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ABSTRACT 

Drones are becoming increasingly present into today’s society through many 

different means such as outdoor sports, surveillance, delivery of goods etc. With such a 

rapid increase, a means of control and monitoring is needed as the drones become more 

interconnected and readily available.  Thus, the idea of Internet of drones (IoD) is 

formed, an infrastructure in place to do those types of things.   However, without an 

authentication system in place anyone could gain access or control to real time data to 

multiple drones within an area.   This is a problem that I choose to tackle using a Field 

Programmable Gate Array (FPGA) that accelerates the k-Nearest Neighbor (kNN) 

encryption algorithm making it a hardware component. This will allow me to synthesis 

and implement the three parts of my privacy-aware and hardware-based authentication 

scheme for internet of drones.  I use Vivado and Vivado HLS to obtain results for my 

authentication scheme.   My scheme was able to perform large computational expensive 

tasks faster than other proposed IoD schemes.   
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CHAPTER I – INTRODUCTION 

Drones are widely becoming accessible and more active in everyday life.  

(Gharibi) They are being used in transportation of goods, sporting events such as drone 

races, government surveillance, wildfire control, and much more. (Tiberiu, Jung) The 

potential for drones is limitless in their use.  As we progress as a society, so does our 

technology and we are able to interconnect many things and drones are no exception.  

Companies like amazon, UPS, US Department of Transportation and Verge Aero are 

pushing for increasing drone presence to implement fleets of drones to better their 

business and interests. (Tiberiu, Jung, Wisel) 

This is one of the reasons why a secure IoD environment is needed in areas with 

heavy drone activity that is near or in civilian populations.  In addition to the increased 

use of drone activity, so do the risks of hazards and potential threats.  Adversaries can use 

their skills to cause many harmful and potentially deadly attacks to the system in 

unprotective networks.  Some examples of this are drones found spying in private citizens 

property, drug smuggling along the US-Mexico border, and even in bombing attacks via 

attached explosives to the drone. (BBC News) Companies like Amazon risk the locations 

of their drones being made aware, and adversaries can then steal goods that are being 

delivered.  

I propose one solution that could potentially solve some of these problems.  My 

scheme is implemented over an IoD network that requires drones to register before use 

within a system.  The privacy-aware and hardware-based authentication scheme uses the 

kNN encryption algorithm to encrypt the drone’s identification information using a secret 

key.  Each drone gets a unique key that is created by a trusted entity within the system.   
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There are two kNN encryption processes, one done by the drones during an 

authentication request and one by the trusted entity after drone registration.  The 

encrypted identification information that is created by the trusted entity is stored on a 

server to be used later for dot product verification.  When an authentication request is 

made, the drones send their encrypted identification information to the server and then it 

will be verified before any information can be accepted/rejected by the server.  This 

process will make it difficult for adversaries to attempt to infiltrate the system.   

I implement this authentication scheme on a FPGA as a hardware component.  

The FPGA can perform parallel processing, thus accelerating the kNN algorithm.  Since 

this is an added component to the drone, it can be turned off when not in use to save 

power.  Power is one of the major resources of a drone, thus necessary to save as much 

power consumption as possible.  I chose the FPGA because of its ability to be 

reconfigured and is flexibility during use.  When the device is not needed, it can easily be 

powered down.  The other reason for implementing the authentication scheme on this 

device is that the FPGA will take over the computational heavy tasks such as the 

encryption process of the kNN algorithm away from the drones CPU.  This allows the 

drones CPU to focus on other important tasks at hand.   

I was able to accelerate the kNN algorithm and perform large computational tasks 

with exceedingly small computational cost. The dot product search achieved small 

computation costs while having to search through 200 other drones’ encrypted 

identification information uploaded from the trusted entity.  My scheme is very flexible 

and allows for different encryption sizes as well as affordable pricing availability.  Some 

of the components can range from fifty dollars to several thousands of dollars.   
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The rest of this thesis is structured as followed; the background of different topics 

of my work, a literature review of FPGA hardware acceleration and other IoD 

authentication schemes, system model and proposed scheme that goes further in detail of 

the kNN authentication scheme and model, and methodology and procedure on how my 

results were obtained with the different software’s that was used and the discussion and 

conclusion of my results.   
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CHAPTER I - BACKGROUND 

Field Programmable Gate Array 

FPGA came to be through the creation of programmable logic devices in the 80s. 

What makes the FPGA unique compared to other devices is that its hard-wired 

programming can be reconfigured while other devices have a fixed hardware during the 

manufacture process and cannot be changed. (HardwareBee) This is extremely useful 

when an FPGA has been configured for a certain task and there is something wrong with 

the programming.  The FPGA can simply be reconfigured once the problem has been 

found and fixed.  Today, FPGAs are utilized worldwide for many different aspects such 

as the acceleration of different computational tasks and for development into artificial 

intelligence. (Touger) 

Hardware Acceleration  

Hardware acceleration is a fast-growing process that is being used in many areas 

such as artificial intelligence, video game design, and in my case acceleration of the kNN 

algorithm.  The definition of hardware acceleration is the process of offloading 

computational heavy tasks onto a special device to decrease the computational cost of the 

tasks that would normally take a CPU longer to compute.  The most common devices 

used in hardware acceleration are graphic processing units (GPUs), Field Programmable 

Gate Arrays (FPGAs), and Application-Specific Integrated Circuits (ASICs). (OmniSci) 

The FPGA hardware acceleration is achieved from its interconnecting logic blocks that 

can perform real time processing in parallel.  The main difference in a CPU and FPGA is 

the amount of data that can be parallel processed within each device.   
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Parallelism  

Parallelism is the process of running several tasks at the same time to achieve 

faster results.  This process is used to speed up the execution of programs by having 

multiple parts of a task split up and assigned to different processes to implement in 

parallel.  Parallel can be performed by using Multi-Core CPUs, GPUs, and FPGAs.   

k-Nearest Neighbor algorithm 

The kNN algorithm was created by Evelyn Fix and Joseph Hodges in 1951 and 

then later expanded upon by Thomas Cover.  It is mostly being used in machine learning 

as a classification and regression model, (Peterson).  It is also known as the supervised 

learning algorithm and works by finding similarities between two data points (Analytics 

Vidhya).   

Internet of Drones 

IoD is a layered network control architecture created to maintain control and 

access drones over a network within an area or areas, (Gharibi).   This is used to monitor 

registered drones in an area or areas to reduce risks such as unauthorized use, collision 

hazards, etc. FCC has many requirements for recreational drones and any above 400ft is 

considered uncontrolled airspace. This reduces the risk of private citizen drones flying 

into commercial airliners etc., (Secondary nav.).  There are many new laws being 

implemented to control risks of increasing presence of drones, like the law stated above.   
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CHAPTER II – LITERATURE REVIEW 

FPGA Hardware Acceleration 

Hardware acceleration is a growing topic in today’s technological world.  This is 

the process in which high computationally expensive tasks are offloaded from the CPU 

onto a hardware component to accelerate the task to improve performance and efficiency.  

