43 research outputs found

    Privacy in data publishing for tailored recommendation scenarios

    Get PDF
    Personal information is increasingly gathered and used for providing services tailored to user preferences, but the datasets used to provide such functionality can represent serious privacy threats if not appropriately protected. Work in privacy-preserving data publishing targeted privacy guarantees that protect against record re-identification, by making records indistinguishable, or sensitive attribute value disclosure, by introducing diversity or noise in the sensitive values. However, most approaches fail in the high-dimensional case, and the ones that don’t introduce a utility cost incompatible with tailored recommendation scenarios. This paper aims at a sensible trade-off between privacy and the benefits of tailored recommendations, in the context of privacy-preserving data publishing. We empirically demonstrate that significant privacy improvements can be achieved at a utility cost compatible with tailored recommendation scenarios, using a simple partition-based sanitization method

    Differentially Private Publication of Sparse Data

    Full text link
    The problem of privately releasing data is to provide a version of a dataset without revealing sensitive information about the individuals who contribute to the data. The model of differential privacy allows such private release while providing strong guarantees on the output. A basic mechanism achieves differential privacy by adding noise to the frequency counts in the contingency tables (or, a subset of the count data cube) derived from the dataset. However, when the dataset is sparse in its underlying space, as is the case for most multi-attribute relations, then the effect of adding noise is to vastly increase the size of the published data: it implicitly creates a huge number of dummy data points to mask the true data, making it almost impossible to work with. We present techniques to overcome this roadblock and allow efficient private release of sparse data, while maintaining the guarantees of differential privacy. Our approach is to release a compact summary of the noisy data. Generating the noisy data and then summarizing it would still be very costly, so we show how to shortcut this step, and instead directly generate the summary from the input data, without materializing the vast intermediate noisy data. We instantiate this outline for a variety of sampling and filtering methods, and show how to use the resulting summary for approximate, private, query answering. Our experimental study shows that this is an effective, practical solution, with comparable and occasionally improved utility over the costly materialization approach

    Cognitive structure of collective awareness platforms

    Get PDF
    corecore