3,119 research outputs found

    Inter-session Network Coding for Transmitting Multiple Layered Streams over Single-hop Wireless Networks

    Full text link
    This paper studies the problem of transmitting multiple independent layered video streams over single-hop wireless networks using network coding (NC). We combine feedback-free random linear NC (RLNC) with unequal error protection (UEP) and our goal is to investigate the benefits of coding across streams, i.e. inter session NC. To this end, we present a transmission scheme that in addition to mixing packets of different layers of each stream (intra-session NC), mixes packets of different streams as well. Then, we propose the analytical formulation of the layer decoding probabilities for each user and utilize it to define a theoretical performance metric. Assessing this performance metric under various scenarios, it is observed that inter-session NC improves the trade-off among the performances of users. Furthermore, the analytical results show that the throughput gain of inter-session NC over intra-session NC increases with the number of independent streams and also by increasing packet error rate, but degrades as network becomes more heterogeneous.Comment: Accepted to be presented at 2014 IEEE Information Theory Workshop (ITW), 5 pages, 4 figure

    Adaptive Prioritized Random Linear Coding and Scheduling for Layered Data Delivery From Multiple Servers

    Get PDF
    In this paper, we deal with the problem of jointly determining the optimal coding strategy and the scheduling decisions when receivers obtain layered data from multiple servers. The layered data is encoded by means of prioritized random linear coding (PRLC) in order to be resilient to channel loss while respecting the unequal levels of importance in the data, and data blocks are transmitted simultaneously in order to reduce decoding delays and improve the delivery performance. We formulate the optimal coding and scheduling decisions problem in our novel framework with the help of Markov decision processes (MDP), which are effective tools for modeling adapting streaming systems. Reinforcement learning approaches are then proposed to derive reduced computational complexity solutions to the adaptive coding and scheduling problems. The novel reinforcement learning approaches and the MDP solution are examined in an illustrative example for scalable video transmission . Our methods offer large performance gains over competing methods that deliver the data blocks sequentially. The experimental evaluation also shows that our novel algorithms offer continuous playback and guarantee small quality variations which is not the case for baseline solutions. Finally, our work highlights the advantages of reinforcement learning algorithms to forecast the temporal evolution of data demands and to decide the optimal coding and scheduling decisions

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Content-Aware Delivery of Scalable Video in Network Coding Enabled Named Data Networks

    Get PDF
    We propose a novel network coding (NC) enabled named data networking (NDN) architecture for scalable video delivery. Our architecture utilizes network coding in order to address the problem that arises in the original NDN architecture, where optimal use of the bandwidth and caching resources necessitates the coordination of the Interest forwarding decisions. To optimize the performance of the proposed network coding based NDN architecture and render it appropriate for transmission of scalable video, we devise a novel rate allocation algorithm that decides on the optimal rates of Interests sent by clients and intermediate nodes. The flow of Data packets achieved by this algorithm maximizes the average quality of the video delivered to the client population. To support the handling of Interest and Data packets when intermediate nodes perform network coding, we introduce the use of Bloom filters, which store efficiently additional information about the Interest and Data packets, and modify accordingly the standard NDN architecture. We also devise an optimized Interest forwarding strategy that implements the target rate allocation. The proposed architecture is evaluated for transmission of scalable video over PlanetLab topologies. The evaluation shows that the proposed scheme exploits optimally the available network resources

    Distributed Rate Allocation in Inter-Session Network Coding

    Get PDF
    In this work, we propose a distributed rate allocation algorithm that minimizes the average decoding delay for multimedia clients in inter-session network coding systems. We consider a scenario where the users are organized in a mesh network and each user requests the content of one of the available sources. We propose a novel distributed algorithm where network users determine the coding operations and the packet rates to be requested from the parent nodes, such that the decoding delay is minimized for all clients. A rate allocation problem is solved by every user, which seeks the rates that minimize the average decoding delay for its children and for itself. Since this optimization problem is a priori non-convex, we introduce the concept of equivalent packet flows, which permits to estimate the expected number of packets that every user needs to collect for decoding. We then decompose our original rate allocation problem into a set of convex subproblems, which are eventually combined to obtain an effective approximate solution to the delay minimization problem. The results demonstrate that the proposed scheme eliminates the bottlenecks and reduces the decoding delay experienced by users with limited bandwidth resources. We validate the performance of our distributed rate allocation algorithm in different video streaming scenarios using the NS-3 network simulator. We show that our system is able to take benefit of inter-session network coding for simultaneous delivery of video sessions in networks with path diversity

