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Abstract

Transformer-Based NMT: Modeling, Training and Implementation

by Hongfei Xu

Doctor of Philosophy

Department of Language Science and Technology, Fachrichtung Sprachwissenschaft und

Sprachtechnologie

Universität des Saarlandes

International trade and industrial collaborations enable countries and regions to concen-

trate their developments on specific industries while making the most of other countries’

specializations, which significantly accelerates global development. However, globalization

also increases the demand for cross-region communication. Language barriers between

many languages worldwide create a challenge for achieving deep collaboration between

groups speaking different languages, increasing the need for translation.

Language technology, specifically, Machine Translation (MT) holds the promise to enable

communication between languages efficiently in real-time with minimal costs.

Even though nowadays computers can perform computation in parallel very fast, which

provides machine translation users with translations with very low latency, and although

the evolution from Statistical Machine Translation (SMT) to Neural Machine Translation

(NMT) with the utilization of advanced deep learning algorithms has significantly boosted

translation quality, current machine translation algorithms are still far from accurately

translating all input. Thus, how to further improve the performance of state-of-the-art

NMT algorithm remains a valuable open research question which has received a wide

range of attention.

In the research presented in this thesis, we first investigate the long-distance relation

modeling ability of the state-of-the-art NMT model, the Transformer. We propose to

learn source phrase representations and incorporate them into the Transformer translation

model, aiming to enhance its ability to capture long-distance dependencies well.

https://www.uni-saarland.de/fachrichtung/lst/start.html
https://www.uni-saarland.de/fachrichtung/lst/start.html
http://www.uni-saarland.de


Second, though previous work (Bapna et al., 2018) suggests that deep Transformers have

difficulty in converging, we empirically find that the convergence of deep Transformers

depends on the interaction between the layer normalization and residual connections em-

ployed to stabilize its training. We conduct a theoretical study about how to ensure the

convergence of Transformers, especially for deep Transformers, and propose to ensure the

convergence of deep Transformers by putting the Lipschitz constraint on its parameter

initialization.

Finally, we investigate how to dynamically determine proper and efficient batch sizes

during the training of the Transformer model. We find that the gradient direction gets

stabilized with increasing batch size during gradient accumulation. Thus we propose

to dynamically adjust batch sizes during training by monitoring the gradient direction

change within gradient accumulation, and to achieve a proper and efficient batch size by

stopping the gradient accumulation when the gradient direction starts to fluctuate.

For our research in this thesis, we also implement our own NMT toolkit, the Neutron

implementation of the Transformer and its variants. In addition to providing fundamental

features as the basis of our implementations for the approaches presented in this thesis, we

support many advanced features from recent cutting-edge research work. Implementations

of all our approaches in this thesis are also included and open-sourced in the toolkit.

To compare with previous approaches, we mainly conducted our experiments on the data

from the WMT 14 English to German (En-De) and English to French (En-Fr) news

translation tasks, except when studying the convergence of deep Transformers, where we

alternated the WMT 14 En-Fr task with the WMT 15 Czech to English (Cs-En) news

translation task to compare with Bapna et al. (2018). The sizes of these datasets vary from

medium (the WMT 14 En-De, ∼ 4.5M sentence pairs) to very large (the WMT 14 En-

Fr, ∼ 36M sentence pairs), thus we suggest our approaches help improve the translation

quality between popular language pairs which are widely used and have sufficient data.
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(Zusammenfassung)

In den letzten Jahrzehnten haben die weltweite Zusammenarbeit, Handel und Industrie-

Verbindungen Ländern und Regionen ermöglicht, ihre Entwicklungen auf bestimmte

Branchen zu konzentrieren, und dadurch die jeweilige Spezialisierungen der Länder zu

nutzen, was deutlich die globale Entwicklung beschleunigt. Die Globalisierung erhöht

jedoch auch die überregionale Kommunikation, und die Sprachbarrieren zwischen den

Sprachen erhöhen die Nachfrage nach Übersetzungen, was für eine enge Zusammenar-

beit zwischen Gruppen, die verschiedene Sprachen sprechen, von wichtiger Bedeutung

ist. Die Sprachtechnologie, insbesondere die maschinelle Übersetzung (Machine Transla-

tion, MT), verspricht eine effiziente Überbrückung von Sprachbarrieren in Echtzeit mit

minimalen Kosten.