Hardware acceleration is common in video games where CPU offloads the video games 

graphics onto the GPU to do most of the work.  This component is built for this type of 

work to allow the CPU to focus on different computational tasks.   Other examples 

include bit mining, artificial intelligence, and DNA mapping.  These are very heavy tasks 

that the hardware acceleration can perform in less time than it would take a single CPU.   

The FPGA is naturally built to accelerate its tasks by the way it is designed.  This is a 

specialized device that can be reconfigured to meet different needs and is capable 

performing parallel processing.   

In Dave et al., they tackled a problem to optimize the matrix-matrix-

multiplication using hardware acceleration through the FPGA and an instruction set 

architecture called PowerPC.  They connect directly to the system memory bus allowing 

for bandwidth up to 800 MB/s. Their software pipelined system would compute the 

matrix multiplication task faster with smaller size matrices but would be less efficient 

compared to the hardware implementation on much large matrix sizes.  Finally, they 

achieved some level of optimization but stated they could further improve on this.  This 

paper is one of the works that I considered when implementing my scheme.  The kNN 

encryption algorithm requires several matric multiplication functions to occur in the 

creation of the encrypted identification indices.   



 

7 

Owaida et al. proposed a solution to lowering the latency of data processing 

pipelines using FPGA based hardware acceleration, investigate data processing and 

machine learning in search engine pipelines, and propose an alternative solution through 

FPGA implementation of gradient boosted decision tree ensembles.  This will allow for 

an efficient way to process much larger results while combining distinct parts of the 

process to achieve lower latencies.  They test their scheme by using a large data analytic 

software called H20.  The data for testing is performing multiple queries for the flight 

routes and finding quick results for multiple data points.   Their design implements two 

different techniques to speed up the process of the gradient boosted decision tree and the 

XGboost tree.  Both trees are parallelized including the data sets that hold much of the 

routing information.  Next, it removes overhead from high-rate memory that normally a 

CPU would have, to the memory structures of the FPGA that is highly customizable.  

Their work shows that the FPGA far outclasses the CPU used in their testing by several 

factors.     

Imagine processing is a heavy computational task that is applied to many fields 

such as medical, military, and satellite imaging.  Stratakos et al. take a dive into the use 

of FPGAs in medical imagine processing and optimizing the parts of the process that are 

heavily computational.  They propose a hardware and software implementation of the 

imagine processing where the software application will handle the less computational 

expensive tasks, and the hardware implementation will handle the heavier loads.  The use 

of direct memory access is used to keep a low latency while keeping a high throughput 

between communications of the hardware design and software design. Like Stratakos, 

who had issues where large images would use up all the BLOCKRAMs resources and 
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needed to be downsized, I had issues where I had to downsize the ID size to one that did 

not fill up the FPGA resources.  Finally, they achieved optimizing the imagine processing 

using FPGA devices while proving higher performances when compared to standard 

software implementations during image processing.   

Gielata et al. explore using FPGA hardware acceleration for AES encryption and 

Rijndael algorithm.   They designed a pipeline architecture that would encrypt and 

decrypt the different modules.  In their experimentation the coding modules were 

synthesized and implemented separately from the decoding modules in 10 rounds 

parallel. They were able to achieve a higher throughput than regular software 

implementation of a similar design.  This allowed for a larger amount of data to be 

processed while executing the AES encryption much quicker.  It is worth noting, the 

coding module performed faster with more throughput than the decoding process of the 

encryption algorithm.   

In the work proposed by Ernst et al, they use the FPGA device as a hardware 

component that is connected to PCI.  The FPGA is used to process the EC point 

multiplication function of the elliptic curve public key algorithm.  This is the most 

computational extensive part of the encryption.  Instead of first designing their algorithm 

in C/C++ they take a different approach that generates synthesizable hardware 

descriptions.  This is like Vivado Design suite when creating a block design.  They use 

varying key sizes as well as different FPGA hardware during testing.  Their work was 

greatly increased using the FPGA based Crypto Processor that can generate synthesizable 

VHDL code that is implemented on the FPGA devices to accelerate the elliptical curve 

public key encryption algorithm. 
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Lastly, hardware acceleration is gaining influence in the computational world as 

bigger and harder to solve problems grow.  Image resolutions are becoming quite large 

requiring a considerable number of resources and time to process.  Algorithms and 

equations that once took CPUs a great amount of time to process can now be 

implemented much quicker.  Super computers are being built across the world to solve 

complex problems through parallel computing.  GPUs are increasing with the number of 

resources that can be placed upon on card. This increases its ability to perform much 

better through parallelism by using one of its greatest features, CUDA cores, to perform 

difficult tasks.  FPGAs are becoming increasingly present as the ability to put more 

components together within a small area as well as everything else.  Unlike all these other 

devices, the FPGA is highly customizable to fit different needs as a physical hardware 

component while having high throughputs and executing tasks much quicker than 

standard serial means.   

Encryption schemes for IoD 

Internet of drones is a network architecture that is designed to control unmanned 

aerial vehicles in a controlled airspace.    It is also used to control the information that is 

being communicated throughout the network.    In this part of the literature review I 

explore the different proposed authentication schemes that are attuned for IoD.   A 

comparison of their findings and mine are found in the comparison results section in 

chapter VI of this report.  First, Wazid et al. propose a lightweight remote user 

authentication and key agreement scheme for internet of drones.   

Wazid proposes a scheme for internet of drones that is user-based authentication 

scheme that uses key agreements in the scheme.   They use a one-way hash function and 
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bitwise XOR operation.  On the user side of the authentication scheme, they use fuzzy 

extractor to verify the users’ biometrics.  They boast of being resistant to attacks such as 

privileged-insider and password guessing, impersonation attacks, and a few others.  Their 

scheme is composed of seven phases.  The first step is the server will start the registration 

of all the drones, next users will register with the server.  Then users will login with their 

credentials.  The server will verify the credentials and deny or approve the login. There 

are other phases, but they do not relate to the direct process.  They are for password and 

biometric updates and the addition of other drones to the system.  The computational cost 

of their scheme on the server side is 2.56 ms while my scheme is in microseconds.  Next, 

Srinivas et al. propose a lightweight authentication scheme for IoD that uses Temporal 

Credential-Based Anonymous and applies real-or-random models.   

