3,618 research outputs found

    DeepCare: A Deep Dynamic Memory Model for Predictive Medicine

    Full text link
    Personalized predictive medicine necessitates the modeling of patient illness and care processes, which inherently have long-term temporal dependencies. Healthcare observations, recorded in electronic medical records, are episodic and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes. At the data level, DeepCare represents care episodes as vectors in space, models patient health state trajectories through explicit memory of historical records. Built on Long Short-Term Memory (LSTM), DeepCare introduces time parameterizations to handle irregular timed events by moderating the forgetting and consolidation of memory cells. DeepCare also incorporates medical interventions that change the course of illness and shape future medical risk. Moving up to the health state level, historical and present health states are then aggregated through multiscale temporal pooling, before passing through a neural network that estimates future outcomes. We demonstrate the efficacy of DeepCare for disease progression modeling, intervention recommendation, and future risk prediction. On two important cohorts with heavy social and economic burden -- diabetes and mental health -- the results show improved modeling and risk prediction accuracy.Comment: Accepted at JBI under the new name: "Predicting healthcare trajectories from medical records: A deep learning approach

    A temporal prognostic model based on dynamic Bayesian networks: mining medical insurance data

    Get PDF
    A prognostic model is a formal combination of multiple predictors from which risk probability of a specific diagnosis can be modelled for patients. Prognostic models have become essential instruments in medicine. The models are used for prediction purposes of guiding doctors to make a smart diagnosis, patient-specific decisions or help in planning the utilization of resources for patient groups who have similar prognostic paths. Dynamic Bayesian networks theoretically provide a very expressive and flexible model to solve temporal problems in medicine. However, this involves various challenges due both to the nature of the clinical domain, and the nature of the DBN modelling and inference process itself. The challenges from the clinical domain include insufficient knowledge of temporal interactions of processes in the medical literature, the sparse nature and variability of medical data collection, and the difficulty in preparing and abstracting clinical data in a suitable format without losing valuable information in the process. Challenges about the DBN methodology and implementation include the lack of tools that allow easy modelling of temporal processes. Overcoming this challenge will help to solve various clinical temporal reasoning problems. In this thesis, we addressed these challenges while building a temporal network with explanations of the effects of predisposing factors, such as age and gender, and the progression information of all diagnoses using claims data from an insurance company in Kenya. We showed that our network could differentiate the possible probability exposure to a diagnosis given the age and gender and possible paths given a patient's history. We also presented evidence that the more patient history is provided, the better the prediction of future diagnosis

    PMD60 Design of a Bayesian Network As a Decision Model for the Diagnosis of Appendicitis

    Get PDF

    Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses

    Get PDF
    AbstractProposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDWs) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a Clinical Data Warehouse containing synthetic patient data.We present a synthetic Clinical Data Warehouse, and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts.We model billing as a test for the presence of a condition. We compute billing’s sensitivity and specificity both by conducting a “Simulated Expert Review” where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record.We compute the posterior probability of a patient having a condition through a “Bayesian Chain”, using Bayes’ Theorem to calculate the probability of a patient having a condition after each visit. The second method is a “one-shot” approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition.Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes’ Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts.Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our Bayesian framework. Use of these probabilistic techniques will enable more accurate patient counts and better results for applications requiring this metric

    Health history pattern extraction from textual medical records

    Get PDF
    Extracting patterns from medical records using temporal data mining techniques

    Developing Clinical Decision Support Systems for Sepsis Prediction Using Temporal and Non-Temporal Machine Learning Methods

    Get PDF
    In healthcare, diagnostic errors represent the biggest challenge to synthesize accurate treatments. In the United States, patient deaths due to misdiagnoses are estimated at 40,000 to 80,000 per year. It was also found that 30% of the annual healthcare spending was consumed on unnecessary services and other inefficiencies. The diagnostic errors could be reduced, and public health can be improved by applying machine learning and artificial intelligence in healthcare problems. This dissertation is an attempt to formulate clinical decision support systems and to develop new algorithms to reduce clinical errors.This dissertation aims at developing clinical decision support systems to diagnose sepsis in the early stages. The key feature of our work is that we captured the dynamics among body organs using Bayesian networks. The richness of the proposed model is measured not only by achieving high accuracy but also by utilizing fewer lab results.To further improve the accuracy of the clinical decision support system, we utilize longitudinal data to develop a mortality progression model. This part of the dissertation proposes a hidden Markov model (HMM) framework to model the mortality progression. In comparison to existing approaches, the proposed framework leverages the longitudinal data available in the electronic health records (EHR).In addition, this dissertation proposes an initialization procedure to train the parameters of HMM efficiently. The current HMM learning algorithms are sensitive to initialization. The proposed method computes an initial set of parameters by relaxing the time dependency in sequential time series data and incorporating the multinomial logistic regression.Finally, this dissertation compares the prognostic accuracy of two popularly used early sepsis diagnostic criteria: Systemic Inflammatory Response Syndrome (SIRS) and quick Sepsis-related Organ Failure Assessment (qSOFA). Using statistical and machine learning methods, we found that qSOFA is a better diagnostic criteria than SIRS. These findings will guide healthcare providers in selecting the best bedside diagnostic criteria
    • …
    corecore