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Abstract: Virtual learning environments contain valuable data about students that can be correlated
and analyzed to optimize learning. Modern learning environments based on data mashups that
collect and integrate data from multiple sources are relevant for learning analytics systems because
they provide insights into students’ learning. However, data sets involved in mashups may contain
personal information of sensitive nature that raises legitimate privacy concerns. Average privacy
preservation methods are based on preemptive approaches that limit the published data in a mashup
based on access control and authentication schemes. Such limitations may reduce the analytical
utility of the data exposed to gain students’ learning insights. In order to reconcile utility and
privacy preservation of published data, this research proposes a new data mashup protocol capable
of merging and k-anonymizing data sets in cloud-based learning environments without jeopardizing
the analytical utility of the information. The implementation of the protocol is based on linked
data so that data sets involved in the mashups are semantically described, thereby enabling their
combination with relevant educational data sources. The k-anonymized data sets returned by the
protocol still retain essential information for supporting general data exploration and statistical
analysis tasks. The analytical and empirical evaluation shows that the proposed protocol prevents
individuals’ sensitive information from re-identifying.

Keywords: learning analytics; data mashup; data privacy; privacy-preserving data publishing;
k-anonymity

1. Introduction

Aware of data opportunities in an information-driven world, private, academic, and
government organizations are including frameworks that enable the FAIR principles (Find-
ability, Accessibility, Interoperability, and Reusability) on Big Data Governance and Meta-
data Management in their roadmap [1]. In particular, the IEEE Standards Association states
the need for devising interoperable data architectures that enable effective integration—i.e.,
mashup—of data from multiple sources to answer specific information requests [2]. Differ-
ent data integration approaches from diverse application domains attempt to cover the
requirement of interoperability by providing public data access infrastructures that enable
dataset mashups [2], such as the Common Access Platform, proposed by the National Insti-
tute of Standards and Technology (NIST) [3–5]. By unifying information from diversified
data repositories, companies and organizations can generate value-added information and,
consequently, detect new business opportunities, identify risks, and discover new patterns
and insights. A great variety of sectors can benefit from Big Data integration to empower
their analytic systems, including social media and search engines; insurance, banking,
and finances; marketing; retail and point-of-sale analytics; manufacturing optimization;
transportation; utility and energy; healthcare; and research and development [6].
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In educational institutions, large amounts of ubiquitous data about students, avail-
able from different cloud-based data sources [7], include students’ demographics besides
relevant data about students’ learning. They can be merged with data from the insti-
tution’s student records, digital libraries, and Learning Management Systems (LMS) to
build customized Virtual Learning Environments (VLE) as personal learning mashups [8].
Thanks to the simplicity and low complexity of web standards, the first generation of
personal learning mashups have been based on a composition of web-based educational
services [9]. However, the automation of independent remote services orchestration is not
straightforward, yielding an obstacle for implementing and using service-based learning
mashups [10]. In contrast, new generation VLEs are based on mashing up data available in
realistic cloud-based learning environments [7], which may even involve data from inde-
pendent educational institutions [11]. Eventually, Learning Analytics (LA) systems built
on new generation learning mashups can benefit from the fusion of large amounts of data
gathered from cloud-based learning environments and institutional teaching systems to
obtain new insights that can improve teachers’ learning design practices [12] and students’
learning performance [13].

Supporting data mashups is critical to assist in data-driven decision-making. However,
sharing and mashing up information with personal content may compromise the privacy
of individuals referenced in the data. Regulations on data privacy, such as the Family
Educational Rights and Privacy Act (FERPA) [14], point out that shared data with unique
identifiers removed can still lead to the re-identification of individuals through data linkage
attacks [15] by correlating potentially identifying combinations of attributes—called Quasi-
Identifiers (QI)—with publicly available external information. Consequently, and since the
trust of the educational community is essential for the adoption of LA, there is a need to
incorporate anonymization mechanisms in LA that guarantee information privacy [13].
More generally, the NIST identifies the balance between privacy and utility as one of the
main issues to be addressed in interoperable data architectures [16].

The dual need to share information and protect privacy at the same time has been
extensively addressed in the field of Privacy-Preserving Data Publishing (PPDP) [15,17]
and, more recently, in e-learning systems [18]. A variety of PPDP methods have been
proposed to mitigate the risk of re-identifying the data subjects and, in turn, yield pro-
tected data that is still useful for specific statistical analyses. Some well-known methods,
such as microaggregation [19] or generalization [20], enable data k-anonymization. By
k-anonymizing a dataset, each QI is altered—or masked—to make it indistinguishable from
the QIs of other k− 1 individuals, thereby reducing the probability of re-identification to
1/k [20]. The k parameter is used to control the masking level: the higher the k, the higher
the masking level—and, consequently, the greater the anonymity degree—but the less
valuable the anonymized information will be for statistical analysis.

Traditional PPDP techniques that are satisfactory to anonymize single datasets may
not be suitable to preserve privacy in the context of data mashup. Privacy-preserving data
mashup alternatives not only have to make the integrated dataset satisfy the established
privacy requirement, but they also have to face new challenges: (i) the parties involved in
the data integration and anonymization process may learn more individuals’ information
than is disclosed in the integrated and anonymized dataset; (ii) if different attributes
from different repositories about the same set of individuals are mashed up—vertically
integrated data—a privacy-aware common identifying attribute is required to serve as
a link or connector in the integration process; and (iii) mashing up datasets adds new
meaning to information that is not available in the individual datasets. These factors
may increase the possibility of identifying the individuals’ records. PPDP techniques
studied in the field of LA [18,21] have not taken into account the distributed nature of
learning datasets.
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Research Contribution

In this paper, we propose a new privacy-preserving vertical data (PPVD) mashup protocol
capable of: (i) attending to requests for learning datasets from data consumers; (ii) identi-
fying the learning data sources, i.e., the set of data providers, that can satisfy a particular
data request; (iii) vertically integrating learning data from the different educational sources
without disclosing the identities of the (students) individuals referenced in the data and
k-anonymizing the quasi-identifiers of the integrated dataset; and (iv) providing the re-
sulting k-anonymized dataset to the data consumer. The protocol integrates learning data
effectively and constitutes a Privacy-by-Design (PbD) solution for interoperable data ar-
chitectures in the educational sphere, reconciling LA with privacy. The protocol can be
adopted in any field of application beyond LA systems.

Unlike other privacy-preserving data mashup techniques, our protocol is not linked
to a particular k-anonymization method. As stated in [14,22], no particular anonymization
method is universally the best option for every dataset. Each method has benefits and draw-
backs with respect to expected applications of the information. The PPVD mashup protocol
offers the possibility of choosing the k-anonymization method—either generalization, mi-
croaggregation, or any other method that satisfies the k-anonymity requirement—according
to the nature of the dataset and the utility requirements of the data customers.