Srinivas scheme works by only allowing register users to use the services of the 

drones that are already registered with the server.  Just like Wazid’s scheme all drones are 

preregistered with the server.  In this scheme all the remote drones have unique keys that 

are used in the authentication process.  Srinivas scheme applies a three-factor technique 

that includes smart cards, user passwords and biometrics.  They use a one-way hash 

function and apply fuzzy extractor during the biometric verification process of the 

scheme.   

As previously stated, this authentication scheme has similar steps to Wazid, pre-

deployment, user registration, login and authentication, and stages to update user 

information, add new drones, and replace items that were stollen or lost.  Srinivas boast 

to protect against attacks such as stolen devices, impersonation attacks, man-in-the-

middle attacks and many more.  The approximation of the server-side computational time 
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for their scheme is 2.88ms seconds which is slightly slower than the earlier scheme 

reviewed above.   The next paper proposes a lightweight authenticated key exchange 

protocol for IoD.   

Tanveer et al. propose a lightweight authentication scheme that uses key exchange 

protocol that they label as LAKE.  This scheme is composed of six phases that are like 

previously described schemes: registration, user authentication and key exchange, update 

user information and biometrics, and the ability to add more drones to the scheme.   Their 

scheme uses a well-known authentication process as AEGIS encryption scheme.  They 

also use a one-way hash function and bitwise XOR operations in their scheme.   Tanveer 

boast that their authentication schemes protect from attacks such as password and 

biometric update attacks, offline password-guessing, identity-guessing attacks, and 

others.  Note that Tanveer uses a larger hash function than both Wazid and Srinivas but 

require less computational overhead in their server-side encryption.  The server-side 

computational cost that Tanveer claims is 0.174 ms.  Finally, the last paper proposes a 

lightweight authentication and key agreement scheme for Iod.  

Zhang et al. propose a similar one-way hash function and bitwise XOR 

operations, that happen when the drones and users mutually authenticate one another.  

They boast their scheme can potentially withstand various attacks such as impersonation, 

server spoofing, drone capture etc. Their scheme is composed of four phases: setup, user 

registration, drone registration and lastly authentication.    

As a final note, a strong authentication scheme is necessary in the IoD 

environment.  This reduces the risk of adversaries trying to infiltrate the system to do 

harm within and without the architecture.  Thus, having various parts of the scheme 
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passed on as a hardware component specialized in parallel processing will allow for 

larger throughput with lower latency times.   This is recognized in the results section of 

this report where I make a comparison of similar works to my own. I also compare the 

server side of my work as if it were compiled on the Kintex 116 FPGA, Nexys A7-100T 

FPGA, MatLAB and Visual Studios 2019 Enterprise.  
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CHAPTER III – SYSTEM MODEL 

Network Model 

The network model is composed of three main entities that work together to 

achieve one goal, a privacy-aware and hardware-based authentication scheme for IoD.  

 

 

Figure 3.1 Network Model of Authentication Scheme 

The three main entities as shown in the above figure are the remote drones, registration 

authority (RA) and the Authentication server. The network tower is purely 

communication purposes within this scheme. The first entity is the remote drone that 

must register with the registration authority before it can perform any kind of tasks within 
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the IoD area. Once this step is complete the drone can make a request to the 

authentication server when information needs to be passed along or requested. Before a 

request can be sent, the remote drone must perform the kNN algorithm on its 

identification information to create an encrypted identification index E(q) that can be sent 

to the authentication server for verification. The second entity is the registration authority 

whose sole purpose is to take in drone identification information, encrypt such 

information using kNN algorithm, upload encrypted identification index E(pi) for all 

drones registered to the authentication server, and create and distribute keys to all drones. 

The last entity is the authentication server, which functions as verification check and 

storage for all drone encrypted identification indices E(pi). The authentication server will 

receive the encrypted identification information index E(q) from the drone and perform 

the dot product search between it and all drone stored encrypted identification indices 

E(pi) received from the RA. If a match is found the drone can then send or request 

information to the authentication server, however, if the server does not find a match the 

drone will no longer be able to send any information over the network.  

Threat Model 

The types of threats my scheme will face are attackers that are “honest but 

curious.”  This will come from inside advisories within the authentication scheme such as 

the authentication server or other drones. “Honest but curious” means that the attackers 

will follow the proper protocols of the scheme and will not try to change it or deviate 

from the process. However, they will try to gain insight and learn all information possible 

throughout the scheme. This includes information such as the keys used in the kNN 

algorithm that are created and distributed by the RA and the drone’s identification 
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information. The purpose of this authentication scheme is to keep adversaries that are 

described above from gaining access to such information so that the system and its 

information remains private.   

Design Goals 

In this section the three design goals are defined here as well as how they apply to 

this authentication scheme. 

Scalability and Efficiency 

The scheme must be able to perform the dot product search over a large amount 

of data in a short bit of time.  In this case, the index search is performed using two 

hundred different drone encrypted identifications information E(pi) from the RA. The 

experiment used varying sizes of encrypted data between 1.024 kbits and 101.032 kbits 

depending on which FPGA device that is implementing the search.   

Confidentiality Identification Information 

Important identification information that is passed between the RA to 

authentication server or drone to authentication server should be confidential and private 

from adversaries trying to gain insight on its contents.  This information is hidden inside 

the encrypted indices created via all drones and RA making it difficult for advisories to 

decipher.   

Unlinkability of Authentication Request 

Inside the kNN encryption process for the remote drones, random numbers are 

generated during the encryption of the identification information.  Each time a drone 

makes a request to the authentication server different random numbers are created 

making no two-authentication request alike thus unlinkable.    
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CHAPTER IV – Proposed Scheme 

Overview 

A brief overview of the proposed scheme is defined below. 

1) Drone Registration: Drone gives unique identification information to 

registration authority.  This is in the form of a binary vector.  

2) Key Distribution: Registration authority creates and gives each drone a unique 

key. 

3) RA Identification Encryption: Registration authority performs kNN encryption 

algorithm on drones’ identification information creating the index E(pi).   

4) Upload of Index from RA: The registration authority uploads all drones’ 

encrypted identification information to the authentication server. 

5) Authentication Request: Once a drone has received the key from the RA, it can 

now use the key to encrypt its identification information using kNN algorithm.  

This creates the E(q) encrypted index that is sent to the authentication server 

during a request.   

6) Dot Product Index Search: Once the authentication server receives the drones 

encrypted index E(q), it takes the drones encrypted index E(q) and performs dot 

product on all stored indices E(pi) to find a match. 

7) Authentication Results: If a match is found, the server will then accept the 

authentication request allowing the drone to receive or give information to and 

from the authentication server.  If denied, the drone will no longer be able to send 

information within the system. 
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Scheme A.1 Proposed Authentication Scheme 

Drone Registration 

The first step of the authentication scheme is registration of the drone with the 

RA. The drone must give the RA its unique identification information q. In the 

implementation of this in Vivado HLS, the q is a binary vector and is tested using varied 

sizes: 4, 32, 64, 128, 256, and 512.  The varied sizes allow for various levels of 

encryption. The Nexys FPGA can only handle sizes of 256 and below.   

