3,163 research outputs found

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning

    Full text link
    Deep Learning has recently become hugely popular in machine learning, providing significant improvements in classification accuracy in the presence of highly-structured and large databases. Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15. Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level DP applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).Comment: ACM CCS'17, 16 pages, 18 figure

    Federated and distributed learning applications for electronic health records and structured medical data: A scoping review

    Full text link
    Federated learning (FL) has gained popularity in clinical research in recent years to facilitate privacy-preserving collaboration. Structured data, one of the most prevalent forms of clinical data, has experienced significant growth in volume concurrently, notably with the widespread adoption of electronic health records in clinical practice. This review examines FL applications on structured medical data, identifies contemporary limitations and discusses potential innovations. We searched five databases, SCOPUS, MEDLINE, Web of Science, Embase, and CINAHL, to identify articles that applied FL to structured medical data and reported results following the PRISMA guidelines. Each selected publication was evaluated from three primary perspectives, including data quality, modeling strategies, and FL frameworks. Out of the 1160 papers screened, 34 met the inclusion criteria, with each article consisting of one or more studies that used FL to handle structured clinical/medical data. Of these, 24 utilized data acquired from electronic health records, with clinical predictions and association studies being the most common clinical research tasks that FL was applied to. Only one article exclusively explored the vertical FL setting, while the remaining 33 explored the horizontal FL setting, with only 14 discussing comparisons between single-site (local) and FL (global) analysis. The existing FL applications on structured medical data lack sufficient evaluations of clinically meaningful benefits, particularly when compared to single-site analyses. Therefore, it is crucial for future FL applications to prioritize clinical motivations and develop designs and methodologies that can effectively support and aid clinical practice and research

    Federated Learning for Protecting Medical Data Privacy

    Get PDF
    Deep learning is one of the most advanced machine learning techniques, and its prominence has increased in recent years. Language processing, predictions in medical research and pattern recognition are few of the numerous fields in which it is widely utilized. Numerous modern medical applications benefit greatly from the implementation of machine learning (ML) models and the disruptive innovations in the entire modern health care system. It is extensively used for constructing accurate and robust statistical models from large volumes of medical data collected from a variety of sources in contemporary healthcare systems [1]. Due to privacy concerns that restrict access to medical data, these Deep learning techniques have yet to completely exploit medical data despite their immense potential benefits. Many data proprietors are unable to benefit from large-scale deep learning due to privacy and confidentiality concerns associated with data sharing. However, without access to sufficient data, Deep Learning will not be able to realize its maximum potential when transitioning from the research phase to clinical practice [2]. This project addresses this problem by implementing Federated Learning and Encrypted Computations on text data, such as Multi Party Computation. SyferText, a Python library for privacy-protected Natural Language Processing that leverages PySyft to conduct Federated Learning, is used in this context
    • …
    corecore