We address anonymity in the context of data mashups in terms of unlinkability [23,24]
and de-identification [14]. Specifically, we analytically and empirically prove that the
proposed protocol is capable of (i) unlinking sensitive data from QIs and (ii) de-identifying
sensitive data, thereby preventing adversaries from uniquely associating the sensitive data
of a specific (student) individual with their identity.

The PPVD mashup protocol defines a solution to reconcile the seemingly discordant
PbD principles [25] and FAIR principles [26]. FAIR principles are essential in the Web
of Data and the Knowledge Graph [27], which aim at building wide-scale information
systems to share large amounts of data. FAIR principles make it paramount that “metadata
clearly and explicitly include the identifier of the data it describes”; “data/metadata include
qualified references to other data/metadata”; and “data/metadata are richly described
with a plurality of accurate and relevant attributes” [1]. The fulfillment of FAIR principles,
however, may threaten data privacy preservation because it requires unveiling identifying
attributes and potential quasi-identifier attributes. Since users do not often respect privacy
policies [28], enforcing privacy preservation by design is unavoidable for all related works
to be considered.

The rest of the paper is organized as follows. Section 2 presents the related works on
privacy-preserving data mashups and learning analytics data privacy. Section 3 discusses some
underpinning considerations on data mashup required to understand the proposed protocol.
Section 4 introduces the PPVD mashup protocol, which is evaluated in Section 5. Finally, in
Section 6, the research implications are discussed, and the conclusions are outlined in
Section 7.

2. Related Works

Most works on privacy preservation in distributed data environments propose a preemp-
tive approach, defining who has access to private data attributes and resources by defining
user profiles [29]. Access control techniques and authentication-based schemes [30] explicitly
grant and revoke data access to parties. The larger the number of sensitive attributes in an
access-controlled dataset, the greater the loss of analytical utility if exposing only publicly
available data attributes. Data partitioning has been proposed as a method for privacy
preservation in distributed environments [31]. It is based on a simple PPDP strategy of
creating noisy data along with actual data and uploading it to multiple nodes. However,
data partitioning approaches are more diverse and have consequences on privacy when
applied to data mashups, as we analyze next.
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2.1. Privacy-Preserving Data Mashup

Approaches on privacy-preserving data mashups address the integration of hori-
zontally partitioned and vertically partitioned datasets, each data partition being held by a
different data provider.

In the horizontally partitioned datasets, all the data partitions follow the same data
schema, i.e., all the data partitions register the same attributes, but each partition contains
records of different individuals. A typical scenario of horizontal partition is one in which
the data providers are individuals supplying their data, e.g., demographic, health, and exer-
cise data. Privacy-preserving data mashups on horizontally partitioned datasets have been
extensively addressed [32–34]. These strategies have in common the segregation of data
in the collection process. In the first phase, the data providers send the quasi-identifiers
to the data collector, also known as the mashup coordinator. With this information, the
mashup coordinator k-anonymizes the set of received quasi-identifiers and distributes the
masked quasi-identifiers to the data providers. In the following phase, the confidential
attributes are sent to the mashup coordinator along with the masked quasi-identifiers.
This segregated collection contributes to anonymizing data because it disassociates confi-
dential attributes from original quasi-identifiers. Unlike previous protocols that output
k-anonymized data, Chamikara et al. [35] presents a perturbative mashup protocol that
provides noisy anonymized data to train distributed machine learning models. Data pertur-
bation is caused by geometric data transformations, randomized expansion noise addition,
and data shuffling.

In scenarios of vertically partitioned datasets, data providers record different features
on the same set of individuals, i.e., each vertical partition registers a different set of
attributes and, thus, follows a different data schema. It is assumed that all the vertical
partitions have a common identifier attribute, which will be used as a connector to integrate
the partitions. Vertical partitioning of data is also a data distribution model often found
in real cases, such as healthcare [36], the financial sector [37], or one-stop services [38].
Vertical partitioning is the typical configuration of the datasets used to build the next-
generation VLEs. Databases used to store and query e-learning data can be implemented
with diverse storage techniques, including graph databases [39], e.g., RDF (Resource
Description Framework) triplestores, and relational databases [40].

On the one hand, vertical partitioning in relational database tables to store different
sets of data properties [41] is subject to data linkage attacks as long as tables must be subject
to relational joins to implement the mashup queries. On the other hand, querying data
stored as vertically partitioned graph-based databases [42] can be serialized onto large
tables and exposed to privacy concerns. The mashup of data sources in the Web of Data
does not only affect distinct data sources from independent RDF triplestores containing
resources that can be linked. Even a single-triplestore implementation of the Linked Data
Platform (LDP) specification [43] might also require mashing up resources from different
containers before running a query because some LDP sources vertically partition their
resources into smaller containers, such that each resource is created within an instance of
one of these container-like entities. Although containers are not normative in the LDP 1.0
specification, container-based implementations can also be exposed to adversarial attacks
affecting data linking from vertically partitioned containers.

Privacy-preserving data mashups on vertically partitioned datasets have been heavily
focused on data mining, such as association rule mining [36,44,45], classification min-
ing [46–48], or clustering [49–51]. For example, ref. [36] collaboratively computes associa-
tion rule mining on vertically partitioned data to find common patterns. The authors of [51]
detect the clusters on the integrated dataset by using mechanisms of secure multiparty
computation to model a clustering tree on vertically distributed data without revealing
the data partitions to other providers or the mashup coordinator. Unlike data integration
focused on data mining, data publishing methods are used to share datasets—i.e., raw
data—instead of just data mining results—e.g., answers to queries. In many applications,
sharing datasets is preferable for flexibility. It allows the data consumers to conduct their
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own analysis and data exploration without being linked to any particular query submission
protocol. In this regard, Ref. [37] proposes a top-down specialization approach to build the
k-anonymous datasets from vertical data partitions. The integrated k-anonymous dataset
is collaboratively built by the data providers from a top-level abstract representation of
the dataset. This initial version of the dataset is then specialized down in a sequence of
iterations. At each iteration, the provider selected to specialize its quasi-identifiers instructs
the other data providers on how to modify those data in the generalized version they keep.
The process ends when any further specialization leads to a violation of the k-anonymity
requirement. Aware of the high dimensionality that the quasi-identifier resulting from the
join may have in a vertical data mashup, Ref. [52] proposes a variant to better preserve the
information utility on high-dimensional quasi-identifiers.

The techniques on vertically partitioned datasets described above achieve k-anonymity
by generalizing the dataset, as shown in Table 1. Generalization techniques have the disad-
vantage of either requiring a high computational cost to find the optimal generalization
that minimizes the information loss [53] or requiring an ad hoc taxonomic binary tree
for each attribute to be anonymized [54]. It would be desirable to incorporate more prac-
tical techniques of k-anonymization in vertical data mashups, such as those based on
microaggregation [19].

Table 1. Comparison of privacy-preserving data mashup protocols that yield k-anonymized raw data.

