham, Lawler, Lenstra and Rinnooy Kan [10]. A similar effort was made by Dyckhoff [6] for cutting and packing problems. Such classification schemes can be combined with comprehensive bibliographies, e.g., the one provided for scheduling theory by Bruckner 1. This paper describes a novel classification scheme for bin packing which is being applied by the authors to an extensive (and growing) bibliography of the theory. Problem classifications are supplemented by compact descriptions of the main results and of the corresponding algorithms. The usefulness of the scheme is extended by an online search engine. With the help of this software, one is easily able to determine whether results already exist for applications that appear to be new, and to assist in locating the cutting edge of the general theory

    New Results on the Probabilistic Analysis of Online Bin Packing and its Variants

    Get PDF
    The classical bin packing problem can be stated as follows: We are given a multiset of items {a1, ..., an} with sizes in [0,1], and want to pack them into a minimum number of bins, each of which with capacity one. There are several applications of this problem, for example in the field of logistics: We can interpret the i-th item as time a package deliverer spends for the i-th tour. Package deliverers have a daily restricted working time, and we want to assign the tours such that the number of package deliverers needed is minimized. Another setup is to think of the items as boxes with a standardized basis, but variable height. Then, the goal is to pack these boxes into a container, which is standardized in all three dimensions. Moreover, applications of variants of the classical bin packing problem arise in cloud computing, when we have to store virtual machines on servers. Besides its practical relevance, the bin packing problem is one of the fundamental problems in theoretical computer science: It was proven many years ago that under standard complexity assumptions it is not possible to compute the value of an optimal packing of the items efficiently - classical bin packing is NP-complete. Computing the value efficiently means that the runtime of the algorithm is bounded polynomially in the number of items we have to pack. Besides the offline version, where we know all items at the beginning, also the online version is of interest: Here, the items are revealed one-by-one and have to be packed into a bin immediately and irrevocably without knowing which and how many items will still arrive in the future. Also this version is of practical relevance. In many situations we do not know the whole input at the beginning: For example we are unaware of the requirements of future virtual machines, which have to be stored, or suddenly some more packages have to be delivered, and some deliverers already started their tour. We can think of the classical theoretical analysis of an online algorithm A as follows: An adversary studies the behavior of the algorithm and afterwards constructs a sequence of items I. Then, the performance is measured by the number of used bins by A performing on I, divided by the value of an optimal packing of the items in I. The adversary tries to choose a worst-case sequence so this way to measure the performance is very pessimistic. Moreover, the chosen sequences I often turn out to be artificial: For example, in many cases the sizes of the items increase monotonically over time. Instances in practice are often subject to random influence and therefore it is likely that they are good-natured. In this thesis we analyze the performance of online algorithms with respect to two stochastic models. The first model is the following: The adversary chooses a set of items SI and a distribution F on SI. Then, the items are drawn independently and identically distributed according to F. In the second model the adversary chooses a finite set of items SI and then these items arrive in random order, that is random with respect to the uniform distribution on the set of all possible permutations of the items. It is possible to show that the adversary in the second stochastic model is at least as powerful as in the first one. We can classify the results in this thesis in three parts: In the first part we consider the complexity of classical bin packing and its variants cardinality-constrained and class-constrained bin packing in both stochastic models. That is, we determine if it is possible to construct algorithms that are in expectation nearly optimal for large instances that are constructed according to the stochastic models or if there exist non-trivial lower bounds. Among other things we show that the complexity of class-constrained bin packing differs in the two models under consideration. In the second part we deal with bounded-space bin packing and the dual maximization variant bin covering. We show that it is possible to overcome classical worst-case bounds in both models. In other words, we see that bounded-space algorithms benefit from randomized instances compared to the worst case. Finally, we consider selected heuristics for class-constrained bin packing and the corresponding maximization variant class-constrained bin covering. Here, we note that the different complexity of class-constrained bin packing with respect to the studied stochastic models observed in the first part is not only a theoretical phenomenon, but also takes place for many common algorithmic approaches. Interestingly, when we apply the same algorithmic ideas to class-constrained bin covering, we benefit from both types of randomization similarly. </ul
    corecore