Key Distribution 

Once the RA receives the drone’s identification q it will create the parts of the key 

that is used in its own implementation of the kNN encryption and the drones.  First, a 

binary vector S is created of size n. The n is determined by the size of q. The first six 
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matrices are arrays type double composed of variables between 0.01 and 1 labeled (m1, 

m2, n1, n2, n3, n4).   These random numbers are created by using a seeded 32-bit Mersenne 

Twister, mt19937.  The seeded numbers in the experiment can be replaced with variables 

such as the internal temperatures of the board at that time during process.  These matrices 

and the binary vector are what the registration authority will use to create its key that will 

be used to encrypt the drones’ identification information before it is uploaded to the 

authentication server.  Thus, the RA’s key is composed of [S, m1n1, m1n2, m2n3, m2n4].  

Next, the secret key for the drone is created using the inverse of the matrices 

created earlier labeled, (m1
-1, m2

-1, n1
-1, n2

-1, n3
-1, n4

-1).  Also, for each of the drones' key, 

the RA will generate four random matrices (𝑚𝑖
′, 𝑚𝑖

′′, 𝑚𝑖
′′′, 𝑚𝑖

′′′′), so that m1
-1 = 𝑚𝑖

′ + 𝑚𝑖
′′ 

and m2
-1 =  𝑚𝑖

′′′ + 𝑚𝑖
′′′′.  Finally, the drones secret key is composed of [S, n1

-1𝑚𝑖
′, n2

-

1𝑚𝑖
′′, n3

-1𝑚𝑖
′′′, n4

-1𝑚𝑖
′′′′]. 

RA Identification Information Encryption and Upload 

The next step of the proposed scheme is the RA’s application of the kNN 

encryption to the drones ‘identification information.  After encryption, the RA will 

upload the encrypted indices to the server for each drone registered.  First, the RA 

receives the unique id of the drone that is labeled pi and sent to the split function to create 

two row arrays 𝑝𝑖
′[𝑘], 𝑝𝑖

′′[𝑘]. The S vector is also sent into the split function and performs 

the following tasks:    

for k < size of S, k++ 

 if (S[k] == 1) 

  𝑝𝑖
′[𝑘] = 𝑝𝑖[𝑘] 

  𝑝𝑖
′′[𝑘] = 𝑝𝑖[𝑘] 

 else if (S[k] == 0) 
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  𝑝𝑖
′[𝑘] = random number (0.01 and 1) 

  𝑝𝑖
′′[𝑘] = 𝑝𝑖[𝑘] – 𝑝𝑖

′[𝑘] 

After the 𝑝𝑖 has been split the RA will perform matrix multiplication four times to 

create four indices of the same size as pi which is shown in the following equations 

below.       

𝐼1 = 𝑝𝑖
′  𝑥 (𝑚1 𝑥 𝑛1) 

𝐼2 = 𝑝𝑖
′ 𝑥 (𝑚1 𝑥 𝑛2) 

𝐼3 = 𝑝𝑖
′′ 𝑥 (𝑚2 𝑥 𝑛3) 

𝐼4 = 𝑝𝑖
′′ 𝑥 (𝑚2 𝑥 𝑛4) 

Then all four indices are combined into one index that is now size n x 4.  This index is 

labeled E(pi) = [I1, I2, I3, I4] and is uploaded to the authentication server, where it will be 

stored with all other drones’ encrypted indices.   

Authentication Request via Drone 

Once a drone is registered it can now encrypt its identification information q 

using the key given by the RA. The drone only encrypts its identification information 

when making an authentication request.  If a request is needed the following will occur.  

The drone’s identification information q is sent into a similar split function as used in the 

RA to create two row vectors 𝑞′ and 𝑞′′.  The following will occur inside the split 

function which is shown below in the following pseudo code.   

for k < size of S, k++ 

 if (S[k] == 0) //different from RA 

  𝑞′[𝑘]= 𝑞[𝑘] 

  𝑞′′[𝑘] = 𝑞[𝑘] 

 else if (S[k] == 1) //different from RA 
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  𝑞′[𝑘]  = random number (0.01 and 1) 

  𝑞′′[𝑘] = 𝑞[𝑘] – 𝑞′[𝑘] 

Next, the two row vectors are transposed into column vectors 𝑞′𝑇and 𝑞′′𝑇. Then, the four 

column indices of size n are created using matric multiplication, as shown in the 

equations below.  

𝑇1 = (𝑛1
−1 𝑥 𝑚𝑖

′) 𝑥  𝑞′𝑇 

𝑇2 = (𝑛2
−1 𝑥 𝑚𝑖

′′) 𝑥 𝑞′𝑇 

𝑇3 = (𝑛3
−1 𝑥 𝑚𝑖

′′′) 𝑥 𝑞′′𝑇 

𝑇4 = (𝑛4
−1 𝑥 𝑚𝑖

′′′′) 𝑥 𝑞′′𝑇 

Finally, the four indices are combined in to one index E(q) = [T1, T2, T3, T4].  

Then the encrypted index E(q) is sent to the authentication server for verification. 

Authentication Process and results 

In this step the authentication server will receive an authentication request from 

the remote drone over the network.  The authentication server has previously stored all 

encrypted identification information from the RA. The authentication server will perform 

dot product multiplication on all saved indices E(pi), with that of the drone’s encrypted 

authentication request E(q).   The server does this until a match is found, and then sends 

the results through the network.   The server will either accept or reject the request 

depending on if there was a match in the dot product of the two indices.  If accepted the 

server will allow the remote drone to send its information to the server.   If it is rejected, 

the server will send a message saying this drone is not authenticated and does not accept 

any of its data.   
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CHAPTER V – METHODOLOGY 

Overview of Experiments 

Vivado HLS takes two C/C++ files for the source and testbench, these are the 

main code and top-level function code that implements the kNN encryption and the Dot-

Product Index Search.  Three separate instances of Vivado HLS are implemented in my 

design, the Drone Encryption, the Registration Authority Encryption, and the Dot-

Product Index Search.  The top function is the Matrix multiplication function for the kNN 

encryption and the dot-product function for the search portion of the scheme.  This means 

that those functions are the top-level functions of the FPGA device.  The source is where 

the other functions and main function of the code is located.  

Software 

This is the software I used to implement my experiments and performed extensive 

testing.   

MatLAB 

MatLAB is a platform for numeric computing and programming that is used to 

analyze data, develop several types of algorithms, and create models within the software.    