Privacy-Preserving Data Mashup Protocol Data Partitioning Method for k-Anonymizing Quasi-Identifiers

Soria-Comas and Domingo-Ferrer (2015) [32] Horizontal Any method (e.g., generalization
or microaggregation)

Kim and Chung (2019) [33] Horizontal Generalization, although other methods can be
easily incorporated

Rodriguez-Garcia, Cifredo-Chacón and
Quirós-Olozábal (2020) [34] Horizontal Any method (e.g., generalization

or microaggregation)
Mohammed, Fung, Wang and Hung (2009) [37] Vertical Generalization (top-down specialization)

Fung, Trojer, Hung, Xiong, Al-Hussaeni and
Dssouli (2012) [52] Vertical Generalization (top-down specialization)

2.2. Learning Analytics Data Privacy

Privacy presents severe challenges for current developments and research in the
field of ubiquitous [55] and multimodal [56] learning environments. The way students’
assignment data are represented in such VLEs is influential to the performance of LA
methods and algorithms [57]. For instance, extensions of supervised learning focused on
weakly labeled data have been used to predict the impact of students’ assignments on
their learning [58]. One of the main objectives of the FAIR principles is to enhance these
weakly labeled data by enriching metadata with a plurality of attributes. Nevertheless,
intelligent computing techniques, such as machine learning, have many security and ethical
implications [59] that can be discordant with fulfilling such principles. Consequently,
when applied to the arena of technology-enhanced learning, FAIR principles may pose an
advantage to humans’ learning support as well as a risk on their privacy.

The application of PbD techniques is paramount for LA and analytics research in
educational institutions [60]. LA systems development should account for privacy at the
time of design rather than addressing privacy concerns as an afterthought [61]. For instance,
de-identification helps protect privacy by preventing the revelation of Personal Identifiable
Information (PII) that can be used to identify an individual [21]. Besides, quasi-identifiers
can also be used to break basic anonymization techniques used for LA [18]. Since current
VLEs are built on data from cloud-based environments [7,11], LA requires improved PPDP
methods capable of operating on data mashups, such that privacy constraints do not
impose a limitation on LA solutions [13]. PPDP solutions used for LA [18,21] have not
considered the actual mashup structure of current VLEs.
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3. Considerations on Data Mashup

Before describing our PPVD mashup protocol, we have to argue about the database
technology options to implement the vertical data mashups based on the most prominent
DBMS alternatives for data providers. Then, we present some considerations on each
participant’s role in mashups of vertically partitioned datasets. Finally, we address sensitive
data de-identification in the context of data mashups.

3.1. Database Management Technology

Building a data mashup greatly depends on the DataBase Management System (DBMS)
technology data providers use. On the one hand, relational DBMSs are still prevailing to
implement internet information systems (72.8% score according to DB-Engines’ ranking,
available at https://db-engines.com/en/ranking_categories, accessed on 9 September
2021). Hence, basing our data mashup implementation upon relational databases would
have been reasonable. However, the popularity of graph databases is constantly increas-
ing [39]—graph DBMS are 14 times more prevalent than relational DBMSs. On the other
hand, opting for general-purpose graph database technology would require revised ver-
sions of PPDP algorithms, which is out of our scope.

An option to share the data mashup schema is using an LDP-compliant triplestore.
Despite its currently low popularity (0.4% ranking score), RDF triplestores are graph
databases that enable sharing schemata through ontologies and vocabularies. Besides, RDF
triplestores are usually implemented on top of relational DBMS or graph databases [40],
making LDP an acceptably interoperable solution to publish and share different providers’
data schemata, either relational or graph-based. Another choice would have been to use
the GraphQL Schema Definition Language (SDL) (available at https://graphql.org/learn/
schema, accessed on 9 September 2021) to define both the providers’ schema and the data
mashup schema. Using Linked Data or GraphQL is an implementation decision that does
not affect the validity of the mashup protocol proposed below.

As exchanging the data providers’ schemata depends on their implementation choice
of DBMS technology, we need an independent means to share the information required by
the mashup protocol. We opt for using the Web of Data standards for representing the data
mashup, while data providers’ vertical partitions are represented as relational tables, as
explained next. The choice of relational DMBS as the source of data is supported by the
scarce availability of VLE datasets as another format than relational database dumps.

To illustrate the mashup protocol in a real e-learning mashup example, we will use the
Open University Learning Analytics Dataset (OULAD) [62], formed by several relational
data tables, each concerning different aspects of students’ activity in a LMS. Although
OULAD is actually a monolithic data dump, it is structured as three parts: (i) student
demographics, which contains demographic information about the students together with
their results; (ii) student activities, which contains the results of students’ assessments and
information about the time when the student registered in modules; and (iii) course module
presentations, which contains information about available course modules, assessments,
and materials. Each OULAD part is considered to be stored by a separate data provider as
a more realistic cloud-based, personal learning environment [7] that might involve two or
more educational institutions as data providers [11].

3.2. Mashups of Vertically Partitioned Datasets

We consider three actors in a privacy-preserving data mashup protocol: the data
consumer, the data provider, and the data mashup coordinator. The data consumer is the
party that acquires individuals’ data for a specific purpose. A data consumer could be,
for example, an institution that seeks to acquire LA datasets for sociological studies. The
data provider is the party that supplies the individuals’ data, e.g., an educational center
that provides the students’ data. Finally, the data mashup coordinator represents a point of
connection between data consumers and providers. Its function is to coordinate the data

https://db-engines.com/en/ranking_categories
https://graphql.org/learn/schema
https://graphql.org/learn/schema
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collection, integration, and anonymization. The mashup coordinator may be a third party
or the data consumer itself.

The eventual dataset provided to the data consumer is built by vertically joining
the data partitions held by a set of providers. Each data partition registers different
characteristics—or attributes—from the same set of individuals, and all the partitions share
a common key field—or a common identifier attribute. For simplicity, we consider that
a vertical data partition is a data table. Each row is a data record containing information
about a single individual, and each column is an attribute containing information regarding
one of the features collected. The attributes of a partition can be classified as identifiers,
quasi-identifiers, and confidential. We assume that identifier attributes are not shared
with data consumers, except for the common identifier attribute that must be shared with
the mashup coordinator in a privacy-preserving manner. We also assume that each data
provider decides the amount of masking required for its quasi-identifier attributes.

3.3. De-Identification in the Context of Data Mashup

We consider that data mashup protocols are executed in scenarios where all parties
participating in the protocol are semi-honest. A party is semi-honest if, despite following
the rules of the protocol, it may attempt to infer additional information—e.g., sensitive
information—about the data subjects by analyzing the data received during the execution
of the protocol. In this context, we define the k-unlinkability property as a critical property
to de-identify sensitive data in data mashups.