1) Heutzutage können Computer sehr schnell Berechnungen parallel durchführen, was

Benutzern von maschineller Übersetzung eine sehr geringe Latenzzeit bringt. 2) Die En-

twicklung von statistischer maschineller Übersetzung (Statistical Machine Translation,

SMT) zu neuronaler maschineller Übersetzung (Neural Machine Translation, NMT) mit

der Nutzung von Deep-Lernalgorithmen hat die Übersetzungsqualität deutlich gesteigert.

und 3) Neuronale Modelle, die für NMT entwickelt wurden, haben sich in den letzten

Jahren mehrmals weiterentwickelt, und die Menge an parallelen Daten auf Satzebene für

das Training ist für einige Sprachpaare sehr groß. Zur gleichen Zeit ist aber das hochmod-

erne NMT Transformer Modell, das gute Übersetzungsergebnisse liefern kann, noch weit

davon entfernt, alle Eingaben richtig zu übersetzen. Daher bleibt die Frage, wie die

Leistung des hochmodernen Transformer-Übersetzungsmodells verbessert werden kann,

noch eine wichtige offene Forschungsfrage die viel Aufmerksamkeit erhält. Außerdem

basiert heutzutage eine breite Palette von NLP-Aufgaben (Natural Language Processing,

NLP) auf der Feinabstimmung eines vortrainierten BERT (Devlin et al., 2019) Mod-

ells und dadurch ist Forschung den Transformer zu verbessern, sehr relevant, da BERT

hauptsächlich auf dem Transformer-Encoder basiert.
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In Bezug auf die jüngste Entwicklung des NMT-Modelldesigns begann die Anwendung

neuronaler Netze für MT mit rekurrenten neuronalen Netzen (Recurrent Neural Networks,

RNNs), wo zwei RNNs (Sutskever et al., 2014) verwendet werden, der eine (nämlich

der Codierer), um den Quellensatz zu codieren, der in dem Prozess eine Wortsinn-

Disambiguierung im Kontext vornimmt, der andere (der Decodierer), der die codierte

Einbettung übernimmt und die entsprechende Übersetzung automatisch regressiv auf

Token-für-Token-Weise erzeugt, wie ein Sprachmodell mit einem Eingabevektor mit einer

festen Dimension. Da die Informationen eines Quellensatzes, die durch einen Vektor mit

fester Dimensionalität dargestellt wird, wahrscheinlich zu einem Informationsverlust führt,

insbesondere bei langen Sätzen, wird ein Aufmerksamkeitsmechanismus eingeführt, um

den Decoder besser mit dem Codierer zu verbinden und gemeinsam das Übersetzen und

die Alignierung (Bahdanau et al., 2014) zu lernen. Der Aufmerksamkeitsmechanismus

ermöglicht es dem Decoder, bei jedem Decodierungsschritt auf jeden einzelnen Schritt der

gesamten vorherigen Codierungssequenz zurück zugreifen, um kontinuierlich relevante In-

formationen des Quellensatzes für die Erzeugung von Wörtern in der Zielsprache während

der Decodierung bereitzustellen. Während RNNs eine sequentielle Token-für-Token-Weise

berechnen, was eine effiziente Parallelisierung des Modells auf modernen GPUs verhin-

dert, werden Convolutional Neural Networks (CNNs) angewendet, um dieses Problem zu

lösen und RNNs durch Positionsinformationen zu ersetzen, die durch trainierte Position-

seinbettungen bereitgestellt werden (Gehring et al., 2017). CNNs können jedoch nur Kon-

texte innerhalb eines vorgegebenen Fensters verwenden, und deshalb wurde die Mehrkopf-

Aufmerksamkeitsmaschinerie als Teil des Transformer-Übersetzungsmodells vorgeschla-

gen, um die Modellierung über die gesamte Sequenz zu ermöglichen und gleichzeitig die un-

abhängige Entwicklung von Token-Repräsentationen zu gewährleisten und eine effiziente

Parallelisierung zu ermöglichen (Vaswani et al., 2017). Der Erfolg des Transformers, der

state-of-the-art Übersetzungsleistungen erzielt, hat sowohl in der Forschungsgemeinschaft

als auch in der Industrie große Aufmerksamkeit gefunden.

