2,327 research outputs found

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Exploring Privacy-Preserving Disease Diagnosis: A Comparative Analysis

    Get PDF
    In the healthcare sector, data is considered as a valuable asset, with enormous amounts generated in the form of patient records and disease-related information. Leveraging machine learning techniques enables the analysis of extensive datasets, unveiling hidden patterns in diseases, facilitating personalized treatments, and forecasting potential health issues. However, the flourish of online diagnosis and prediction still faces some challenges related to information security and privacy as disease diagnosis technologies utilizes a lot of clinical records and sensitive patient data. Hence, it becomes imperative to prioritize the development of innovative methodologies that not only advance the accuracy and efficiency of disease prediction but also ensure the highest standards of privacy protection. This requires collaborative efforts between researchers, healthcare practitioners, and policymakers to establish a comprehensive framework that addresses the evolving landscape of healthcare data while safeguarding individual privacy. Addressing this constraint, numerous researchers integrate privacy preservation measures with disease prediction techniques to develop a system capable of diagnosing diseases without compromising the confidentiality of sensitive information. The survey paper conducts a comparative analysis of privacy-preserving techniques employed in disease diagnosis and prediction. It explores existing methodologies across various domains, assessing their efficacy and trade-offs in maintaining data confidentiality while optimizing diagnostic accuracy. The review highlights the need for robust privacy measures in disease prediction, shortcomings related to existing techniques of privacy preserving disease diagnosis, and provides insights into promising directions for future research in this critical intersection of healthcare and privacy preservation

    Outsourced Analysis of Encrypted Graphs in the Cloud with Privacy Protection

    Full text link
    Huge diagrams have unique properties for organizations and research, such as client linkages in informal organizations and customer evaluation lattices in social channels. They necessitate a lot of financial assets to maintain because they are large and frequently continue to expand. Owners of large diagrams may need to use cloud resources due to the extensive arrangement of open cloud resources to increase capacity and computation flexibility. However, the cloud's accountability and protection of schematics have become a significant issue. In this study, we consider calculations for security savings for essential graph examination practices: schematic extraterrestrial examination for outsourcing graphs in the cloud server. We create the security-protecting variants of the two proposed Eigen decay computations. They are using two cryptographic algorithms: additional substance homomorphic encryption (ASHE) strategies and some degree homomorphic encryption (SDHE) methods. Inadequate networks also feature a distinctively confidential info adaptation convention to allow the trade-off between secrecy and data sparseness. Both dense and sparse structures are investigated. According to test results, calculations with sparse encoding can drastically reduce information. SDHE-based strategies have reduced computing time, while ASHE-based methods have reduced stockpiling expenses

    On the security of NoSQL cloud database services

    Get PDF
    Processing a vast volume of data generated by web, mobile and Internet-enabled devices, necessitates a scalable and flexible data management system. Database-as-a-Service (DBaaS) is a new cloud computing paradigm, promising a cost-effective and scalable, fully-managed database functionality meeting the requirements of online data processing. Although DBaaS offers many benefits it also introduces new threats and vulnerabilities. While many traditional data processing threats remain, DBaaS introduces new challenges such as confidentiality violation and information leakage in the presence of privileged malicious insiders and adds new dimension to the data security. We address the problem of building a secure DBaaS for a public cloud infrastructure where, the Cloud Service Provider (CSP) is not completely trusted by the data owner. We present a high level description of several architectures combining modern cryptographic primitives for achieving this goal. A novel searchable security scheme is proposed to leverage secure query processing in presence of a malicious cloud insider without disclosing sensitive information. A holistic database security scheme comprised of data confidentiality and information leakage prevention is proposed in this dissertation. The main contributions of our work are: (i) A searchable security scheme for non-relational databases of the cloud DBaaS; (ii) Leakage minimization in the untrusted cloud. The analysis of experiments that employ a set of established cryptographic techniques to protect databases and minimize information leakage, proves that the performance of the proposed solution is bounded by communication cost rather than by the cryptographic computational effort

    Privacy-preserving efficient searchable encryption

    Get PDF
    Data storage and computation outsourcing to third-party managed data centers, in environments such as Cloud Computing, is increasingly being adopted by individuals, organizations, and governments. However, as cloud-based outsourcing models expand to society-critical data and services, the lack of effective and independent control over security and privacy conditions in such settings presents significant challenges. An interesting solution to these issues is to perform computations on encrypted data, directly in the outsourcing servers. Such an approach benefits from not requiring major data transfers and decryptions, increasing performance and scalability of operations. Searching operations, an important application case when cloud-backed repositories increase in number and size, are good examples where security, efficiency, and precision are relevant requisites. Yet existing proposals for searching encrypted data are still limited from multiple perspectives, including usability, query expressiveness, and client-side performance and scalability. This thesis focuses on the design and evaluation of mechanisms for searching encrypted data with improved efficiency, scalability, and usability. There are two particular concerns addressed in the thesis: on one hand, the thesis aims at supporting multiple media formats, especially text, images, and multimodal data (i.e. data with multiple media formats simultaneously); on the other hand the thesis addresses client-side overhead, and how it can be minimized in order to support client applications executing in both high-performance desktop devices and resource-constrained mobile devices. From the research performed to address these issues, three core contributions were developed and are presented in the thesis: (i) CloudCryptoSearch, a middleware system for storing and searching text documents with privacy guarantees, while supporting multiple modes of deployment (user device, local proxy, or computational cloud) and exploring different tradeoffs between security, usability, and performance; (ii) a novel framework for efficiently searching encrypted images based on IES-CBIR, an Image Encryption Scheme with Content-Based Image Retrieval properties that we also propose and evaluate; (iii) MIE, a Multimodal Indexable Encryption distributed middleware that allows storing, sharing, and searching encrypted multimodal data while minimizing client-side overhead and supporting both desktop and mobile devices
    corecore