Definition 1 (k-Unlinkability). A data mashup protocol is said to satisfy k-unlinkability if, for
any passive attacker, whether internal or external to the protocol, the probability of correctly linking
the confidential attributes of a specific individual with their original quasi-identifiers—non-masked
quasi-identifiers—is at most 1/k.

If this property is not met in a data mashup protocol, an adversary could re-identify
sensitive information in the face of successful data linkage attacks.

4. Privacy-Preserving Vertical Data Mashup Protocol

Our proposal consists of two protocols: the setup protocol and the anonymization and
integration protocol. In the setup protocol, the mashup coordinator identifies those data
providers that may supply the data partitions used to build the datasets requested by the
data consumers. In the anonymization and integration protocol, the data providers and the
mashup coordinator k-anonymize and vertically integrate the data partitions to build the
de-identified datasets provided to the data consumers.

4.1. Setup Protocol

When the mashup coordinator receives a data request from a particular data consumer,
it starts the setup protocol. In the setup protocol, the mashup coordinator must complete
the following steps:

1. Identify the set of data providers that can satisfy the data request, each provider
contributing a vertical partition of the requested dataset;

2. Build the mashup data schema;
3. Designate the leading provider that will initiate the anonymization and integration

protocol.

4.1.1. Identify Data Providers

To facilitate the identification of the data partitions that may be vertically integrated
to satisfy the requirement of the data consumer, the data providers must: publish the data
schemata, set the identifier attribute that may be used as a connector in the integration
process, and define the quasi-identifying and confidential attribute sets. Since publishing
the data schemata heavily depends on the DBMS technology used by each data provider,
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we suggest mapping to well-known technologies used for the Web of Data to publish the
schemata of the involved datasets, as explained in the following subsection.

4.1.2. Build the Mashup Data Schema

Once the mashup coordinator has identified the data providers that can satisfy the data
request, the mashup coordinator proceeds to build the final schema of the mashup dataset.
This data schema should reflect the following: the identifier attribute that will be used as a
connector in the integration process, the aggregate (or join) quasi-identifier, i.e., the one resulting
from joining the quasi-identifiers of the different data partitions, the privacy level that will be
applied to the aggregate quasi-identifier, and the set of confidential attributes.

Considering the problem of a large dimension in aggregate quasi-identifiers, we pro-
pose that these be divided into smaller quasi-identifiers [52], thereby allowing mashup co-
ordinators to specify multiple aggregate quasi-identifiers. The division of quasi-identifiers
prevents a significant loss of information during the masking process because as the num-
ber of attributes decreases, less perturbation may be required to achieve k-anonymity.
Without loss of generality and for the sake of simplicity, we will describe the protocol for a
single aggregate quasi-identifier. To fulfill most exigent data providers’ privacy require-
ments, the mashup coordinator must select the most restrictive k value—i.e., the highest
k—from those specified in the data schemata of the providers to be applied to the aggregate
quasi-identifier.

In the following, we draw the suggested enactment of the setup protocol in a federated
RDF view of an underlying relational data source. We use the RDF view materialization
strategy described in [63] to build the linked data mashup. Although it was initially
proposed to improve query performance and data availability, we applied it to implement
the setup protocol on relational data sources. The mashup materialization depends on the
federated schemata, the aggregate schema, the connector attribute, and the quasi-identifiers,
as the setup protocol requires.

Concerning the LDP 1.0 specification, two alternative implementations must be con-
sidered for the mashup. On the one hand, we can consider a single LDP instance consisting
of several resource containers. On the other hand, we can consider several separate LDP
instances, each managing their own triplestores. We may restrict the explanation of the
implementation to the latter option without losing generality. Besides, it can be a more
realistic privacy-preserving scenario, where semi-honest agents from independent LDP
instances can be involved.

The materialization of an RDF view is illustrated on OULAD [62]. As for illustrative
purposes, we are limiting the description to mashup two data providers: the OULAD
Student Demographics (A) and Student Activities (B) parts. We also define the oula
namespace to map the linked data attributes of the OULAD schema, e.g., student or
course, as long as convenient linked data vocabularies, e.g., foaf and schema.org, might
not be easily found or mapped to OULAD data attributes.

• Each tuple t in A.studentIn f o produces the following set of RDF triples:

oula:student#t.id_student rdf:type foaf:Person

• For each tuple t in A.studentIn f o and each local QI attribute identifiable as such in
A, generate one RDF tuple depending on whether there is a corresponding term in a
standard linked data vocabulary to map the local QI attribute, as explained next with
the OULAD example.

– If local QI attributes of the A.studentIn f o table are considered to be code_module
and region, then generate the following RDF triples—note that, in the case of
code_module and region attributes, no standard vocabulary terms are found
or provided:
oula:student#t.id_student oula:registeredIn oula:course#t.code_module
oula:student#t.id_student oula:region t.studentRegion
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Although we used oula:region for region instead of a mapping to standard
linked data vocabulary terms, a different alignment strategy could determine,
for instance, foaf:based_near as a valid mapping instead of directly using
oula:region. Then another option for region is to generate an RDF triple, as in
the following:
foaf:based_near owl:sameAs oula:region

– If for the A.studentIn f o schema, students’ gender is considered as local QI at-
tributes, each tuple t in A.studentIn f o would produce one RDF triple —note
that, in the case of gender attribute, the schema:gender term of the schema.org
vocabulary is selected to map the attribute:
oula:student#t.id_student schema:gender oula:student#t.gender

As in the previous case, other strategies for vocabulary alignment between
the OULAD schema and standard vocabularies can be followed in the case of
oula:gender values using oula:gender instead of schema:gender and adding a
owl:sameAs triple to the generated RDF mashup:
schema:gender owl:sameAs oula:gender

The same strategy can be applied to materialize an RDF view that mashes up A.studentIn f o
and B.studentAssessment.

• For each tuple t in A.studentIn f o and t′ in B.studentRegistration such that t.id_student
= t′.id_student, a triple of the following form is generated for each local QI attribute
(e.g., if dates are considered as QI):
oula:student#t.id_student oula:registeredIn oula:course#t′.code_module
oula:student#t.id_student oula:registrationDate oula:course#t′.date_registration
oula:student#t.id_student oula:unregistrationDate
oula:course#t′.date_unregistration

• For each tuple t in A.studentIn f o and t′ in B.studentAssessment such that t.id_student
= t′.id_student, a set of triples of the following form is generated:
oula:student#t.id_student oula:assessedIn oula:course#t′.id_assessment
oula:course#t′.id_assessment oula:submittedBy oula:course#t′.date_submission
oula:course#t′.id_assessment oula:scored oula:course#t′.score

Following the setup protocol as applied to the OULAD example, the connector at-
tribute selected is id_student, and all the potential QI attributes are the following:

• From A.studentInfo:

– code_module
– code_presentation
– gender
– region
– highest_education
– imd_band
– age_band
– num_of_prev_attempts
– studied_credits
– disability
– final_result
– date_registration
– date_unregistration

• From B.studentAssessment:

– id_assessment
– date_submitted
– is_banked, score
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Thus, we can obtain a mashed-up dataset formed by all or part of the attributes of the
previous list. In the mashed-up dataset, an aggregate QI can be determined by any combina-
tion of gender, region, ..., date_registration, date_unregistration, while disability,
final_result, and score are the confidential attributes to be privacy-preserved.