Ist das starke Transformer-Übersetzungsmodell nun gut genug und alles, was wir

brauchen? Anscheinend gibt es Raum für Verbesserungen: Das Modell kann immer noch

nicht alle Übersetzungsanfragen korrekt übersetzen. Das Hauptziel der in dieser Arbeit

x
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vorgestellten Forschung ist es, die Qualität der Übersetzung des Transformer-Modells zu

verbessern.

Wir beschreiben unsere Forschungsansätze auf zwei sich ergänzende Weisen: (i) wir ent-

wickeln die Modellarchitektur weiter, um die Fähigkeit des Transformers zu verbessern

Fern-Beziehungen zu erfassen, und (ii) die Verbesserung der Optimierung des Lern-

prozesses des Transformers, einschließlich Parameterinitialisierung und der dynamischen

Auswahl der Chargengröße.

Insbesondere konzentrieren wir uns im ersten Teil unserer Forschung auf das Lernen und

die Verwendung zusätzlicher Phrasen Darstellungen von Quellensätzen in der Modellar-

chitektur (beschrieben in Kapitel 3), um deren Fähigkeit zum Lernen von Abhängigkeiten

über große Entfernungen zu verbessern unter der Motivation, dass das Modell nach der

Aufmerksamkeit auf die Phrasendarstellungssequenz, die kürzer als die entsprechende

Token-Darstellungssequenz ist, eine bessere Aufmerksamkeit auf Tokenebene erzielen

kann, insbesondere, wenn Fernabhängigkeiten zu erfassen sind.

Tai et al. (2015) zeigt, dass das Long Short-Term Memory Network (LSTM) kurze Sätze

besser verarbeitet als lange Sätze. In Linzen et al. (2016)’s Aufgabe zur Vorhersage der

Subjekt-Verb-Nummeruskohärenz, die den Nummerus des folgenden Verbs (Plural oder

Singular) des Satzes vorhersagt, verschlechtert sich die Genauigkeit von LSTMs konsis-

tent mit zunehmenden Abständen zwischen Subjekt und Verb. Yang et al. (2017) zeigt,

dass es für das LSTM-basierte NMT-Modell eine Herausforderung ist, Fernabhängigkeiten

zu erfassen. Um die Fähigkeit der Erfassung von Fern-Beziehungen der NMT-Modelle

beurteilen zu können, untersucht Tang et al. (2018) die Leistung von RNNs, CNNs

und dem Transformer hinsichtlich der Subjekt-Verb-Kongruenz (Subject-Verb Agreement,

SVA) Aufgabe, die die beliebteste Wahl für die Bewertung der Fähigkeit ist weitreichende

Abhängigkeiten zu erfassen und in vielen Studien verwendet worden ist (Linzen et al.,

2016; Sennrich, 2017). Sie zeigen, dass die Transformer-Modelle, die ja entfernte Token

über kürzere Pfade als RNNs verbinden, nicht besonders besser als RNN Modelle für große

Entfernungen sind, und dass die Anzahl der Köpfe bei Mehrkopfaufmerksamkeit für ihre

Leistung über große Entfernungen entscheidend ist. Yang et al. (2019b) zeigt, dass die

Genauigkeit von Encodern, einschließlich des Transformer-Self-Attentional-Encoders und

xi
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des Gated Recurrent Unit (GRU) (Cho et al., 2014) -Codierers, bei langen Abhängigkeiten

über Sprachpaare hinweg abnimmt und sie untersuchen Modellvarianten für die Erken-

nung von Wortumordnungen, wo die Ergebnisse auch darauf hindeuten, dass sowohl GRU

als auch das Self-Attention Network (SAN) Fernabhängigkeiten nicht vollständig erfassen

können. Dies führt uns zu unserer ersten Forschungsfrage (Research Question, RQ).

RQ1: Wie kann die Fähigkeit des Transformers zur Erfassung von Fernbeziehungen

verbessert werden?

In Kapitel 3 entwickeln wir eine Lösung für dieses Problem. In Anbetracht der Tatsache,

dass die Modellierung von Phrasen statt Wörtern sehr deutlich die statistische maschinelle

Übersetzung (Statistical Machine Translation, SMT) durch die Verwendung von größeren

Übersetzungsblöcken (“Phrasen”), als auch die Fähigkeit zur Neuordnung verbessert hat,

sollte die Modellierung von NMT auf Phrasen-Ebene ein intuitiver Vorschlag sein dem

Modell zu helfen, Fernbeziehungen besser zu erfassen. Daher schlagen wir vor, dass der

Transformer neben Token-Darstellungen auch Phrasendarstellungen verwendet.