    Network coding: from theory to media streaming

    Get PDF
    Network coding has recently emerged as an alternative to traditional routing algorithms in communication systems. In network coding, the network nodes can combine the packets they receive before forwarding them to the neighbouring nodes. Intensive research efforts have demonstrated that such a processing in the network nodes can provide advantages in terms of throughput or robustness. These potentials, combined with the advent of ad hoc and wireless delivery architectures have triggered the interest of research community about the application of the network coding principles to streaming applications. This paper describes the potentials of network coding in emerging delivery architectures such as overlay or peer-to-peer networks. It overviews the principles of practical network coding algorithms and outlines the challenges posed by multimedia streaming applications. Finally, it provides a survey of the recent work on the application of network coding to media streaming applications, both in wireless or wired communication scenarios. Promising results have been demonstrated where network coding is able to bring benefits in media streaming applications. However, delay and complexity constraints are often posed as the main challenging issues that still prevent the wide-scale deployment of network coding algorithms in multimedia communication

    Resource Allocation Frameworks for Network-coded Layered Multimedia Multicast Services

    Get PDF
    The explosive growth of content-on-the-move, such as video streaming to mobile devices, has propelled research on multimedia broadcast and multicast schemes. Multi-rate transmission strategies have been proposed as a means of delivering layered services to users experiencing different downlink channel conditions. In this paper, we consider Point-to-Multipoint layered service delivery across a generic cellular system and improve it by applying different random linear network coding approaches. We derive packet error probability expressions and use them as performance metrics in the formulation of resource allocation frameworks. The aim of these frameworks is both the optimization of the transmission scheme and the minimization of the number of broadcast packets on each downlink channel, while offering service guarantees to a predetermined fraction of users. As a case of study, our proposed frameworks are then adapted to the LTE-A standard and the eMBMS technology. We focus on the delivery of a video service based on the H.264/SVC standard and demonstrate the advantages of layered network coding over multi-rate transmission. Furthermore, we establish that the choice of both the network coding technique and resource allocation method play a critical role on the network footprint, and the quality of each received video layer.Comment: IEEE Journal on Selected Areas in Communications - Special Issue on Fundamental Approaches to Network Coding in Wireless Communication Systems. To appea

    Random Linear Network Coding for Wireless Layered Video Broadcast: General Design Methods for Adaptive Feedback-free Transmission

    Full text link
    This paper studies the problem of broadcasting layered video streams over heterogeneous single-hop wireless networks using feedback-free random linear network coding (RLNC). We combine RLNC with unequal error protection (UEP) and our main purpose is twofold. First, to systematically investigate the benefits of UEP+RLNC layered approach in servicing users with different reception capabilities. Second, to study the effect of not using feedback, by comparing feedback-free schemes with idealistic full-feedback schemes. To these ends, we study `expected percentage of decoded frames' as a key content-independent performance metric and propose a general framework for calculation of this metric, which can highlight the effect of key system, video and channel parameters. We study the effect of number of layers and propose a scheme that selects the optimum number of layers adaptively to achieve the highest performance. Assessing the proposed schemes with real H.264 test streams, the trade-offs among the users' performances are discussed and the gain of adaptive selection of number of layers to improve the trade-offs is shown. Furthermore, it is observed that the performance gap between the proposed feedback-free scheme and the idealistic scheme is very small and the adaptive selection of number of video layers further closes the gap.Comment: 15 pages, 12 figures, 3 tables, Under 2nd round of review, IEEE Transactions on Communication
    • …
    corecore