4.1.3. Designate a Leading Provider

Eventually, the mashup coordinator has to connect with the selected providers, inform
them about the leading provider, and communicate the schema of the intended dataset.
Finally, the coordinator transfers control to the leading provider, which will initiate the
anonymization and integration protocol described below. The leading provider can be set
by executing a leader election algorithm [64].

4.2. Anonymization and Integration Protocol

This protocol vertically integrates the data partitions identified in the setup protocol
and k-anonymizes the aggregate quasi-identifier, built by vertically joining the quasi-
identifier attributes of each partition. The collection and integration of the vertical parti-
tions of the dataset are carried out by the mashup coordinator and the set of providers
participating in the protocol without revealing the individuals’ identities in the data.
This privacy-preserving data collection and integration is achieved by segregating the
quasi-identifier collection from the confidential data collection and by using what we call
privacy-preserving connectors.

Definition 2 (Privacy-Preserving Connector). A privacy-preserving connector for a record i of
a vertically partitioned dataset, denoted by ppci, is a pseudonym of the identifier attribute shared by
all the vertical partitions, which is computed as a collision-resistant hash function of the value that
the identifier attribute holds in the record i, IDi, and a nonce common to all records.

ppci = H(IDi, nonce), 1 ≤ i ≤ n (1)

where n is the number of records in the dataset. The nonce—one-time arbitrary number—is
used to prevent reusing the ppc and strengthen the ppc against dictionary attacks.

The anonymization and integration protocol is detailed below. Figure 1 shows the data
transfer among the parties participating in the protocol, and Table 2 lists the symbols and
mathematical notations used in the definition of the protocol. Without loss of generality
and for the sake of simplicity, we depict the protocol for two data providers, Pa and Pb,
each holding a vertical data partition of the final dataset. Each partition contains different
quasi-identifier attribute sets—Qa and Qb—and different confidential attribute sets—Ca

and Cb.
The leading provider selected in the setup protocol (Pa in Figure 1) initiates the

anonymization and integration protocol, generating the nonces used to build the privacy-
preserving connectors. Two connectors ppc are used in the protocol: one to integrate
the data partitions received in the quasi-identifier collection, named Qppc, and another
to integrate the data partitions received in the confidential data collection, named Cppc.
This segregated collection contributes to anonymizing data because it allows confidential
attributes to be disassociated from quasi-identifiers and, thus, prevents the mashup coordi-
nator from linking the original values of the quasi-identifiers with sensitive information.
Therefore, the leading provider must generate two nonces: one for each ppc (step 1 in
Figure 1). These nonces, named Qnonce and Cnonce, are shared in step 2 with the other
data providers participating in the process (Pb in Figure 1) through a secure channel that
provides authentication, privacy, and data integrity between communicating parties, such
as TLS (Transport Layer Security).

In the quasi-identifier collection, the data providers send their quasi-identifier at-
tributes, Qi, along with the connector Qppc of each record, Qppci, ordered by Qppci, to the
mashup coordinator through a secure channel. These data partitions are sent in step 4 of
the protocol, the partition of the provider Pa being represented by (Qppci, Qa

i )
n
i=1, similarly,
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for Pb. Previously, as specified in step 3, Qppci is derived from Qnonce and IDi using
Equation (1).

Table 2. List of symbols and mathematical notations used in the anonymization and integration protocol.

Pa data provider a, similarly for the data provider b
ppc Privacy-Preserving Connector
Qppc ppc used to integrate the data partitions received in the quasi-identifier collection
Cppc ppc used to integrate the data partitions received in the confidential data collection
Qnonce nonce used in the calculation of Qppc
Cnonce nonce used in the calculation of Cppc
Qppci Qppc corresponding to the record i, similarly for Cppci
H(.) hash function
(.)n

i=1 set of n records
IDi identifier attribute of the record i (held by both Pa and Pb)
Qa

i (non-masked) quasi-identifier attributes of the record i held by Pa, similarly for Qb
i

Qa∗
i masked quasi-identifier attributes of the record i held by Pa, similarly for Qb∗

i
Ca

i confidential attributes of the record i held by Pa, similarly for Cb
i

Qa (non-masked) quasi-identifier attributes of the n records held by Pa, similarly for Qb

Qjoin (non-masked) aggregate quasi-identifiers of the n records
Q∗join masked aggregate quasi-identifiers of the n records

The mashup coordinator vertically integrates the data partitions received in the
quasi-identifier collection through the connector Qppc, thus building the aggregate quasi-
identifier, Qjoin = (Qppci, Qa

i , Qb
i )

n
i=1, as shown in step 5. Then, the mashup coordinator

initiates the anonymization process of Qjoin in step 6. Any PPDP method that satisfies
k-anonymity, such as those based on aggregation or generalization mentioned in Section 1,
can be used to anonymize the quasi-identifier attributes. The result of the de-identification
process is represented by Q∗join = (Qppci, Qa∗

i , Qb∗
i )n

i=1, Qa∗
i and Qb∗

i being the masked
values of the quasi-identifier attributes of the record i. In step 7, the mashup coordinator
sends the anonymized aggregate quasi-identifier set Q∗join to each data provider. Because
the anonymization of the quasi-identifiers has been delegated to the mashup coordinator,
the data providers must make sure before reporting confidential information that the result
satisfies the requirements of k-anonymity. Each provider must check that the k-anonymous
groups in Q∗join comprise k or more records.

Once Q∗join is received, each data provider integrates Q∗join with the confidential data
of its data partition to form the confidential data partition (step 8). This integration is
achieved through the connector Qppc. Then, in step 9, each data provider sends its
confidential data partition along with the connectors Cppci, ordered by Cppci, to the
mashup coordinator through a secure channel—e.g., the data set sent by the provider
Pa is (Cppci, Qa∗

i , Qb∗
i , Ca∗

i )n
i=1, similarly for Pb. Note that the connector Cppci of each

record is derived from Cnonce and IDi in step 3. Finally, as shown in step 10, the mashup
coordinator vertically joins the received confidential data partitions through the connector
Cppci to yield the de-identified dataset provided to the data consumer. This dataset,
(Qa∗

i , Qb∗
i , Ca

i , Cb
i )

n
i=1, satisfies k-anonymity because at least k records share the same values

in the aggregate quasi-identifier.
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Figure 1. Anonymization and integration protocol in a scenario with two data providers, Pa and Pb,
and a mashup coordinator, M. The provider Pa acts as a leading provider.