Es gibt jedoch viel mehr mögliche Phrasen als Tokens, und eine Phrasentabelle ist um

Größenordnungen größer als das Wortvokabular. Bei NMT ist es aufgrund von Spei-

cherbeschränkungen nicht möglich, Phraseneinbettungen direkt in GPUs zu verwenden,

und die Verteilung über Phrasen ist viel spärlicher als die über Wörter, was zu Daten-

mangel führen und die Leistung von NMT beeinträchtigen kann. Dies wirft unsere zweite

Forschungsfrage auf:

RQ2: Wie vermeiden wir die große Phrasentabelle, während wir von

Phrasendarstellungen profitieren?

Um das Problem der großen Phrasentabelle zu lösen, schlagen wir ein selektives Merk-

malsextraktionsmodell vor und generieren eine Phrasendarstellung basierend auf Token-

Darstellungen im laufenden Betrieb (in Kapitel 3). Insbesondere fasst unser Modell zuerst

die Darstellung einer bestimmten Token-Sequenz mit der Mittelwert- oder Max-Over-

Time-Pooling-Operation zusammen und berechnet dann das Aufmerksamkeitsgewicht

xii
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jedes Tokens basierend auf der ursprünglichen Token-Darstellung und der zusammenge-

fassten Phrasendarstellung mit einem Feed-Forward Neural Network (FFNN) und gener-

iert die endgültige Phrasendarstellung durch eine gewichtete Kombination der Token-

Darstellungen in der Phrase nach Normalisierung der Aufmerksamkeitsgewichte. Der

Haupttrick besteht darin, dass wir Phrasen nicht als Blöcke in Übersetzungen verwen-

den: die Übersetzung ist immer noch wortbasiert, aber unser Aufmerksamkeitsmodell

ermöglicht es, die Darstellung von Wörtern durch die Phrasen zu informieren, die im

laufenden Betrieb berechnet werden.

Nachdem der Ansatz zur Generierung von Phrasendarstellungen basierend auf Token-

Darstellungen vorgeschlagen wurde, ist die dritte Forschungsfrage:

RQ3: Wie lernen und verwenden wir Phrasendarstellungen im

Transformer-Übersetzungsmodell?

In Kapitel 3 zeigen wir, wie wir das Design des Transformer-Übersetzungsmodells ändern,

um das Lernen und die Verwendung von Phrasendarstellungen in das Modell integrieren,

damit alle Aspekte des Modells gemeinsam end-to-end trainiert werden können. Beson-

ders schlagen wir ein Aufmerksamkeits-basiertes Kombinationsnetzwerk vor, das sich um

Phrasendarstellungen kümmert, und fügen das Aufmerksamkeits-basiertes Kombination-

snetzwerk in jede Codierer- und Decodierschicht des Transformer-Übersetzungsmodells

ein, damit jedes Token zuerst auf Phrasen achten kann, bevor es auf die ursprünglichen

Quell-Token-Darstellungen achtet. Beachten Sie, dass in unserem Modell Phrasen nur

für die Quelleneingabe berechnet werden. Sie werden aber sowohl im Codierer als auch

im Decodierer verwendet, aber der Decodierer hat nur Zugriff auf Quellphrasen in der

Quer-Aufmerksamkeit. Wir berechnen aber keine Phrasen auf der Zielseite des Decoders.

Die Forschung zur Adressierung von RQ 1, 2 und 3 in Kapitel 3 wurde in Xu et al. (2020c)

auf der ACL 2020 veröffentlicht.

Im zweiten Teil unserer Forschung konzentrieren wir uns auf die Konvergenz und die

Auswirkungen von Chargengrößen (batch sizes) und die automatische Bestimmung dy-

namisch veränderlicher Chargengrößen zur Optimierung des Transformers (beschrieben

in Kapitel 4 und 5).

xiii
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Figure 1: Zwei Berechnungssequenzen von Transformer-Übersetzungsmodellen: (a) das
in dem ursprünglichen Papier beschrieben wird, (b) die offizielle Umsetzung.

