103 research outputs found

    Exploring Privacy Preservation in Outsourced K-Nearest Neighbors with Multiple Data Owners

    Full text link
    The k-nearest neighbors (k-NN) algorithm is a popular and effective classification algorithm. Due to its large storage and computational requirements, it is suitable for cloud outsourcing. However, k-NN is often run on sensitive data such as medical records, user images, or personal information. It is important to protect the privacy of data in an outsourced k-NN system. Prior works have all assumed the data owners (who submit data to the outsourced k-NN system) are a single trusted party. However, we observe that in many practical scenarios, there may be multiple mutually distrusting data owners. In this work, we present the first framing and exploration of privacy preservation in an outsourced k-NN system with multiple data owners. We consider the various threat models introduced by this modification. We discover that under a particularly practical threat model that covers numerous scenarios, there exists a set of adaptive attacks that breach the data privacy of any exact k-NN system. The vulnerability is a result of the mathematical properties of k-NN and its output. Thus, we propose a privacy-preserving alternative system supporting kernel density estimation using a Gaussian kernel, a classification algorithm from the same family as k-NN. In many applications, this similar algorithm serves as a good substitute for k-NN. We additionally investigate solutions for other threat models, often through extensions on prior single data owner systems

    On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects

    Full text link
    The Internet of Things (IoT) will be a main data generation infrastructure for achieving better system intelligence. This paper considers the design and implementation of a practical privacy-preserving collaborative learning scheme, in which a curious learning coordinator trains a better machine learning model based on the data samples contributed by a number of IoT objects, while the confidentiality of the raw forms of the training data is protected against the coordinator. Existing distributed machine learning and data encryption approaches incur significant computation and communication overhead, rendering them ill-suited for resource-constrained IoT objects. We study an approach that applies independent Gaussian random projection at each IoT object to obfuscate data and trains a deep neural network at the coordinator based on the projected data from the IoT objects. This approach introduces light computation overhead to the IoT objects and moves most workload to the coordinator that can have sufficient computing resources. Although the independent projections performed by the IoT objects address the potential collusion between the curious coordinator and some compromised IoT objects, they significantly increase the complexity of the projected data. In this paper, we leverage the superior learning capability of deep learning in capturing sophisticated patterns to maintain good learning performance. Extensive comparative evaluation shows that this approach outperforms other lightweight approaches that apply additive noisification for differential privacy and/or support vector machines for learning in the applications with light data pattern complexities.Comment: 12 pages,IOTDI 201

    Homomorphic Encryption for Machine Learning in Medicine and Bioinformatics

    Get PDF
    Machine learning techniques are an excellent tool for the medical community to analyzing large amounts of medical and genomic data. On the other hand, ethical concerns and privacy regulations prevent the free sharing of this data. Encryption methods such as fully homomorphic encryption (FHE) provide a method evaluate over encrypted data. Using FHE, machine learning models such as deep learning, decision trees, and naive Bayes have been implemented for private prediction using medical data. FHE has also been shown to enable secure genomic algorithms, such as paternity testing, and secure application of genome-wide association studies. This survey provides an overview of fully homomorphic encryption and its applications in medicine and bioinformatics. The high-level concepts behind FHE and its history are introduced. Details on current open-source implementations are provided, as is the state of FHE for privacy-preserving techniques in machine learning and bioinformatics and future growth opportunities for FHE

    Efficient privacy-preserving facial expression classification

    Get PDF
    This paper proposes an efficient algorithm to perform privacy-preserving (PP) facial expression classification (FEC) in the client-server model. The server holds a database and offers the classification service to the clients. The client uses the service to classify the facial expression (FaE) of subject. It should be noted that the client and server are mutually untrusted parties and they want to perform the classification without revealing their inputs to each other. In contrast to the existing works, which rely on computationally expensive cryptographic operations, this paper proposes a lightweight algorithm based on the randomization technique. The proposed algorithm is validated using the widely used JAFFE and MUG FaE databases. Experimental results demonstrate that the proposed algorithm does not degrade the performance compared to existing works. However, it preserves the privacy of inputs while improving the computational complexity by 120 times and communication complexity by 31 percent against the existing homomorphic cryptography based approach

    Towards Attack-Resilient Geometric Data Perturbation

    Get PDF

    Privacy-Preserving Cloud-Assisted Data Analytics

    Get PDF
    Nowadays industries are collecting a massive and exponentially growing amount of data that can be utilized to extract useful insights for improving various aspects of our life. Data analytics (e.g., via the use of machine learning) has been extensively applied to make important decisions in various real world applications. However, it is challenging for resource-limited clients to analyze their data in an efficient way when its scale is large. Additionally, the data resources are increasingly distributed among different owners. Nonetheless, users\u27 data may contain private information that needs to be protected. Cloud computing has become more and more popular in both academia and industry communities. By pooling infrastructure and servers together, it can offer virtually unlimited resources easily accessible via the Internet. Various services could be provided by cloud platforms including machine learning and data analytics. The goal of this dissertation is to develop privacy-preserving cloud-assisted data analytics solutions to address the aforementioned challenges, leveraging the powerful and easy-to-access cloud. In particular, we propose the following systems. To address the problem of limited computation power at user and the need of privacy protection in data analytics, we consider geometric programming (GP) in data analytics, and design a secure, efficient, and verifiable outsourcing protocol for GP. Our protocol consists of a transform scheme that converts GP to DGP, a transform scheme with computationally indistinguishability, and an efficient scheme to solve the transformed DGP at the cloud side with result verification. Evaluation results show that the proposed secure outsourcing protocol can achieve significant time savings for users. To address the problem of limited data at individual users, we propose two distributed learning systems such that users can collaboratively train machine learning models without losing privacy. The first one is a differentially private framework to train logistic regression models with distributed data sources. We employ the relevance between input data features and the model output to significantly improve the learning accuracy. Moreover, we adopt an evaluation data set at the cloud side to suppress low-quality data sources and propose a differentially private mechanism to protect user\u27s data quality privacy. Experimental results show that the proposed framework can achieve high utility with low quality data, and strong privacy guarantee. The second one is an efficient privacy-preserving federated learning system that enables multiple edge users to collaboratively train their models without revealing dataset. To reduce the communication overhead, we select well-aligned and large-enough magnitude gradients for uploading which leads to quick convergence. To minimize the noise added and improve model utility, each user only adds a small amount of noise to his selected gradients, encrypts the noise gradients before uploading, and the cloud server will only get the aggregate gradients that contain enough noise to achieve differential privacy. Evaluation results show that the proposed system can achieve high accuracy, low communication overhead, and strong privacy guarantee. In future work, we plan to design a privacy-preserving data analytics with fair exchange, which ensures the payment fairness. We will also consider designing distributed learning systems with heterogeneous architectures
    corecore