The kNN algorithm used in my scheme was first implemented in MatLAB and developed 

by Ahmed Sheriff.  I used this software to crosscheck my work to verify that it produced 

the same results that I did.  I was tasked with taking this code an converting it into C/C++ 

and then implementing it in my privacy-aware and hardware-based accelerated 

authentication scheme.   
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Visual Studios 

Visual studio is an integrated development environment (IDE) used in software 

development.  I used this as an intermediate before implementing my code in Vivado 

HLS.  This is the first IDE in which I was able to verify my C/C++ results to that of the 

MatLAB implementation of the kNN algorithm.  I was able to perform my code in this 

IDE before moving on to the next step. 

Vivado HLS 

Vivado HLS is a high-level synthesis design tool that allows C and C++ code to 

be converted into Verilog and VHDL and then implemented onto an FPGA as hardwired 

code.  This software will automatically accelerate parts of the code to further lower the 

computational cost through parallelism.  Vivado HLS also allows the user to simulate 

results through synthesis, co-synthesis, and implementation.  This is where timing, 

latency, utilization can be outputted for many different FPGA devices.  Further, files can 

be created for Vivado Design suite to acquire even more data on the implementation of 

different designs. 

Vivado Design Suite  

This is a design suite that was created by Xilinx for the synthesis, implementation, 

and analysis of HDL designs.  This software allows many functions and analysis such as 

power usage, utilizations, timing, and design implementations and schematics.  I used this 

software to produce theoretical results of how much power my authentication scheme 

consumes, different timings results, as well as the different resources used in each 

instance of the scheme.  Instances such as increasing the ID size also increase the number 

of resources used which is reflected in my results.  
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Experiment Methodology 

I tested the kNN algorithm encryption and search function simulating two 

different FPGA devices, the Kintex 116 UltraScale+ and the Nexys A7-100T. These two 

devices are on opposite ends of each other, meaning that the cost and available resources 

of the Kintex far outweighs that of the Nexys.  This is shown in the results sections of 

each device utilization under the row of available resources.  The cost of each board is 

$2,995 for the Kintex and $229.99 for the Nexys.  A brief description of the resources 

used in my experiments is shown below: 

• BRAM_18K:  This is a dual-port random access memory module that is 

on the FPGA board.  It is used to store large sets of data and each module 

can store 18 kilobits of data.  The dual-port is important because this 

allows for parallel same-clock-cycle access to these various locations in 

memory. (Xilinx documentation) 

• DSP48E: This is an arithmetic logic unit that is embedded into the FPGA 

board.  It is composed of an Add/Subtract unit connected to a multiplier 

that is connected to a final add/subtract/accumulate engine.  Most 

importantly this allows a single unit to perform the following function A 

+= X*Y, which is a function used allow in this scheme.   

• FF:  This a flip flop that includes data input, clock input, clock enable, 

reset and data output.   

• LUT: Look up tables that are connected to the FF. This is a table that 

generates the output based on the inputs received.   
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The first steps in creating this experiment are too open Vivado HLS and choose 

which FPGA device will be used during experimentation.  Then the C/C++ files can be 

imported or created into the design.  Then a top function is chosen from the source file.  

Lastly, a solution folder is created, this is where all csim, implementation and synthesis 

information are stored.  Csim is used to test the results of the experiment and that the 

correct values are shown, C Synthesis starts the source code, C/RTL Cosimulation 

verifies the RTL output and finally Export RTL packages the RTL into an IP output that 

can be opened in Vivado Design Suite.   

Synthesis and Export RTL 

Once the correct files and parameters have been setup in Vivado HLS the testing 

phase can begin.  This is where I can acquire information such as Latency, Number of 

Cycles, Utilization, Power consumption and much more.  The following identification 

information sizes were tested in this authentication scheme. 

• ID array of 4 elements type double 

o Creates an encrypted index of 16 elements type double 

▪ Size in bits: 4,096 bits 

• ID array of 32 elements type double 

o Creates an encrypted index of 128 elements type double 

▪ Size in bits: 8,192 bits 

• ID array of 64 elements type double 

o Creates an encrypted index of 256 elements type double 

▪ Size in bits: 16,384 bits 

• ID array of 128 elements type double 
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o Creates an encrypted index of 512 elements type double 

▪ Size in bits: 32,768 bits 

• ID array of 256 elements type double 

o Creates an encrypted index of 1024 elements type double 

▪ Size in bits: 65,536 bits 

• ID array of 512 elements type double 

o Creates an encrypted index of 2048 elements type double 

▪ Size in bits: 131,072 bits 

Using any larger ID sizes risk using up all the memory in the lower-end FPGA 

devices, the Nexys can only achieve index encryption sizes slightly above 256 before it 

can no longer store anything in block ram memory.  In the results section, most graphs 

have encrypted index size in kilobits, this means the size of the experiment I was 

performing at that time while either creating an encrypted index of that size or searching 

through encrypted indices of that size.  Vivado HLS allows the user to test multiple 

solutions in the same project, in this case, each size change of the identification 

information is a new solution with its own simulation and implementation reports.  This 

also applies to when testing is done on a different FPGA device.  The following occurs 

when running this experiment.   

1) CSIM: if you have printed statements in the code to verify results it will 

print them in a console. 

2) C Synthesis: This gets the source code started in Vivado HLS and will 

produce reports for utilization, latency, and more.  This is shown in the 

results section of the report. 
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3) Next, Cosimulation is ran, this verifies the RTL output of the code. 

4) Lastly, the Export RTL is in setup only and for VHDL.  This will create an 

IP output file labeled project.  This file can be opened in Vivado Design 

suite and is where the power consumption can be obtained.  This will also 

allow for design schematics and show visual representations of the 

resources used on the board.   

The latency that is reported is the total amount time that it takes to perform the kNN 

encryption of the index or the dot product search.  It is measured in unites of time and is 

calculated by the number of clock cycles it takes for an operation to perform.  Where 

there is no data dependency, I apply loop unrolling using the #pragma HLS UNROLL.  

This will allow for parallelism in functions that are not dependent on other variables.  

There is a noticeable difference in speed if not using this #pragma in the experiments.   

