330 research outputs found

    Prioritized Norms and Defaults in Formal Argumentation

    Get PDF
    International audienceDeontic logic sentences define what an agent ought to do when faced with a set of norms. These norms may come into conflict such that a priority ordering over them is necessary to resolve these conflicts. Dung’s seminal paper raises the still open challenge to use formal argumentation to represent non monotonic logics, highlight- ing its value to exchange, communicate and resolve possibly conflicting viewpoints in distributed scenarios. In this paper, we propose a formal framework to study various properties of prioritized non monotonic reasoning in formal argumentation, in line with this idea. More precisely, we show how a version of prioritized default logic and Brewka-Eiter’s construction in answer set programming can be obtained in argumentation via the weakest and last link principles. We also show how to represent Hansen’s recent construction for prioritized normative reasoning by adding arguments using weak contraposition via permissive norms, and their relationship to Caminada’s “hang yourself” arguments

    A structured argumentation framework for detaching conditional obligations

    Full text link
    We present a general formal argumentation system for dealing with the detachment of conditional obligations. Given a set of facts, constraints, and conditional obligations, we answer the question whether an unconditional obligation is detachable by considering reasons for and against its detachment. For the evaluation of arguments in favor of detaching obligations we use a Dung-style argumentation-theoretical semantics. We illustrate the modularity of the general framework by considering some extensions, and we compare the framework to some related approaches from the literature.Comment: This is our submission to DEON 2016, including the technical appendi

    Defeasible Logic Programming: An Argumentative Approach

    Full text link
    The work reported here introduces Defeasible Logic Programming (DeLP), a formalism that combines results of Logic Programming and Defeasible Argumentation. DeLP provides the possibility of representing information in the form of weak rules in a declarative manner, and a defeasible argumentation inference mechanism for warranting the entailed conclusions. In DeLP an argumentation formalism will be used for deciding between contradictory goals. Queries will be supported by arguments that could be defeated by other arguments. A query q will succeed when there is an argument A for q that is warranted, ie, the argument A that supports q is found undefeated by a warrant procedure that implements a dialectical analysis. The defeasible argumentation basis of DeLP allows to build applications that deal with incomplete and contradictory information in dynamic domains. Thus, the resulting approach is suitable for representing agent's knowledge and for providing an argumentation based reasoning mechanism to agents.Comment: 43 pages, to appear in the journal "Theory and Practice of Logic Programming

    Adaptive logic characterizations of input/output logic

    Get PDF
    We translate unconstrained and constrained input/output logics as introduced by Makinson and van der Torre to modal logics, using adaptive logics for the constrained case. The resulting reformulation has some additional benefits. First, we obtain a proof-theoretic (dynamic) characterization of input/output logics. Second, we demonstrate that our framework naturally gives rise to useful variants and allows to express important notions that go beyond the expressive means of input/output logics, such as violations and sanctions

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Handling Norms in Multi-Agent System by Means of Formal Argumentation

    Get PDF
    International audienceFormal argumentation is used to enrich and analyse normative multi-agent systems in various ways. In this chapter, we discuss three examples from the literature of handling norms by means of formal argumentation. First, we discuss how existing ways to resolve conflicts among norms using priorities can be represented in formal argumentation, by showing that the so-called Greedy and Reduction approaches can be represented using the weakest and the last link principles respectively. Based on such representation results, formal argumentation can be used to explain the detachment of obligations and permissions from hierarchical normative systems in a new way. Second, we discuss how formal argumentation can be used as a general theory for developing new approaches for normative reasoning, using a dynamic ASPIC-based legal argumentation theory. We show how existing logics of normative systems can be used to analyse such new argumentation systems. Third, we show how argumentation can be used to reason about other challenges in the area of normative multiagent systems as well, by discussing a model for arguing about legal interpretation. In particular, we show how fuzzy logic combined with formal argumentation can be used to reason about the adoption of graded categories and thus address the problem of open texture in normative interpretation. Our aim to discuss these three examples is to inspire new applications of formal argumentation to the challenges of normative reasoning in multiagent systems
    • …
    corecore