5. Evaluation

In this section, first, we perform an analytical evaluation of privacy. Specifically,
we evaluate whether our protocol can prevent passive adversaries from unambiguously
associating the confidential attributes of a particular individual with their original quasi-
identifiers (k-unlinkability property) and, consequently, from re-identifying their sensitive
data. We assume that any participant in the anonymization and integration protocol,
whether a data provider or the mashup coordinator, is a potential adversary and may
be interested in inferring information about the data subjects. Secondly, we empirically
evaluate whether the proposed protocol achieves the k-unlinkability, and consequently, the
sensitive data can no longer be identified.

5.1. Analytical Evaluation of the k-Unlinkability Property

We evaluate whether our protocol satisfies the k-unlinkability property. The evaluation
is conducted in the worst-case scenario when the passive adversary participates in the
anonymization and integration protocol.

When the passive adversary is a data provider participating in the protocol:

(i) Because the data partitions are sent encrypted to the mashup coordinator through
a secure transport protocol, no data provider will be able to view other providers’
quasi-identifier and confidential attributes, even if the provider carried out a network
traffic analysis.

Based on (i), we conclude that a malicious provider cannot associate the confidential
data of a particular individual with their original quasi-identifiers because those data are
unknown to the provider.

When the passive adversary is the mashup coordinator participating in the protocol:

(ii) Because the mashup coordinator handles quasi-identifiers and confidential attributes
during the execution of the protocol, the coordinator may learn additional information
about the subjects of those data by linking the data obtained in the different steps of
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the protocol. After analyzing the data handled by the mashup coordinator, compiled
in Table 3, it follows that the mashup coordinator can only make ambiguous links be-
tween confidential attributes and original quasi-identifiers. In particular, the mashup
coordinator can only perform the following reverse linking of the information:

(Ca
i , Cb

i ) −→ (Qa∗
i , Qb∗

i ) −→ (Qppci)
k
i=1 −→ (Qa

i , Qb
i )

k
i=1

That is, in step 10 of the protocol, the mashup coordinator can link the confidential
attributes (Ca

i , Cb
i ) with the masked quasi-identifier attributes (Qa∗

i , Qb∗
i ). In turn,

(Qa∗
i , Qb∗

i ) can be linked with k or more connectors Qppc by using the k-anonymized
data from step 6. Note that the masked quasi-identifiers of a given individual can
never be linked with less than k connectors since, after k-anonymization, the number
of privacy-preserving connectors that have associated the same values in the masked
quasi-identifier attributes is always greater than or equal to k. Finally, from the data
received in step 4, the mashup coordinator can link the k (or more) connectors Qppc
with their respective original quasi-identifiers. Because the connectors used in step 10,
Cppc, are different from those received in step 4, Qppc, the mashup coordinator will
never be able to link a given Cppci with its corresponding Qppci, and thus, it will not
be able to uniquely associate the confidential attributes from a given individual with
their original quasi-identifiers.

Table 3. Data handled by the mashup coordinator during the execution of the anonymization and
integration protocol.

Protocol Step Receive Integrate k-Anonymize

Step 4
(Qppci, Qa

i )
n
i=1

(Qppci, Qb
i )

n
i=1

Step 5 (Qppci, Qa
i , Qb

i )
n
i=1

Step 6 (Qppci, Qa∗
i , Qb∗

i )n
i=1

Step 9
(Cppci, Qa∗

i , Qb∗
i , Ca

i )
n
i=1

(Cppci, Qa∗
i , Qb∗

i , Cb
i )

n
i=1

Step 10 (Cppci, Qa∗
i , Qb∗

i , Ca
i , Cb

i )
n
i=1

Based on (ii), we conclude that a malicious mashup coordinator can at most associate
the confidential data of a particular individual with the set of original quasi-identifiers
of the k-anonymous group to which the individual belongs. Therefore, the probability
that the mashup coordinator correctly correlates the confidential attributes to the original
quasi-identifiers is at most 1/k. The higher the value of k, the greater the uncertainty of the
mashup coordinator.

Therefore, the proposed anonymization and integration protocol satisfies the k-unlinkability
property, whether the passive adversary is a data provider or the mashup coordinator.

5.2. Analytical Evaluation of the De-Identification of Sensitive Data

We evaluate whether our protocol is capable of de-identifying the sensitive data
collected during the anonymization and integration process. We evaluate this feature by
analyzing the probability of re-identification of the sensitive data collected. The evaluation
is conducted in the worst-case scenario, that is, when the passive adversary is the mashup
coordinator since it follows from Section 5.1 that the mashup coordinator is the only party
that knows the original values (non-masked) of the aggregate quasi-identifier.

When the passive adversary is the mashup coordinator participating in the protocol:

(i) Because the mashup coordinator handles the original quasi-identifiers during the
execution of the protocol, the mashup coordinator may associate them with the
connectors Qpcc.

(ii) Because a connector Qpcc results from a one-way hash function on a nonce and
the individual’s identifier attribute (both unknown to the mashup coordinator), the
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mashup coordinator will not be able to derive the value of the identifier. Moreover, if
the nonce is large enough, the connector will be protected against dictionary attacks
and other precomputation attacks, making such attacks infeasible.

Based on (i) and (ii), we conclude that a malicious mashup coordinator cannot as-
sociate the original quasi-identifier attributes of a given individual with their identifier
attribute, even if the mashup coordinator carried out a dictionary attack, or similar. De-
spite not being able to re-identify a record using information learned from the protocol,
the mashup coordinator could attempt re-identification through data linkage attacks or
re-identification attacks [15]. If re-identification was successful, the mashup coordinator
could not unambiguously link the individual’s identity with their sensitive information
because the proposed protocol satisfies the k-unlinkability property, being the probability
of success of this link less than or equal to 1/k.

Therefore, the proposed anonymization and integration protocol is capable of de-
identifying the sensitive data collected, such that the probability that the mashup coordina-
tor re-identifies the sensitive data of an individual is at most 1/k.

5.3. Empirical Evaluation

This subsection empirically evaluates whether the proposed PPVD mashup proto-
col achieves k-unlinkability between the quasi-identifier and confidential attributes and,
consequently, de-identifying sensitive data against passive adversaries.

We used a simulated scenario with two data providers and one mashup coordinator to
conduct the empirical evaluation. The data providers hold data partitions of OULAD [62],
which contains data about courses, students, and their interactions with a VLE. Specifically,
the provider Pa holds the OULAD studentInfo as a vertical data partition with diverse
demographic information about 342 students, plus their final results in the courses; the
provider Pb holds the OULAD studentAssessment as another vertical data partition, con-
taining the results of a specific learning assessment (id_assessment = 1753). The attribute
used as a connector in the execution of the protocol is the identifier attribute id_student.
The attributes to be vertically joined are indicated in Table 4. We had to adjust the age
attribute in the data partition of PA since OULAD already provides masked values for this
attribute. In particular, the values of the age attribute are generalized in three ranges: 0–35,
33–55, and >55. Since our protocol operates on non-anonymized data, for each id_student,
a random synthetic value between the two limits was assigned. Data records with age in
the range 0–35 were assigned a value between 18 and 35; those between 35 and 55 were
assigned a value between 36 and 55; and those greater than 55 received a value between 56
and 75.

