8 research outputs found

    Neural Chinese Word Segmentation with Lexicon and Unlabeled Data via Posterior Regularization

    Full text link
    Existing methods for CWS usually rely on a large number of labeled sentences to train word segmentation models, which are expensive and time-consuming to annotate. Luckily, the unlabeled data is usually easy to collect and many high-quality Chinese lexicons are off-the-shelf, both of which can provide useful information for CWS. In this paper, we propose a neural approach for Chinese word segmentation which can exploit both lexicon and unlabeled data. Our approach is based on a variant of posterior regularization algorithm, and the unlabeled data and lexicon are incorporated into model training as indirect supervision by regularizing the prediction space of CWS models. Extensive experiments on multiple benchmark datasets in both in-domain and cross-domain scenarios validate the effectiveness of our approach.Comment: 7 pages, 11 figures, accepted by the 2019 World Wide Web Conference (WWW '19

    Unsupervised Neural Machine Translation with SMT as Posterior Regularization

    Full text link
    Without real bilingual corpus available, unsupervised Neural Machine Translation (NMT) typically requires pseudo parallel data generated with the back-translation method for the model training. However, due to weak supervision, the pseudo data inevitably contain noises and errors that will be accumulated and reinforced in the subsequent training process, leading to bad translation performance. To address this issue, we introduce phrase based Statistic Machine Translation (SMT) models which are robust to noisy data, as posterior regularizations to guide the training of unsupervised NMT models in the iterative back-translation process. Our method starts from SMT models built with pre-trained language models and word-level translation tables inferred from cross-lingual embeddings. Then SMT and NMT models are optimized jointly and boost each other incrementally in a unified EM framework. In this way, (1) the negative effect caused by errors in the iterative back-translation process can be alleviated timely by SMT filtering noises from its phrase tables; meanwhile, (2) NMT can compensate for the deficiency of fluency inherent in SMT. Experiments conducted on en-fr and en-de translation tasks show that our method outperforms the strong baseline and achieves new state-of-the-art unsupervised machine translation performance.Comment: To be presented at AAAI 2019; 9 pages, 4 figure

    Transformer-based NMT : modeling, training and implementation

    Get PDF
    International trade and industrial collaborations enable countries and regions to concentrate their developments on specific industries while making the most of other countries' specializations, which significantly accelerates global development. However, globalization also increases the demand for cross-region communication. Language barriers between many languages worldwide create a challenge for achieving deep collaboration between groups speaking different languages, increasing the need for translation. Language technology, specifically, Machine Translation (MT) holds the promise to enable communication between languages efficiently in real-time with minimal costs. Even though nowadays computers can perform computation in parallel very fast, which provides machine translation users with translations with very low latency, and although the evolution from Statistical Machine Translation (SMT) to Neural Machine Translation (NMT) with the utilization of advanced deep learning algorithms has significantly boosted translation quality, current machine translation algorithms are still far from accurately translating all input. Thus, how to further improve the performance of state-of-the-art NMT algorithm remains a valuable open research question which has received a wide range of attention. In the research presented in this thesis, we first investigate the long-distance relation modeling ability of the state-of-the-art NMT model, the Transformer. We propose to learn source phrase representations and incorporate them into the Transformer translation model, aiming to enhance its ability to capture long-distance dependencies well. Second, though previous work (Bapna et al., 2018) suggests that deep Transformers have difficulty in converging, we empirically find that the convergence of deep Transformers depends on the interaction between the layer normalization and residual connections employed to stabilize its training. We conduct a theoretical study about how to ensure the convergence of Transformers, especially for deep Transformers, and propose to ensure the convergence of deep Transformers by putting the Lipschitz constraint on its parameter initialization. Finally, we investigate how to dynamically determine proper and efficient batch sizes during the training of the Transformer model. We find that the gradient direction gets stabilized with increasing batch size during gradient accumulation. Thus we propose to dynamically adjust batch sizes during training by monitoring the gradient direction change within gradient accumulation, and to achieve a proper and efficient batch size by stopping the gradient accumulation when the gradient direction starts to fluctuate. For our research in this thesis, we also implement our own NMT toolkit, the Neutron implementation of the Transformer and its variants. In addition to providing fundamental features as the basis of our implementations for the approaches presented in this thesis, we support many advanced features from recent cutting-edge research work. Implementations of all our approaches in this thesis are also included and open-sourced in the toolkit. To compare with previous approaches, we mainly conducted our experiments on the data from the WMT 14 English to German (En-De) and English to French (En-Fr) news translation tasks, except when studying the convergence of deep Transformers, where we alternated the WMT 14 En-Fr task with the WMT 15 Czech to English (Cs-En) news translation task to compare with Bapna et al. (2018). The sizes of these datasets vary from medium (the WMT 14 En-De, ~ 4.5M sentence pairs) to very large (the WMT 14 En-Fr, ~ 36M sentence pairs), thus we suggest our approaches help improve the translation quality between popular language pairs which are widely used and have sufficient data.China Scholarship Counci
    corecore