1,629 research outputs found

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Privacy-respecting Reward Generation and Accumulation for Participatory Sensing Applications

    Get PDF
    Participatory or crowd-sensing applications process sensory data contributed by users and transform them to simple visualizations (such as for example noise or pollution levels) that help create an accurate representation of the surrounding environment. Although contributed data is of great interest to individuals, the involvement of citizens and community groups, however, is still limited. Hence, incentivizing users to increase participation seems crucial for the success of participatory sensing. In this paper, we develop a privacy-preserving rewarding scheme which allows campaign administrators to reward users for the data they contribute. Our system of anonymous tokens allow users to enjoy the benefits of participation while at the same time ensuring their anonymity. Moreover, rewards can be accumulated together thus further increasing the level of privacy offered by the system. Our proposal is coupled with a security analysis showing the privacy-preserving character of the system along with an efficiency analysis demonstrating the feasibility of our approach in realistic deployment settings

    EnCOMPASS - An integrative approach to behavioural change for energy saving

    Get PDF
    This paper presents the research objectives of the enCOMPASS project, which aims at implementing and validating an integrated socio-technical approach to behavioural change for energy saving. To this end, innovative user-friendly digital tools will be developed to 1) make energy data consumption available and understandable for different types of users and stakeholders (household residents, office employees, school pupils, building managers, utilities, ICT providers) and to 2) empower them to collaborate in order to achieve energy savings and manage their energy needs in efficient, cost-effective and comfort-preserving ways. The project will demonstrate how this can be achieved with a novel approach that integrates user-centered visualisation of energy data from smart sensors and user-generated information with context-aware collaborative recommendations for energy saving, intelligent control and adaptive gamified incentives enabling effective and sustained behavioural change

    A survey of spatial crowdsourcing

    Get PDF

    Incentivized Privacy-Preserving Participatory Sensing

    Get PDF

    From Zebras to Tigers: Incentivizing participation in Crowd-sensing applications through fair and private Bitcoin rewards

    Get PDF
    In this work we develop a rewarding framework that can be used as a building block in crowd-sensing applications. Although a core requirement of such systems is user engagement, people may be reluctant to participate as sensitive information about them may be leaked or inferred from submitted data. Thus monetary incentives could help attract a large number of participants, thereby increasing not only the amount but also the quality of sensed data. Our first contribution in this work is to ensure that users can submit data and obtain Bitcoin payments in a privacy-preserving manner, preventing curious providers from linking the data or the payments back to the user. At the same time, we thwart malicious user behavior such as double-redeeming attempts where a user tries to obtain rewards for multiple submissions of the same data. More importantly, we ensure the fairness of the exchange in a completely trustless manner; by relying on the Blockchain, we eliminate the trust placed on third parties in traditional fair exchange protocols. Finally, our system is highly efficient as most of the protocol steps do not utilize the Blockchain network. When they do, we only rely on simple Bitcoin transactions as opposed to prior works that are based on the use of highly complex smart contracts

    Incentivizing Participation in Crowd-Sensing Applications Through Fair and Private Bitcoin Rewards

    Get PDF
    In this work we develop a rewarding framework that can be used to enhance existing crowd-sensing applications. Although a core requirement of such systems is user engagement, people may be reluctant to participate because sensitive information about them may be leaked or inferred from submitted data. The use of monetary rewards can help incentivize participation, thereby increasing not only the amount but also the quality of sensed data. Our framework allows users to submit data and obtain Bitcoin payments in a privacy-preserving manner, preventing curious providers from linking the data or the payments back to the user. At the same time, it prevents malicious user behavior such as double-redeeming attempts, where a user tries to obtain rewards for multiple submissions of the same data. More importantly, it ensures the fairness of the exchange in a completely trustless manner; by relying on the Blockchain, the trust placed on third parties in traditional fair exchange protocols is eliminated. Finally, our system is highly efficient as most of the protocol steps do not utilize the Blockchain network. When they do, only the simplest of Blockchain transactions are used as opposed to prior works that are based on the use of more complex smart contracts.publishedVersionPeer reviewe

