233 research outputs found

    Preventing DDoS using Bloom Filter: A Survey

    Full text link
    Distributed Denial-of-Service (DDoS) is a menace for service provider and prominent issue in network security. Defeating or defending the DDoS is a prime challenge. DDoS make a service unavailable for a certain time. This phenomenon harms the service providers, and hence, loss of business revenue. Therefore, DDoS is a grand challenge to defeat. There are numerous mechanism to defend DDoS, however, this paper surveys the deployment of Bloom Filter in defending a DDoS attack. The Bloom Filter is a probabilistic data structure for membership query that returns either true or false. Bloom Filter uses tiny memory to store information of large data. Therefore, packet information is stored in Bloom Filter to defend and defeat DDoS. This paper presents a survey on DDoS defending technique using Bloom Filter.Comment: 9 pages, 1 figure. This article is accepted for publication in EAI Endorsed Transactions on Scalable Information System

    A privacy preserving framework for cyber-physical systems and its integration in real world applications

    Get PDF
    A cyber-physical system (CPS) comprises of a network of processing and communication capable sensors and actuators that are pervasively embedded in the physical world. These intelligent computing elements achieve the tight combination and coordination between the logic processing and physical resources. It is envisioned that CPS will have great economic and societal impact, and alter the qualify of life like what Internet has done. This dissertation focuses on the privacy issues in current and future CPS applications. as thousands of the intelligent devices are deeply embedded in human societies, the system operations may potentially disclose the sensitive information if no privacy preserving mechanism is designed. This dissertation identifies data privacy and location privacy as the representatives to investigate the privacy problems in CPS. The data content privacy infringement occurs if the adversary can determine or partially determine the meaning of the transmitted data or the data stored in the storage. The location privacy, on the other hand, is the secrecy that a certain sensed object is associated to a specific location, the disclosure of which may endanger the sensed object. The location privacy may be compromised by the adversary through hop-by-hop traceback along the reverse direction of the message routing path. This dissertation proposes a public key based access control scheme to protect the data content privacy. Recent advances in efficient public key schemes, such as ECC, have already shown the feasibility to use public key schemes on low power devices including sensor motes. In this dissertation, an efficient public key security primitives, WM-ECC, has been implemented for TelosB and MICAz, the two major hardware platform in current sensor networks. WM-ECC achieves the best performance among the academic implementations. Based on WM-ECC, this dissertation has designed various security schemes, including pairwise key establishment, user access control and false data filtering mechanism, to protect the data content privacy. The experiments presented in this dissertation have shown that the proposed schemes are practical for real world applications. to protect the location privacy, this dissertation has considered two adversary models. For the first model in which an adversary has limited radio detection capability, the privacy-aware routing schemes are designed to slow down the adversary\u27s traceback progress. Through theoretical analysis, this dissertation shows how to maximize the adversary\u27s traceback time given a power consumption budget for message routing. Based on the theoretical results, this dissertation also proposes a simple and practical weighted random stride (WRS) routing scheme. The second model assumes a more powerful adversary that is able to monitor all radio communications in the network. This dissertation proposes a random schedule scheme in which each node transmits at a certain time slot in a period so that the adversary would not be able to profile the difference in communication patterns among all the nodes. Finally, this dissertation integrates the proposed privacy preserving framework into Snoogle, a sensor nodes based search engine for the physical world. Snoogle allows people to search for the physical objects in their vicinity. The previously proposed privacy preserving schemes are applied in the application to achieve the flexible and resilient privacy preserving capabilities. In addition to security and privacy, Snoogle also incorporates a number of energy saving and communication compression techniques that are carefully designed for systems composed of low-cost, low-power embedded devices. The evaluation study comprises of the real world experiments on a prototype Snoogle system and the scalability simulations

    Packet analysis for network forensics: A comprehensive survey

    Get PDF
    Packet analysis is a primary traceback technique in network forensics, which, providing that the packet details captured are sufficiently detailed, can play back even the entire network traffic for a particular point in time. This can be used to find traces of nefarious online behavior, data breaches, unauthorized website access, malware infection, and intrusion attempts, and to reconstruct image files, documents, email attachments, etc. sent over the network. This paper is a comprehensive survey of the utilization of packet analysis, including deep packet inspection, in network forensics, and provides a review of AI-powered packet analysis methods with advanced network traffic classification and pattern identification capabilities. Considering that not all network information can be used in court, the types of digital evidence that might be admissible are detailed. The properties of both hardware appliances and packet analyzer software are reviewed from the perspective of their potential use in network forensics

    Protecting web applications from DDoS attacks by an active distributed defense system

    Full text link
    In the last a few years a number of highly publicized incidents of Distributed Denial of Service (DDoS) attacks against high-profile government and commercial websites have made people aware of the importance of providing data and services security to users. A DDoS attack is an availability attack, which is characterized by an explicit attempt from an attacker to prevent legitimate users of a service from using the desired resources. This paper introduces the vulnerability of web applications to DDoS attacks, and presents an active distributed defense system that has a deployment mixture of sub-systems to protect web applications from DDoS attacks. According to the simulation experiments, this system is effective in that it is able to defend web applications against attacks. It can avoid overall network congestion and provide more resources to legitimate web users.<br /

    A method for forensic artifact collection, analysis and incident response in environments running Session Initiation Protocol (SIP) and Session Description protocol

    Get PDF
    In this paper, we perform an analysis of SIP, a popular voice over IP (VoIP) protocol and propose a framework for capturing and analysing volatile VoIP data in order to determine forensic readiness requirements for effectively identifying an attacker. The analysis was performed on real attack data and the findings were encouraging. It seems that if appropriate forensic readiness processes and controls are in place, a wealth of evidence can be obtained. The type of the end user equipment of the internal users, the private IP, the software that is used can help build a reliable baseline information database. On the other hand the private IP addresses of the potential attacker even during the presence of NAT services, as well as and the attack tools employed by the malicious parties are logged for further analysis
    • …
    corecore