742 research outputs found

    Privacy-preserving top-N recommendation on horizontally partitioned data

    Get PDF
    Collaborative filtering techniques are widely used by many E-commerce sites for recommendation purposes. Such techniques help customers by suggesting products to purchase using other users’ preferences. Today’s top-recommendation schemes are based on market basket data, which shows whether a customer bought an item or not. Data collected for recommendation purposes might be split between different parties. To provide better referrals and increase mutual advantages, such parties might want to share data. Due to privacy concerns, however, they do not want to disclose data. This paper presents a scheme for binary ratings-based top-N recommendation on horizontally partitioned data, in which two parties own disjoint sets of users ’ ratings for the same items while preserving data owners ’ privacy. If data owners want to produce referrals using the combined data while preserving their privacy, we propose a scheme to provide accurate top-N recommendations without exposing data owners’ privacy. We conducted various experiments to evaluate our scheme and analyzed how different factors affect the performance using the experiment result

    Mining Privacy-Preserving Association Rules based on Parallel Processing in Cloud Computing

    Full text link
    With the onset of the Information Era and the rapid growth of information technology, ample space for processing and extracting data has opened up. However, privacy concerns may stifle expansion throughout this area. The challenge of reliable mining techniques when transactions disperse across sources is addressed in this study. This work looks at the prospect of creating a new set of three algorithms that can obtain maximum privacy, data utility, and time savings while doing so. This paper proposes a unique double encryption and Transaction Splitter approach to alter the database to optimize the data utility and confidentiality tradeoff in the preparation phase. This paper presents a customized apriori approach for the mining process, which does not examine the entire database to estimate the support for each attribute. Existing distributed data solutions have a high encryption complexity and an insufficient specification of many participants' properties. Proposed solutions provide increased privacy protection against a variety of attack models. Furthermore, in terms of communication cycles and processing complexity, it is much simpler and quicker. Proposed work tests on top of a realworld transaction database demonstrate that the aim of the proposed method is realistic

    A Trust-based Recommender System over Arbitrarily Partitioned Data with Privacy

    Get PDF
    Recommender systems are effective mechanisms for recommendations about what to watch, read, or taste based on user ratings about experienced products or services. To achieve higher quality recommendations, e-commerce parties may prefer to collaborate over partitioned data. Due to privacy issues, they might hesitate to work in pairs and some solutions motivate them to collaborate. This study examines how to estimate trust-based predictions on arbitrarily partitioned data in which two parties have ratings for similar sets of customers and items. A privacy- preserving scheme is proposed, and it is justified that it efficiently offers trust-based predictions on partitioned data while preserving privacy

    Learning structure and schemas from heterogeneous domains in networked systems: a survey

    Get PDF
    The rapidly growing amount of available digital documents of various formats and the possibility to access these through internet-based technologies in distributed environments, have led to the necessity to develop solid methods to properly organize and structure documents in large digital libraries and repositories. Specifically, the extremely large size of document collections make it impossible to manually organize such documents. Additionally, most of the document sexist in an unstructured form and do not follow any schemas. Therefore, research efforts in this direction are being dedicated to automatically infer structure and schemas. This is essential in order to better organize huge collections as well as to effectively and efficiently retrieve documents in heterogeneous domains in networked system. This paper presents a survey of the state-of-the-art methods for inferring structure from documents and schemas in networked environments. The survey is organized around the most important application domains, namely, bio-informatics, sensor networks, social networks, P2Psystems, automation and control, transportation and privacy preserving for which we analyze the recent developments on dealing with unstructured data in such domains.Peer ReviewedPostprint (published version

    A look at cloud architecture interoperability through standards

    Get PDF
    Enabling cloud infrastructures to evolve into a transparent platform while preserving integrity raises interoperability issues. How components are connected needs to be addressed. Interoperability requires standard data models and communication encoding technologies compatible with the existing Internet infrastructure. To reduce vendor lock-in situations, cloud computing must implement universal strategies regarding standards, interoperability and portability. Open standards are of critical importance and need to be embedded into interoperability solutions. Interoperability is determined at the data level as well as the service level. Corresponding modelling standards and integration solutions shall be analysed

    Privacy Preservation and Analytical Utility of E-Learning Data Mashups in the Web of Data

    Get PDF
    Virtual learning environments contain valuable data about students that can be correlated and analyzed to optimize learning. Modern learning environments based on data mashups that collect and integrate data from multiple sources are relevant for learning analytics systems because they provide insights into students' learning. However, data sets involved in mashups may contain personal information of sensitive nature that raises legitimate privacy concerns. Average privacy preservation methods are based on preemptive approaches that limit the published data in a mashup based on access control and authentication schemes. Such limitations may reduce the analytical utility of the data exposed to gain students' learning insights. In order to reconcile utility and privacy preservation of published data, this research proposes a new data mashup protocol capable of merging and k-anonymizing data sets in cloud-based learning environments without jeopardizing the analytical utility of the information. The implementation of the protocol is based on linked data so that data sets involved in the mashups are semantically described, thereby enabling their combination with relevant educational data sources. The k-anonymized data sets returned by the protocol still retain essential information for supporting general data exploration and statistical analysis tasks. The analytical and empirical evaluation shows that the proposed protocol prevents individuals' sensitive information from re-identifying.The Spanish National Research Agency (AEI) funded this research through the project CREPES (ref. PID2020-115844RB-I00) with ERDF funds

    Privet: A Privacy-Preserving Vertical Federated Learning Service for Gradient Boosted Decision Tables

    Full text link
    Vertical federated learning (VFL) has recently emerged as an appealing distributed paradigm empowering multi-party collaboration for training high-quality models over vertically partitioned datasets. Gradient boosting has been popularly adopted in VFL, which builds an ensemble of weak learners (typically decision trees) to achieve promising prediction performance. Recently there have been growing interests in using decision table as an intriguing alternative weak learner in gradient boosting, due to its simpler structure, good interpretability, and promising performance. In the literature, there have been works on privacy-preserving VFL for gradient boosted decision trees, but no prior work has been devoted to the emerging case of decision tables. Training and inference on decision tables are different from that the case of generic decision trees, not to mention gradient boosting with decision tables in VFL. In light of this, we design, implement, and evaluate Privet, the first system framework enabling privacy-preserving VFL service for gradient boosted decision tables. Privet delicately builds on lightweight cryptography and allows an arbitrary number of participants holding vertically partitioned datasets to securely train gradient boosted decision tables. Extensive experiments over several real-world datasets and synthetic datasets demonstrate that Privet achieves promising performance, with utility comparable to plaintext centralized learning.Comment: Accepted in IEEE Transactions on Services Computing (TSC
    corecore