    Security and Privacy Preservation in Mobile Crowdsensing

    Get PDF
    Mobile crowdsensing (MCS) is a compelling paradigm that enables a crowd of individuals to cooperatively collect and share data to measure phenomena or record events of common interest using their mobile devices. Pairing with inherent mobility and intelligence, mobile users can collect, produce and upload large amounts of data to service providers based on crowdsensing tasks released by customers, ranging from general information, such as temperature, air quality and traffic condition, to more specialized data, such as recommended places, health condition and voting intentions. Compared with traditional sensor networks, MCS can support large-scale sensing applications, improve sensing data trustworthiness and reduce the cost on deploying expensive hardware or software to acquire high-quality data. Despite the appealing benefits, however, MCS is also confronted with a variety of security and privacy threats, which would impede its rapid development. Due to their own incentives and vulnerabilities of service providers, data security and user privacy are being put at risk. The corruption of sensing reports may directly affect crowdsensing results, and thereby mislead customers to make irrational decisions. Moreover, the content of crowdsensing tasks may expose the intention of customers, and the sensing reports might inadvertently reveal sensitive information about mobile users. Data encryption and anonymization techniques can provide straightforward solutions for data security and user privacy, but there are several issues, which are of significantly importance to make MCS practical. First of all, to enhance data trustworthiness, service providers need to recruit mobile users based on their personal information, such as preferences, mobility pattern and reputation, resulting in the privacy exposure to service providers. Secondly, it is inevitable to have replicate data in crowdsensing reports, which may possess large communication bandwidth, but traditional data encryption makes replicate data detection and deletion challenging. Thirdly, crowdsensed data analysis is essential to generate crowdsensing reports in MCS, but the correctness of crowdsensing results in the absence of malicious mobile users and service providers become a huge concern for customers. Finally yet importantly, even if user privacy is preserved during task allocation and data collection, it may still be exposed during reward distribution. It further discourage mobile users from task participation. In this thesis, we explore the approaches to resolve these challenges in MCS. Based on the architecture of MCS, we conduct our research with the focus on security and privacy protection without sacrificing data quality and users' enthusiasm. Specifically, the main contributions are, i) to enable privacy preservation and task allocation, we propose SPOON, a strong privacy-preserving mobile crowdsensing scheme supporting accurate task allocation. In SPOON, the service provider recruits mobile users based on their locations, and selects proper sensing reports according to their trust levels without invading user privacy. By utilizing the blind signature, sensing tasks are protected and reports are anonymized. In addition, a privacy-preserving credit management mechanism is introduced to achieve decentralized trust management and secure credit proof for mobile users; ii) to improve communication efficiency while guaranteeing data confidentiality, we propose a fog-assisted secure data deduplication scheme, in which a BLS-oblivious pseudo-random function is developed to enable fog nodes to detect and delete replicate data in sensing reports without exposing the content of reports. Considering the privacy leakages of mobile users who report the same data, the blind signature is utilized to hide users' identities, and chameleon hash function is leveraged to achieve contribution claim and reward retrieval for anonymous greedy mobile users; iii) to achieve data statistics with privacy preservation, we propose a privacy-preserving data statistics scheme to achieve end-to-end security and integrity protection, while enabling the aggregation of the collected data from multiple sources. The correctness verification is supported to prevent the corruption of the aggregate results during data transmission based on the homomorphic authenticator and the proxy re-signature. A privacy-preserving verifiable linear statistics mechanism is developed to realize the linear aggregation of multiple crowdsensed data from a same device and the verification on the correctness of aggregate results; and iv) to encourage mobile users to participating in sensing tasks, we propose a dual-anonymous reward distribution scheme to offer the incentive for mobile users and privacy protection for both customers and mobile users in MCS. Based on the dividable cash, a new reward sharing incentive mechanism is developed to encourage mobile users to participating in sensing tasks, and the randomization technique is leveraged to protect the identities of customers and mobile users during reward claim, distribution and deposit
    • …
    corecore