234 research outputs found

    Technical Report: Distribution Temporal Logic: Combining Correctness with Quality of Estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach.Comment: More expanded version of "Distribution Temporal Logic: Combining Correctness with Quality of Estimation" to appear in IEEE CDC 201

    Technical report: Distribution Temporal Logic: combining correctness with quality of estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach

    A Simulated Annealing Method to Cover Dynamic Load Balancing in Grid Environment

    Get PDF
    High-performance scheduling is critical to the achievement of application performance on the computational grid. New scheduling algorithms are in demand for addressing new concerns arising in the grid environment. One of the main phases of scheduling on a grid is related to the load balancing problem therefore having a high-performance method to deal with the load balancing problem is essential to obtain a satisfactory high-performance scheduling. This paper presents SAGE, a new high-performance method to cover the dynamic load balancing problem by means of a simulated annealing algorithm. Even though this problem has been addressed with several different approaches only one of these methods is related with simulated annealing algorithm. Preliminary results show that SAGE not only makes it possible to find a good solution to the problem (effectiveness) but also in a reasonable amount of time (efficiency)
    • …
    corecore