22,399 research outputs found

    Privacy-Aware Authentication in the Internet of Things

    Get PDF
    Besides the opportunities o ered by the all-embracing Internet of Things (IoT) technology, it also poses a tremendous threat to the privacy of the carriers of these devices. In this work, we build upon the idea of an RFID-based IoT realized by means of standardized and well-established Internet protocols. In particular, we demonstrate how the Internet Protocol Security protocol suite (IPsec) can be applied in a privacy-aware manner. Therefore, we introduce a privacy-aware mutual authentication protocol compatible with restrictions imposed by the IPsec standard and analyze its privacy and security properties. In order do so, we revisit and adapt the RFID privacy model (HPVP) of Hermans et al. (ESORICS\u2711). With this work, we show that privacy in the IoT can be achieved without relying on proprietary protocols and on the basis of existing Internet standards

    PRIVACY-AWARE AND HARDWARE-BASED ACCLERATION AUTHENTICATION SCHEME FOR INTERNET OF DRONES

    Get PDF
    Drones are becoming increasingly present into today’s society through many different means such as outdoor sports, surveillance, delivery of goods etc. With such a rapid increase, a means of control and monitoring is needed as the drones become more interconnected and readily available. Thus, the idea of Internet of drones (IoD) is formed, an infrastructure in place to do those types of things. However, without an authentication system in place anyone could gain access or control to real time data to multiple drones within an area. This is a problem that I choose to tackle using a Field Programmable Gate Array (FPGA) that accelerates the k-Nearest Neighbor (kNN) encryption algorithm making it a hardware component. This will allow me to synthesis and implement the three parts of my privacy-aware and hardware-based authentication scheme for internet of drones. I use Vivado and Vivado HLS to obtain results for my authentication scheme. My scheme was able to perform large computational expensive tasks faster than other proposed IoD schemes

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Peer-assisted location authentication and access control for wireless networks

    Get PDF
    This paper presents the development and implementation of a location‐based, lightweight peer‐assisted authentication scheme for use in wireless networks. The notion of peer‐assisted authentication is based upon some target user equipment‐ (UE) seeking authentication and access to a network based upon its physical location. The target UE seeks authentication through the UE of peers in the same network. Compared with previous work, the approach in this paper does not rely on any cryptographic proofs from a central authentication infrastructure, thus avoiding complex infrastructure management. However, the peer‐assisted authentication consumes network channel resources which will impact on network performance. In this paper, we also present an access control algorithm for balancing the location authentication, network quality of service (QoS), network capacity and time delay. The results demonstrate that peer‐assisted authentication considering location authentication and system QoS through dynamic access control strategies can be effectively and efficiently implemented in a number of use cases
    corecore