Implementation System 

The system that I implemented my work on is a i9-9900k @ 3.60 GHz with 8 

cores and 16 threads total.  It has 32 GB of 3200 MHz of ram and a NVIDIA GTX 1080 

Graphics card that supports 2560 CUDA cores.  Lastly, the main implementation 

software; Vivado HLS, Vivado Design Suite, MatLAB and Visual Studios is installed on 

a M.2 Samsung 970 Pro 1TB with read/write speeds up to 3500/2700 MB/s.  
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Results of Kintex 116 

Table 5.1 Kintex 116 Encryption of Index Utilization 1.024kBits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 133 0 

FIFO 0 0 0 0 0 

Instance 0 25 1043 1188 0 

Memory 4 0 0 0 0 

Multiplexer 0 0 0 565 0 

Register 0 0 680 0 0 

Total 4 25 1723 1886 0 

Available 960 1824 433920 216960 64 

Utilization (%) 0.42 1.37 0.40 0.87 0 

 

Table 5.2 Kintex 116 Search of Index Utilization 1.024kBits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 355 0 

FIFO 0 0 0 0 0 

Instance 0 14 744 985 0 

Memory 4 0 0 0 0 

Multiplexer 0 0 0 77 0 

Register 0 0 217 0 0 

Total 4 14 961 1417 0 

Available 960 1824 433920 216960 64 

Utilization (%) 0.417 0.768 0.221 0.653 0.000 

 

Tables 5.1 and 5.2 represent the kNN encryption process and index dot-product 

search results of an encrypted index size, 16 elements of type double using the Kintex 

116.  As shown in both tables, the devices resources are barely used.   
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Table 5.3 Kintex 116 Encryption of Index Utilization 8.194 kBits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 1049 0 

FIFO 0 0 0 0 0 

Instance 0 25 1043 1188 0 

Memory 4 0 0 0 0 

Multiplexer 0 0 0 2757 0 

Register 0 0 3864 0 0 

Total 4 25 4907 4994 0 

Available 960 1824 433920 216960 64 

Utilization (%) 0.42 1.37 1.13 2.30 0 

 

Table 5.4 Kintex 116 Search of Index Utilization 8.194 kBits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 357 0 

FIFO 0 0 0 0 0 

Instance 0 14 744 985 0 

Memory 4 0 0 0 0 

Multiplexer 0 0 0 77 0 

Register 0 0 223 0 0 

Total 4 14 967 1419 0 

Available 960 1824 433920 216960 64 

Utilization (%) 0.417 0.768 0.223 0.654 0.000 

 

Tables 5.3 and 5.4 represent the kNN encryption process and index dot-product 

search results of an encrypted index size, 128 elements of type double using the Kintex 

116.  As shown in both tables, the devices resources have slightly increased.   
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Table 5.5 Kintex 116 Encryption of Index Utilization 16.384 kbits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 2327 0 

FIFO 0 0 0 0 0 

Instance 0 25 1043 1188 0 

Memory 15 0 0 0 0 

Multiplexer 0 0 0 4209 0 

Register 0 0 6850 0 0 

Total 15 25 7893 7724 0 

Available 960 1824 433920 216960 64 

Utilization (%) 1.56 1.37 1.82 3.56 0 

 

Table 5.6 Kintex 116 Search of Index Utilization 16.384 kbits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 358 0 

FIFO 0 0 0 0 0 

Instance 0 14 744 985 0 

Memory 4 0 0 0 0 

Multiplexer 0 0 0 77 0 

Register 0 0 225 0 0 

Total 4 14 969 1420 0 

Available 960 1824 433920 216960 64 

Utilization (%) 0.417 0.768 0.223 0.654 0.000 

 

Tables 5.5 and 5.6 represent the kNN encryption process and index dot-product 

search results of an encrypted index size, 256 elements of type double using the Kintex 

116.  As shown in the tables, the devices resources are still only slightly increasing for 

the kNN encryption while the dot-product index search remains nearly the same.   
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Table 5.7 Kintex 116 Encryption of Index Utilization 32.768 kbits 

DSP 0 0 0 0 0 

Expression 0 0 0 5213 0 

FIFO 0 0 0 0 0 

Instance 0 25 1043 1188 0 

Memory 57 0 0 0 0 

Multiplexer 0 0 0 6030 0 

Register 0 0 13514 0 0 

Total 57 25 14557 12431 0 

Available 960 1824 433920 216960 64 

Utilization (%) 5.94 1.37 3.35 5.73 0 

 

Table 5.8 Kintex 116 Search of Index Utilization 32.768 kbits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 359 0 

FIFO 0 0 0 0 0 

Instance 0 14 744 985 0 

Memory 4 0 0 0 0 

Multiplexer 0 0 0 77 0 

Register 0 0 227 0 0 

Total 4 14 971 1421 0 

Available 960 1824 433920 216960 64 

Utilization (%) 0.417 0.768 0.224 0.655 0.000 

 

Tables 5.7 and 5.8 represent the kNN encryption process and index dot-product 

search results of an encrypted index size, 512 elements of type double using the Kintex 

116.  As shown in both tables, the devices resources are steadily increasing for the kNN 

encryption process while the dot-product index search barely increases.   
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Table 5.9 Kintex 116 Encryption of Index Utilization 65.536 kbits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 11615 0 

FIFO 0 0 0 0 0 

Instance 0 25 980 1130 0 

Memory 228 0 0 0 0 

Multiplexer 0 0 0 9774 0 

Register 0 0 27037 0 0 

Total 228 25 28017 22519 0 

Available 960 1824 433920 216960 64 

Utilization (%) 23.75 1.37 6.46 10.38 0 

 

Table 5.10 Kintex 116 Search of Index Utilization 65.536 kbits 

DSP 0 0 0 0 0 

Expression 0 0 0 360 0 

FIFO 0 0 0 0 0 

Instance 0 14 744 985 0 

Memory 4 0 0 0 0 

Multiplexer 0 0 0 77 0 

Register 0 0 229 0 0 

Total 4 14 973 1422 0 

Available 960 1824 433920 216960 64 

Utilization (%) 0.417 0.768 0.224 0.655 0.000 

 

Tables 5.9 and 5.10 represent the kNN encryption process and index dot-product 

search results of an encrypted index size, 1024 elements of type double using the Kintex 

116.  As shown in both tables, the kNN encryption process utilization is increasing while 

the dot-product index search resources are only slightly increasing.   
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Table 5.11 Kintex 116 Encryption of Index Utilization 131.072 kbits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 25697 0 

FIFO 0 0 0 0 0 

Instance 0 25 980 1130 0 

Memory 912 0 0 0 0 

Multiplexer 0 0 0 16758 0 

Register 0 0 53650 0 0 

Total 912 25 54630 43585 0 

Available 960 1824 433920 216960 64 

Utilization (%) 95.00 1.37 12.59 20.09 0 

 

Table 5.12 Kintex 116 Search of Index Utilization 131.072 kbits 

Name BRAM_18K DSP48E FF LUT URAM 

DSP 0 0 0 0 0 

Expression 0 0 0 361 0 

FIFO 0 0 0 0 0 

Instance 0 14 744 985 0 

Memory 4 0 0 0 0 

Multiplexer 0 0 0 77 0 

Register 0 0 231 0 0 

Total 4 14 975 1423 0 

Available 960 1824 433920 216960 64 

Utilization (%) 0.417 0.768 0.225 0.656 0.000 

 

Tables 5.11 and 5.12 represent the kNN encryption process and index dot-product 

search results of an encrypted index size, 2048 elements of type double using the Kintex 

116.  As shown in both tables, the kNN encryption process utilization is reaching its max 

resources for block ram while the dot-product index search resources are only slightly 

increasing.   