Table 4. Attributes of the data partitions held by Pa and Pb.

Data Partition Attribute Type Description

A.studentIn f o age quasi-identifier age of the student
A.studentIn f o disability confidential indicates whether the student has declared a disability
A.studentIn f o final_result confidential student’s final result

B.studentAssessment date_submitted quasi-identifier date of student submission, measured as the number of
days since the start of the module presentation

B.studentAssessment score confidential student’s score in this assessment

The protocol was evaluated in the worst-case scenario—when the passive adversary
is the mashup coordinator. This party handles original quasi-identifiers and confidential
attributes during the execution of the protocol, and, as discussed in Section 5.1, it may
have more information than any other adversary. The method used to k-anonymize the
set of aggregate quasi-identifiers resulting from the data mashup was the multivariate
microaggregation method (using the mean as an aggregate) with a privacy parameter k
equal to 5. The privacy-preserving connectors, Qppc and Cppc, were built on the attribute
id_student using nonces of 128 bits and the SHA-256 as Cryptographic Hash function.
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Figure 2 illustrates the result of the execution of the PPVD mashup protocol on an
excerpt of 10 records. The web address with the full versions of the vertical data partitions
and the output dataset is published in the Data Availability Statement section.

Student ID Age Disability Final result

141355 29 N Pass

2411778 33 N Withdrawn

236284 29 N Pass

205719 22 Y Fail

2376496 29 N Pass

11391 65 N Pass

186149 38 N Pass

1401935 51 N Fail

2536991 64 N Distinction

106247 46 N Withdrawn

Student ID Submission Score

141355 54 74

2411778 52 83

236284 54 84

205719 58 63

2376496 54 72

11391 53 85

186149 68 81

1401935 61 25

2536991 54 72

106247 64 66

Age* Submission* Score Disability Final result

28 54 74 N Pass

28 54 83 N Withdrawn

28 54 84 N Pass

28 54 63 Y Fail

28 54 72 N Pass

53 60 85 N Pass

53 60 81 N Pass

53 60 25 N Fail

53 60 72 N Distinction

53 60 66 N Withdrawn

Vertical partition of the provider Pa Vertical partition of the provider Pb

Integrated and k-anonymized dataset

- - -
- - -
- - -

- -
- -
- -

- - - - -
- - - - -
- - - - -?

PPVD mashup

Figure 2. Execution result of the PPVD mashup protocol on an excerpt of 10 records. Quasi-identifier
attributes are marked in bold. The asterisk identifies the masked attributes.

To verify whether the proposed protocol fulfills k-unlinkability and, consequently, is
capable of de-identifying sensitive data, we analyzed the information that the mashup
coordinator handled during the execution of the protocol. In the quasi-identifier collec-
tion carried out in step 4 of the protocol, the mashup coordinator obtained the original
quasi-identifiers of the 342 students along with the privacy-preserving connectors Qppc,
ordered by Qppc. An extract of 10 records is shown in Figure 3. We have changed the
order of the records to clarify the illustration. Because Qppc is the result of a one-way
hash function strengthened with a nonce, the mashup coordinator could not derive the
students’ identifiers in a feasible computational time and, thus, re-identify the records.
After integrating the quasi-identifier attributes of each student to form the aggregate quasi-
identifier Qjoin = (age, submission), the mashup coordinator k-anonymized the aggregate
quasi-identifier values of the 342 students with k = 5. As expected, the anonymization
process resulted in a dataset consisting of k-anonymous groups (5-anonymous groups),
with the number of records in each k-anonymous group always greater than or equal to 5.
Each generated 5-anonymous group contains the masked aggregate quasi-identifier for
that group and the connectors Qppc of the students belonging to the group. As shown in
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Figure 3, the 5-anonymous groups are formed by 5 records of students, i.e., 5 Qppc, and
the masked aggregate quasi-identifier of the group, e.g., the last 5-anonymous group has
the masked aggregate quasi-identifier (age*, submission*) = (53, 60).

Qppc Age 

2579a4dddb201431cdfdc91aa2bd1d74
29b1610be4239da3386d8a340419c1d8 

29 

7977                      …                    3454 33 

09ee                      …                   4589 29 

818a                      …                    ae60 22 

4c4c                      …                    ca7e 29 

4217                      …                   1053 65 

4b74                      …                   f067 38 

e353                      …                   8ba8 51 

c0e5                       …                   7948 64 

bf06                       …                   a5d8 46 

Qppc Submission  

2579a4dddb201431cdfdc91aa2bd1d74
29b1610be4239da3386d8a340419c1d8 54 

7977                      …                    3454 52 

09ee                      …                   4589 54 

818a                      …                    ae60 58 

4c4c                      …                    ca7e 54 

4217                      …                   1053 53 

4b74                      …                   f067 68 

e353                      …                   8ba8 61 

c0e5                       …                   7948 54 

bf06                       …                   a5d8 64 

(a) (b) 

Qppc Age* Submission* 

2579a4dddb201431cdfdc91aa2bd1d74
29b1610be4239da3386d8a340419c1d8 28 54 

7977                      …                    3454 28 54 

09ee                      …                   4589 28 54 

818a                      …                    ae60 28 54 

4c4c                      …                    ca7e 28 54 

4217                      …                   1053 53 60 

4b74                      …                   f067 53 60 

e353                      …                   8ba8 53 60 

c0e5                       …                   7948 53 60 

bf06                       …                   a5d8 53 60 

(c) 

k-anonymous group 

k-anonymous group 

Figure 3. (a) Data partition sent by the provider Pa during the quasi-identifier collection (step 4 of the
protocol). (b) Data partition sent by the provider Pb during the quasi-identifier collection (step 4 of the
protocol). (c) k-anonymized and integrated quasi-identifiers with k = 5 (steps 5 and 6 of the protocol).
Quasi-identifier attributes are marked in bold. The asterisk identifies the masked attributes.

In the confidential data collection carried out in step 9 of the protocol, the mashup
coordinator obtained the confidential attributes of the 342 students along with the privacy-
preserving connectors Cppc and the masked aggregate quasi-identifiers. Because the
connectors in the confidential data collection, Cppc, were different from those used in the
quasi-identifier collection, Qppc, the mashup coordinator could not link Cppc with their
corresponding Qppc, causing the dissociation between the confidential attributes and the
original quasi-identifiers. The mashup coordinator only succeeded in making ambiguous
associations. The students’ confidential data were associated with the quasi-identifiers of
at least five students, those belonging to their 5-anonymous groups. The effects of the 5-
unlinkability can be verified on any record of those shown in Figure 4. For example, the con-
fidential attributes (score, disability, f inalresult) = (25, N, f ail) of the eighth student can-
not be linked to their original quasi-identifier attributes (age, submission) = (51, 61) because
the connector Cppc = deb6. . . e63b does not match Qppc = e353...8ba8. By using the student’s
masked aggregate quasi-identifier (53, 60), the confidential attributes (25, N, f ail) can be linked
to at least five different original aggregate quasi-identifiers (65, 53), (38, 68), (51, 61), (64, 54),
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and (46, 64). Therefore, the probability that the mashup coordinator correctly correlates the
confidential attributes of the eighth student with their identity is at most 1/5.

