934 research outputs found

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times

    On the Potential of Generic Modeling for VANET Data Aggregation Protocols

    Get PDF
    In-network data aggregation is a promising communication mechanism to reduce bandwidth requirements of applications in vehicular ad-hoc networks (VANETs). Many aggregation schemes have been proposed, often with varying features. Most aggregation schemes are tailored to specific application scenarios and for specific aggregation operations. Comparative evaluation of different aggregation schemes is therefore difficult. An application centric view of aggregation does also not tap into the potential of cross application aggregation. Generic modeling may help to unlock this potential. We outline a generic modeling approach to enable improved comparability of aggregation schemes and facilitate joint optimization for different applications of aggregation schemes for VANETs. This work outlines the requirements and general concept of a generic modeling approach and identifies open challenges

    Blockchain Application on the Internet of Vehicles (IoV)

    Full text link
    With the rapid development of the Internet of Things (IoT) and its potential integration with the traditional Vehicular Ad-Hoc Networks (VANETs), we have witnessed the emergence of the Internet of Vehicles (IoV), which promises to seamlessly integrate into smart transportation systems. However, the key characteristics of IoV, such as high-speed mobility and frequent disconnections make it difficult to manage its security and privacy. The Blockchain, as a distributed tamper-resistant ledge, has been proposed as an innovative solution that guarantees privacy-preserving yet secure schemes. In this paper, we review recent literature on the application of blockchain to IoV, in particular, and intelligent transportation systems in general

    Secure Data Aggregation in Vehicular-Adhoc Networks: A Survey

    Get PDF
    AbstractVehicular ad hoc networks (VANETs) are an upcoming technology that is gaining momentum in recent years. That may be the reason that the network attracts more and more attention from both industry and academia. Due to the limited bandwidth of wireless communication medium, scalability is a major problem. Data aggregation is a solution to this. The goal of data aggregation is to combine the messages and disseminate this in larger region. While doing aggregation integrity of the information can not be easily verified and attacks may be possible. Hence aggregation must be secure. Although there are several surveys covering VANETs, they do not concentrate on security issues specifically on data aggregation. In this paper, we discuss and analyse various data aggregation techniques and their solutions

    Car-to-Cloud Communication Traffic Analysis Based on the Common Vehicle Information Model

    Full text link
    Although connectivity services have been introduced already today in many of the most recent car models, the potential of vehicles serving as highly mobile sensor platform in the Internet of Things (IoT) has not been sufficiently exploited yet. The European AutoMat project has therefore defined an open Common Vehicle Information Model (CVIM) in combination with a cross-industry, cloud-based big data marketplace. Thereby, vehicle sensor data can be leveraged for the design of entirely new services even beyond traffic-related applications (such as localized weather forecasts). This paper focuses on the prediction of the achievable data rate making use of an analytical model based on empirical measurements. For an in-depth analysis, the CVIM has been integrated in a vehicle traffic simulator to produce CVIM-complaint data streams as a result of the individual behavior of each vehicle (speed, brake activity, steering activity, etc.). In a next step, a simulation of vehicle traffic in a realistically modeled, large-area street network has been used in combination with a cellular Long Term Evolution (LTE) network to determine the cumulated amount of data produced within each network cell. As a result, a new car-to-cloud communication traffic model has been derived, which quantifies the data rate of aggregated car-to-cloud data producible by vehicles depending on the current traffic situations (free flow and traffic jam). The results provide a reference for network planning and resource scheduling for car-to-cloud type services in the context of smart cities

    Review of Custom Grids for Updated Vehicles on VANET Simulators

    Get PDF
    VANET deployment and testing is time-consuming and costly. Simulation is a handy and less expensive alternative to real implementation as a workaround. It is required to develop accurate models in order to receive excellent results from a VANET simulation, which difficult operation owes to the complexity of the VANET infrastructure (for example, simulators have to model the navigation models and communication protocols). The network and navigation components, which are the building blocks of contemporary VANET simulators, are described in this section. Simulators are a useful tool for testing VANETs at a minimal cost and without endangering users. However, in order to be helpful and convey trustworthy findings, simulators must be able to simulate new technologies that enter the VANET and enable safety and security procedures. To put it another way, if simulation is a good tool for VANET development it should be enhanced. VANET simulators have been the subject of research since early 2010 [1-4]. They analyze the correctness of VANET's numerous tools like a navigation simulator and network simulator, as well as how these building blocks are connected. The introduction of new network technologies such as 5G, SDN, edge computing, and VANET research as a result of investments in autonomous cars is forcing VANET simulators to re-evaluate their support for these new capabilities. We present an updated evaluation of VANET simulators in this post, highlighting their key features and current support for emerging technologies
    corecore