 



 

33 

Table 5.13 Kintex 116 Encryption of Index Latency and Power Consumption 

size (kbits) Latency (s) Power Consumption(W) 

1.024 0.00000547 0.053 

8.167 0.001764 0.07 

16.384 0.013604 0.084 

32.768 0.107 0.13 

65.536 0.754 0.223 

131.072 6.21 0.42 

 

 

Figure 5.1 Kintex 116 Utilization Comparison of Encryption of Index 

Table 5.13 is composed of the total latency calculations and power consumptions 

for all encrypted index sizes that were tested.  Figure 5.1 represents the total utilization 

resources that were consumed for each encrypted index size during the kNN encryption 

process.   

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

1.024 8.167 16.384 32.768 65.536 131.072

U
ti

li
za

ti
o
n
 (

%
)

Index Size after Encryption (kbits) 

BRAM_18K DSP48E FF LUT



 

34 

 

Figure 5.2 Kintex 116 Utilization Comparison for Encrypted Index Search 

 

Figure 5.3 Kintex 116 Encryption of Index Latency graph 

Figures 5.2 and 5.3 represent the total utilization of the Dot-Product index search 

and the representation of the latency as the encrypted index sizes are increased.   
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Figure 5.4 Kintex 116 Encryption of Index Power Consumption 

 

Table 5.14 Kintex 116 Dot-Product Index Search Latency and Power Consumption 

size (kbits) Latency (s) Power Consumption (W) 

1.024 1.78E-6 0.028 

8.167 14.10E-6 0.028 

16.384 28.18E-6 0.028 

32.768 56.34E-6 0.028 

65.536 113.00E-6 0.028 

131.072 225.00E-6 0.028 

 

Figures 5.4 represent the power consumption of the kNN encryption process as 

the encrypted index size is increased.  Table 5.14 represents the total latency’s calculated 

and power consumptions calculations during the dot-product index search as the 

encrypted index size is increased.  Finally, Figure 5.5 represents the Kintex 116 how the 

latency is increased as the encrypted index sizes are increased.   
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Figure 5.5 Kintex 116 Search of Index Latency 
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Results of Nexys A7-100T 

Table 5.15 Nexys A7-100T Encryption of Index Utilization 1.024 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 137 

FIFO 0 0 0 0 

Instance 0 25 1143 1225 

Memory 4 0 0 0 

Multiplexer 0 0 0 646 

Register 0 0 1078 0 

Total 4 25 2221 2008 

Available 270 240 126800 63400 

Utilization (%) 1.48 10.42 1.75 3.17 

 

Table 5.16 Nexys A7-100T Search of Index Utilization 1.024 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 356 

FIFO 0 0 0 0 

Instance 0 14 826 1021 

Memory 4 0 0 0 

Multiplexer 0 0 0 107 

Register 0 0 454 0 

Total 4 14 1280 1484 

Available 270 240 126800 63400 

Utilization (%) 1.481 5.833 1.009 2.341 

 

Tables 5.15 and 5.16 represent the total utilization of resources for the Nexys A7-

100T during the kNN encryption process and the Dot-Product index search.  The 

encrypted index size is 16 elements of type double.   
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Table 5.17 Nexys A7-100T Encryption of Index Utilization 8.192 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 1049 

FIFO 0 0 0 0 

Instance 0 25 1143 1225 

Memory 4 0 0 0 

Multiplexer 0 0 0 3098 

Register 0 0 4254 0 

Total 4 25 5397 5372 

Available 270 240 126800 63400 

Utilization (%) 1.48 10.42 4.26 8.47 

 

Table 5.18 Nexys A7-100T Search of Index Utilization 8.192 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 361 

FIFO 0 0 0 0 

Instance 0 14 826 1021 

Memory 4 0 0 0 

Multiplexer 0 0 0 107 

Register 0 0 460 0 

Total 4 14 1286 1489 

Available 270 240 126800 63400 

Utilization (%) 1.481 5.833 1.014 2.349 

 

Tables 5.17 and 5.18 represent the total utilization of resources for the Nexys A7-

100T during the kNN encryption process and the Dot-Product index search.  The 

encrypted index size is 128 elements of type double.  As shown above, the Dot-Product 

index search slightly increases while the kNN encryption process utilization is steadily 

increasing.   
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Table 5.19 Nexys A7-100T Encryption of Index Utilization 16.384 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 2327 

FIFO 0 0 0 0 

Instance 0 25 1143 1225 

Memory 16 0 0 0 

Multiplexer 0 0 0 4278 

Register 0 0 7560 0 

Total 16 25 8703 7830 

Available 270 240 126800 63400 

Utilization (%) 5.93 10.42 6.86 12.35 

 

Table 5.20 Nexys A7-100T Search of Index Utilization 16.384 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 362 

FIFO 0 0 0 0 

Instance 0 14 826 1021 

Memory 4 0 0 0 

Multiplexer 0 0 0 107 

Register 0 0 462 0 

Total 4 14 1288 1490 

Available 270 240 126800 63400 

Utilization (%) 1.481 5.833 1.016 2.350 

 

Tables 5.19 and 5.20 represent the total utilization of resources for the Nexys A7-

100T during the kNN encryption process and the Dot-Product index search.  The 

encrypted index size is 256 elements of type double.  As shown above, the Dot-Product 

index search slightly increases while the kNN encryption process utilization is steadily 

increasing.   
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Table 5.21 Nexys A7-100T Encryption of Index Utilization 32.768 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 5213 

FIFO 0 0 0 0 

Instance 0 25 1143 1225 

Memory 64 0 0 0 

Multiplexer 0 0 0 6103 

Register 0 0 14430 0 

Total 64 25 15573 12541 

Available 270 240 126800 63400 

Utilization (%) 23.70 10.42 12.28 19.78 

 

Table 5.22 Nexys A7-100T Search of Index Utilization 32.768 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 363 

FIFO 0 0 0 0 

Instance 0 14 826 1021 

Memory 4 0 0 0 

Multiplexer 0 0 0 107 

Register 0 0 464 0 

Total 4 14 1290 1491 

Available 270 240 126800 63400 

Utilization (%) 1.481 5.833 1.017 2.352 

 

Tables 5.21 and 5.22 represent the total utilization of resources for the Nexys A7-

100T during the kNN encryption process and the Dot-Product index search.  The 

encrypted index size is 512 elements of type double.  As shown above, the Dot-Product 

index search slightly increases while the kNN encryption process utilization is steadily 

increasing.   