We can conclude that the mashup coordinator’s probability of correctly correlating
the confidential attributes to the original quasi-identifiers is 1/k at most, thus verifying the
k-unlinkability property. Logically, the uncertainty will be higher for a higher value of k. As
a consequence of the k-unlinkability property, if the mashup coordinator had re-identified
the students through data linkage attacks by using their original quasi-identifiers and
external data sources, it would not be able to link students’ identities to their confidential
attributes unambiguously. The experiment, thus, shows that the proposed PPVD mashup
protocol is capable of de-identifying the sensitive data collected, such that the probability
that an adversary re-identifies the sensitive data of an individual is 1/k at most.

(a) Cppc Age* Submission* Disability Final result 
ac64dc171f290c502f4caf5593888b3c
ecc3d6f352d6485d9135991b98ef2fb7 28 54 N Pass 
d91f                    …                     3b03 28 54 N Withdrawn 
7eb8                    …                     222d 28 54 N Pass 
6d90                    …                     9ba0 28 54 Y Fail 
194a                    …                     ed20 28 54 N Pass 
fe41                     …                     d800 53 60 N Pass 
9584                    …                     1b3a 53 60 N Pass 
deb6                    …                     e63b 53 60 N Fail 
8041                    …                     a485 53 60 N Distinction 
15e7                    …                     c657 53 60 N Withdrawn 

Cppc Age* Submission* Score 
ac64dc171f290c502f4caf5593888b3c
ecc3d6f352d6485d9135991b98ef2fb7 28 54 74 
d91f                    …                     3b03 28 54 83 
7eb8                    …                     222d 28 54 84 
6d90                    …                     9ba0 28 54 63 
194a                    …                     ed20 28 54 72 
fe41                     …                     d800 53 60 85 
9584                    …                     1b3a 53 60 81 
deb6                    …                     e63b 53 60 25 
8041                    …                     a485 53 60 72 
15e7                    …                     c657 53 60 66 

(b) 

Figure 4. (a) Data partition sent by the provider Pa during the confidential data collection (step 9
of the protocol). (b) Data partition sent by the provider Pb during the confidential data collection
(step 9 of the protocol). Quasi-identifier attributes are marked in bold. The asterisk identifies the
masked attributes.

6. Discussion

Internet information systems and applications often use personal information, thus
requiring a conservative treatment of PII and confidential information. Our PPVD mashup
protocol has implications in the design and construction of information systems on the Internet.

The privacy-by-design challenge is being tackled in the Web of Data by putting
individuals in control of their own data through Personal Data Ecosystems based on SOLID
principles [65]. In SOLID, individuals store their data on the Web as personal data stores or
pods, such that each user has one or more pod from different web providers. Applications
can access users’ data using decentralized authentication and access control mechanisms
to guarantee the privacy of the data. Web protocols and access control mechanisms do
not sufficiently ensure users’ data privacy as long as an adversary can mash up data from
several pods and run data linkage attacks.
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The Web of Things is also a key driver to understand the paradigm shift in e-learning
towards context-aware, ubiquitous learning [66]. Internet-of-Things (IoT) technologies
are convenient data gathering systems to build cooperative information systems on the
Internet with different purposes, including e-learning. Things, such as devices enabled
with computational and data storage capabilities, lay the foundations of cloud, fog, and
edge computing [67] as the most recent trends in IoT-distributed computing. All such
approaches have in common: the system data are spread over multiple devices and must be
mashed up in a central point before making computer-aided data-informed decisions. IoT-
based information systems, however, also pose a challenge to personal data privacy [68].
The paradigm shift of smart devices connected to the Internet requires considering data
mashups in the Web of Things [69]. Things are more prone to security risks because digital
users’ privacy is a fundamental right [70]. Among all security and privacy issues [71], the
mashup of sparsely distributed data in the Web of Things is vulnerable to data linkage
attacks by semi-honest intermediate entities part of the cloud, fog, or edge computing
network infrastructure [72].

Most related works propose preemptive access control [29] and authentication schemes [30]
for data mashup privacy preservation in fog computing environments. However, the utility
of the published data is lesser in such approaches because they are limited by design to
expose publicly available data only. Instead, our protocol can publish all data attributes in a
data mashup required for statistical analyses. It makes it with the help of a PPDP method of
choice, which is independent of the actual mashup strategy. In contrast, privacy-preserving
data partitioning solutions used in fog computing environments are based on simple noise
addition [31].

7. Conclusions

In this paper, we have presented a new privacy-preserving data mashup protocol
capable of vertically integrating data partitions from multiple educational sources to satisfy
the data consumers’ requests without disclosing the identities of the individuals referenced
in the data. Educational information to be integrated and anonymized typically comes from
cloud-based e-learning environments and includes attendance to course activities, course
evaluations, feedback on course materials and teaching systems, performance records, and
social network data of students and instructors. Our protocol can de-identify the fused
information by k-anonymizing the aggregate quasi-identifiers, resulting from the mashup of
the data partitions. Unlike other privacy-preserving data mashup techniques on vertically
partitioned datasets, our protocol is not linked to a particular k-anonymization method.
Therefore, the protocol offers the possibility of choosing the k-anonymization method—
either generalization, microaggregation or any method that satisfies the k-anonymity
requirement—according to the dataset scheme and to the utility requirements of the
data customers.

Our protocol is capable of preventing passive adversaries, whether internal or external
to the anonymization and integration process, from re-identifying individuals’ sensitive
data. In particular, the probability that an adversary correctly correlates the confidential
attributes of an individual with their identity is 1/k at most. The privacy parameter k thus
determines the degree of uncertainty of the adversary. The analytic utility of the protected
data is conditioned by the selected method of k-anonymization.

The implementation of the proposed protocol is based on linked data, considering sev-
eral separate linked data platform instances. A linked data-based implementation provides
a shared architecture for linking the information contained in the different educational
sources and effectively avoids ambiguity. The use of privatized and shared datasets in
the Web of Data compliant with FAIR and privacy-by-design principles enables learn-
ing analytics while safeguarding the students’ data privacy. With the linked data-based
implementation, the datasets involved in the mashups can be semantically described, indi-
cating which are the quasi-identifiers and the sensitive data. Thus, our mashup protocol
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enables the combination of datasets increasing privacy-by-design without undermining
FAIR principles.
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