22 research outputs found

    Virtual Machine Images Preconfigured with Security Scripts for Data Protection and Alerting

    Get PDF
    Developers use interactive development environments (IDEs) to create and share documents that contain live code, equations, visualizations, narrative text, etc. as part of the artificial intelligence/ machine learning (AI/ML) development process. Virtual machines that run IDEs may have access to private and/or sensitive data used during model training or use. For data security and compliance, it is necessary to highlight and track the VMs that have been in contact with sensitive information. This disclosure describes techniques to automatically identify and label the presence of sensitive data in virtual machines and disks as part of machine learning. Custom VM images are provided that include data scanning scripts that can identify the presence of sensitive data during or after usage, e.g., by a developer using an IDE. The scripts can automatically log the presence of data and generate alerts. Users of such virtual machines are provided additional controls to perform the training process in a secure and confidential manner in compliance with applicable data regulations

    Privacy-Preserving Medical Image Classification through Deep Learning and Matrix Decomposition

    Full text link
    Deep learning (DL)-based solutions have been extensively researched in the medical domain in recent years, enhancing the efficacy of diagnosis, planning, and treatment. Since the usage of health-related data is strictly regulated, processing medical records outside the hospital environment for developing and using DL models demands robust data protection measures. At the same time, it can be challenging to guarantee that a DL solution delivers a minimum level of performance when being trained on secured data, without being specifically designed for the given task. Our approach uses singular value decomposition (SVD) and principal component analysis (PCA) to obfuscate the medical images before employing them in the DL analysis. The capability of DL algorithms to extract relevant information from secured data is assessed on a task of angiographic view classification based on obfuscated frames. The security level is probed by simulated artificial intelligence (AI)-based reconstruction attacks, considering two threat actors with different prior knowledge of the targeted data. The degree of privacy is quantitatively measured using similarity indices. Although a trade-off between privacy and accuracy should be considered, the proposed technique allows for training the angiographic view classifier exclusively on secured data with satisfactory performance and with no computational overhead, model adaptation, or hyperparameter tuning. While the obfuscated medical image content is well protected against human perception, the hypothetical reconstruction attack proved that it is also difficult to recover the complete information of the original frames.Comment: 6 pages, 9 figures, Published in: 2023 31st Mediterranean Conference on Control and Automation (MED

    Dataset Obfuscation: Its Applications to and Impacts on Edge Machine Learning

    Full text link
    Obfuscating a dataset by adding random noises to protect the privacy of sensitive samples in the training dataset is crucial to prevent data leakage to untrusted parties for edge applications. We conduct comprehensive experiments to investigate how the dataset obfuscation can affect the resultant model weights - in terms of the model accuracy, Frobenius-norm (F-norm)-based model distance, and level of data privacy - and discuss the potential applications with the proposed Privacy, Utility, and Distinguishability (PUD)-triangle diagram to visualize the requirement preferences. Our experiments are based on the popular MNIST and CIFAR-10 datasets under both independent and identically distributed (IID) and non-IID settings. Significant results include a trade-off between the model accuracy and privacy level and a trade-off between the model difference and privacy level. The results indicate broad application prospects for training outsourcing in edge computing and guarding against attacks in Federated Learning among edge devices.Comment: 6 page

    Brain–Machine Interfaces: The Role of the Neurosurgeon

    Get PDF
    The neurotechnology field is set to expand rapidly in the coming years as technological innovations in hardware and software are translated to the clinical setting. Given our unique access to patients with neurological disorders, expertise with which to guide appropriate treatments and technical skills to implant brain-machine interfaces (BMIs), neurosurgeons have a key role to play in the progress of this field. We outline the current state and key challenges in this rapidly advancing field including implant technology, implant recipients, implantation methodology, implant function, ethical, regulatory and economic considerations. Our key message is to encourage the neurosurgical community to proactively engage in collaborating with other healthcare professionals, engineers, scientists, ethicists and regulators in tackling these issues. By doing so, we will equip ourselves with the skills and expertise to drive the field forward and avoid being mere technicians in an industry driven by those around us

    Segmentations-Leak: Membership Inference Attacks and Defenses in Semantic Image Segmentation

    No full text
    Today's success of state of the art methods for semantic segmentation is driven by large datasets. Data is considered an important asset that needs to be protected, as the collection and annotation of such datasets comes at significant efforts and associated costs. In addition, visual data might contain private or sensitive information, that makes it equally unsuited for public release. Unfortunately, recent work on membership inference in the broader area of adversarial machine learning and inference attacks on machine learning models has shown that even black box classifiers leak information on the dataset that they were trained on. We show that such membership inference attacks can be successfully carried out on complex, state of the art models for semantic segmentation. In order to mitigate the associated risks, we also study a series of defenses against such membership inference attacks and find effective counter measures against the existing risks with little effect on the utility of the segmentation method. Finally, we extensively evaluate our attacks and defenses on a range of relevant real-world datasets: Cityscapes, BDD100K, and Mapillary Vistas.Comment: Accepted to ECCV 2020. Code at: https://github.com/SSAW14/segmentation_membership_inferenc
    corecore