 



 

41 

Table 5.23 Nexys A7-100T Encryption of Index Utilization 65.536 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 11615 

FIFO 0 0 0 0 

Instance 0 25 1143 1225 

Memory 256 0 0 0 

Multiplexer 0 0 0 9798 

Register 0 0 28056 0 

Total 256 25 29199 22638 

Available 270 240 126800 63400 

Utilization (%) 94.81 10.42 23.03 35.71 

 

Table 5.24 Nexys A7-100T Search of Index Utilization 65.536 kbits 

Name BRAM_18K DSP48E FF LUT 

DSP 0 0 0 0 

Expression 0 0 0 364 

FIFO 0 0 0 0 

Instance 0 14 826 1021 

Memory 4 0 0 0 

Multiplexer 0 0 0 107 

Register 0 0 466 0 

Total 4 14 1292 1492 

Available 270 240 126800 63400 

Utilization (%) 1.481 5.833 1.019 2.353 

 

Tables 5.23 and 5.24 represent the total utilization of resources for the Nexys A7-

100T during the kNN encryption process and the Dot-Product index search.  The 

encrypted index size is 1024 elements of type double.  As shown above, the Dot-Product 

index search slightly increases while the kNN encryption process utilization reaching its 

max resources available in the block ram.   The Nexys is only able to encrypt indices 

sizes 256 elements of type double and below.   
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Table 5.25 Nexys A7-100T Encryption of Index Latency and Power Consumption 

size (kbits) Latency (s) Power Consumption(W) 

1.024 0.00000687 0.077 

8.167 0.002141 0.103 

16.384 0.016621 0.15 

32.768 0.133 0.337 

65.536 1.097  0.337 

 

Table 5.26 Nexys A7-100T Search of Index Latency and Power Consumption 

size (kbits) Latency (s) Power Consumption (W) 

1.024 2.27E-6 0.051 

8.167 17.95E-6 0.053 

16.384 35.87E-6 0.054 

32.768 71.71E-6 0.054 

65.536 143.00E-6 0.054 

 

Tables 5.25 and 5.26 represent the total latency’s calculated and power consumed 

during each instance of the kNN encryption process and Dot-Product index search from 

encrypted index sizes of 16 elements to 1024 elements.   
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Figure 5.6 Nexys A7-100T Utilization Comparison of Encryption of Index 

 

Figure 5.7 Nexys A7-100T Utilization Comparison of Index Search 
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In figures 5.7 and 5.8, the first represents the resource utilization during the index 

search while the other represents the latency as the encrypted index size is increased.   

 

Figure 5.9 Nexys A7-100T Latency Comparison of Index Search 
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Figure 5.10 Nexys A7-100T Power Consumption Comparison of Index Encryption 

Figures 5.9 and 5.10 represent the latency in the index search and power 

consumption in the index encryption process as the encrypted index size is increased 

from 16 elements to 1024 elements of type double.   

 

Figure 5.11 Nexys A7-100T Power Consumption Comparison of Index Search 

Figure 5.11 represents the power consumption during the index search as the 

encrypted index size is increased.   
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Table 5.27 Execution time of index search comparisons of different IDEs (in seconds) 

Size Matlab Visual Studios Kintex Nexys 

1.024 0.000807 0.0020 0.00000178 0.00000227 

8.167 0.032 0.0040 0.0000141 0.00001795 

16.384 0.126 0.0070 0.00002818 0.00003587 

32.768 0.591 0.0140 0.00005634 0.00007171 

65.536 2.3 0.0250 0.000113 0.000143 

131.072 9 0.0500 0.000225 N/A 

 

Table 5.28 Execution time of index encryption IDE comparison (in seconds) 

size MatLAB Visual Studios Kintex Nexys 

1.024 0.000064 0.0002 0.00000547 0.00000687 

8.167 0.000142 0.003 0.001764 0.002141 

16.384 0.000424 0.008 0.013604 0.016621 

32.768 0.00101 0.048 0.107 0.133 

65.536 0.003753 0.377 0.754 1.097 

131.072 0.0134 2.74 6.21 N/A 

 

 

Tables 5.27 and 5.28 represent the latency’s of both the kNN encryption process 

and the Dot-Product search implemented on MatLAB, Visual Studios, Kintex 116 FPGA, 

and the Nexys A7-100T FPGA.  
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CHAPTER VI – DISCUSSION AND CONCLUSION 

Comparison of other works 

My scheme is much faster than other similar authentication schemes for IoD.  

This is achieved by having a hardware component that offsets heavy computational tasks 

onto a specialized device, the FPGA.  Where you need a GPUs or multiple cores to 

parallel certain functions the FPGA is naturally built for it because of its architecture.   

 

Figure 6.1 Proposed scheme (Nexys) comparison of results of server-side computational 

cost. 
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Figure 6.2 Proposed scheme (Kintex) comparison of results of server-side computational 

cost 

I used the results from the Nexys A7-100T in figure 6.1 and Kintex 116 in figure 

6.2 in the comparison of an encrypted identification size of 512 elements of type double.  

The dot product search was performed against 200 encrypted indices of the same size.  

The Kintex 116 performed even better, only taking 56us to do a similar task.   
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Figure 6.3 Implementation comparisons of dot-product Search 

 

In Figure 6.3 is a compassion of the implementation of the dot product search on 

MatLAB, visual studios and the two FPGA devices using encrypted index sizes of 16, 

128, 256, and 512.  The 1024 and 2048 sizes were not included in this chart because the 

latency would cause the Kintex, Nexys, and Visual studio results to look like they were at 

zero.  Also, 2048 was not used because the Nexys cannot encrypt indies that large.  The 

chart shows that the FPGA devices outperformed Visual Studios and MatLAB and the 

Kintex 116 performed the best.   
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Drawbacks 

Implementing the kNN algorithm on an FPGA device had some challenges and 

limitations from the software and hardware itself.  The Vivado HLS software had some 

limitations such as no pointers to pointers, pointers to functions, no dynamic memory 

where everything had to be bounded, and no recursive functions etc. The csim function in 

Vivado had limitations when implementing large matrices within the design.  However, 

the Vivado HLS could still synthesis and implement the kNN algorithm spite of this 

limitation.   

Conclusion 

I was able to simulate the different components of my proposed scheme using 

Vivado HLS and Vivado Design Suite.  My results show that my scheme computational 

cost of the search performed much quicker than other similar schemes.  The 

authentication scheme is flexible and efficient and can meet the needs of different 

consumers by choosing different FPGA devices to implement the Hardware Accelerated 

kNN Authentication Scheme.  This is necessary for users that need cheaper means of 

security and do not need higher levels of encryption that require more FPGA resources 

and a more expensive device.   
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