5,599 research outputs found

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Quantifying User Reputation Scores, Data Trustworthiness, and User Incentives in Mobile Crowd-Sensing

    Get PDF
    Ubiquity of mobile devices with rich sensory capabilities has given rise to the mobile crowd-sensing (MCS) concept, in which a central authority (the platform) and its participants (mobile users) work collaboratively to acquire sensory data over a wide geographic area. Recent research in MCS highlights the following facts: 1) a utility metric can be defined for both the platform and the users, quantifying the value received by either side; 2) incentivizing the users to participate is a non-trivial challenge; 3) correctness and truthfulness of the acquired data must be verified, because the users might provide incorrect or inaccurate data, whether due to malicious intent or malfunctioning devices; and 4) an intricate relationship exists among platform utility, user utility, user reputation, and data trustworthiness, suggesting a co-quantification of these inter-related metrics. In this paper, we study two existing approaches that quantify crowd-sensed data trustworthiness, based on statistical and vote-based user reputation scores. We introduce a new metric - collaborative reputation scores - to expand this definition. Our simulation results show that collaborative reputation scores can provide an effective alternative to the previously proposed metrics and are able to extend crowd sensing to applications that are driven by a centralized as well as decentralized control

    Launching an efficient participatory sensing campaign: A smart mobile device-based approach

    Get PDF
    PublishedJournal Article© 2015 ACM. Participatory sensing is a promising sensing paradigm that enables collection, processing, dissemination and analysis of the phenomena of interest by ordinary citizens through their handheld sensing devices. Participatory sensing has huge potential in many applications, such as smart transportation and air quality monitoring. However, participants may submit low-quality, misleading, inaccurate, or even malicious data if a participatory sensing campaign is not launched effectively. Therefore, it has become a significant issue to establish an efficient participatory sensing campaign for improving the data quality. This article proposes a novel five-tier framework of participatory sensing and addresses several technical challenges in this proposed framework including: (1) optimized deployment of data collection points (DC-points); and (2) efficient recruitment strategy of participants. Toward this end, the deployment of DC-points is formulated as an optimization problem with maximum utilization of sensor and then a Wise-Dynamic DC-points Deployment (WD3) algorithm is designed for high-quality sensing. Furthermore, to guarantee the reliable sensing data collection and communication, a trajectory-based strategy for participant recruitment is proposed to enable campaign organizers to identify well-suited participants for data sensing based on a joint consideration of temporal availability, trust, and energy. Extensive experiments and performance analysis of the proposed framework and associated algorithms are conducted. The results demonstrate that the proposed algorithm can achieve a good sensing coverage with a smaller number of DC-points, and the participants that are termed as social sensors are easily selected, to evaluate the feasibility and extensibility of the proposed recruitment strategies

    A survey of spatial crowdsourcing

    Get PDF

    Sensing as a service: A cloud computing system for mobile phone sensing

    Get PDF
    Sensors on (or attached to) mobile phones can enable attractive sensing applications in different domains such as environmental monitoring, social networking, healthcare, etc. We introduce a new concept, Sensing-as-a-Service (S2aaS), i.e., providing sensing services using mobile phones via a cloud computing system. An S2aaS cloud should meet the following requirements: 1) It must be able to support various mobile phone sensing applications on different smartphone platforms. 2) It must be energy-efficient. 3) It must have effective incentive mechanisms that can be used to attract mobile users to participate in sensing activities. In this paper, we identify unique challenges of designing and implementing an S2aaS cloud, review existing systems and methods, present viable solutions, and point out future research directions

    A Semi-supervised Sensing Rate Learning based CMAB Scheme to Combat COVID-19 by Trustful Data Collection in the Crowd

    Full text link
    Mobile CrowdSensing (MCS), through employing considerable workers to sense and collect data in a participatory manner, has been recognized as a promising paradigm for building many large-scale applications in a cost-effective way, such as combating COVID-19. The recruitment of trustworthy and high-quality workers is an important research issue for MCS. Previous studies assume that the qualities of workers are known in advance, or the platform knows the qualities of workers once it receives their collected data. In reality, to reduce their costs and thus maximize revenue, many strategic workers do not perform their sensing tasks honestly and report fake data to the platform. So, it is very hard for the platform to evaluate the authenticity of the received data. In this paper, an incentive mechanism named Semi-supervision based Combinatorial Multi-Armed Bandit reverse Auction (SCMABA) is proposed to solve the recruitment problem of multiple unknown and strategic workers in MCS. First, we model the worker recruitment as a multi-armed bandit reverse auction problem, and design an UCB-based algorithm to separate the exploration and exploitation, considering the Sensing Rates (SRs) of recruited workers as the gain of the bandit. Next, a Semi-supervised Sensing Rate Learning (SSRL) approach is proposed to quickly and accurately obtain the workers' SRs, which consists of two phases, supervision and self-supervision. Last, SCMABA is designed organically combining the SRs acquisition mechanism with multi-armed bandit reverse auction, where supervised SR learning is used in the exploration, and the self-supervised one is used in the exploitation. We prove that our SCMABA achieves truthfulness and individual rationality. Additionally, we exhibit outstanding performances of the SCMABA mechanism through in-depth simulations of real-world data traces.Comment: 18 pages, 14 figure
    • …
    corecore