In Bezug auf das Thema der Konvergenz des Transformers werden neuronale Netze (NN)

in der Regel zuerst zufällig initialisiert, dann trainiert, um eine vordefinierte Verlust-

funktion zu minimieren, weil die Konvergenz neuronaler Modelle natürlich entscheidend

ist, um von ihrer Leistung zu profitieren. Ein Modell, das nicht konvergiert, kann keine

aussagekräftigen Vorhersagen treffen. Für die Optimierung des Transformers, insbeson-

dere für tiefe Transformer, haben frühere Untersuchungen (Bapna et al., 2018) gezeigt,

dass das Transformer-Übersetzungsmodell zwar residuale Verbindungen und Schichtnor-

malisierung verwendet, um die Optimierungsschwierigkeiten zu verringern, die durch die

tiefen mehrschichtigen Codierer/Decodierer verursacht werden. Normale tiefe Trans-

former haben immer noch Schwierigkeiten beim Training, und insbesondere Transformer-

Modelle mit mehr als 12 Encoder/Decoder-Schichten konvergieren nicht. Bapna et al.

(2018) schlägt einen TA-Mechanismus (Transparent Attention) vor, der gewichtete Aus-

gaben von Codiererschichten für jede Decodierschicht kombiniert, anstatt nur die Ausgabe

der letzten Codierschicht zu verwenden. Dieser Ansatz bringt die meisten Verbesserun-

gen mit einem Transformer mit 16 Encoder-Schichten. Aber bei Computer Vision (CV)

-Aufgaben haben residuale Verbindungen jedoch ihre starke Fähigkeit gezeigt, die Kon-

vergenz tiefer Modelle mit mehr als hundert Schichten sicherzustellen. Warum scheitert

es bei tiefen Transformern? Dies führt zu unserer vierten Forschungsfrage:

RQ4: Warum haben Transformer, speziell tiefe Transformer, Schwierigkeiten, selbst

mit Schichtnormalisierung und residualen Verbindungen zu konvergieren?

xiv
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In Kapitel 4 zeigen wir zunächst empirisch, dass eine einfache Änderung in der offiziellen

Implementierung (Vaswani et al., 2018), die die Berechnungsreihenfolge der residualen

Verbindungen und der Schichtnormalisierung ändert, die Optimierung der tiefen Trans-

formers erheblich erleichtern kann. Speziell wird im Originalpapier (Vaswani et al., 2017)

in der Reihenfolge der Verarbeitung → dropout → residuale Verbindung → der Schicht-

normalisierung berechnet, wobei die Verarbeitung die Berechnung der Mehrkopfaufmerk-

samkeit oder des positionsweisen vorwärtsgerichteten neuronalen Netzwerks ist, während

die offizielle Implementierung in der Reihenfolge der Schichtnormalisierung → Verar-

beitung → dropout → residuale Verbindung berechnet. Abbildung 1 zeigt die beiden

Arten von Berechnungsreihenfolgen. Wir empfehlen, die Ausgabe der Ebenennormal-

isierung (outLN/res) als Ausgabe der residualen Verbindung zu betrachten und nicht die

Hinzufügung von inres und inmodel in Abbildung 1 (a), weil es (outLN/res) die Eingabe

(inres) der nächsten residualen Verbindungsberechnung ist. Wir führen dann eine theo-

retische Analyse basierend auf der Differenz zwischen den Berechnungsreihenfolgen durch,

die darauf hinweist, dass die Schichtnormalisierung über residuale Verbindungen in Ab-

bildung 1 (a) die Auswirkung von residualen Verbindungen aufgrund der nachfolgenden

Schichtnormalisierung wirksam reduzieren kann, um eine mögliche Explosion der Gradien-

ten der kombinierten Schichtausgaben zu vermeiden (Chen et al., 2018b). Diese Analyse

wirft die fünfte Forschungsfrage auf:

RQ5: Wie kann man verhindern, dass die Schichtnormalisierung den Beitrag der

residualen Verbindungen schmälert?

In Kapitel 4 stellen wir eine Parameterinitialisierungsmethode vor, die die Lipschitz-

Einschränkung für die Initialisierung von Transformerparametern nutzt um zu verhindern

dass der Beitrag der residualen Verbindungen geschmälert wird und um die Trainings Kon-

vergenz von tiefen Transformatoren effektiv zu gewährleisten. Im Gegensatz zu früheren

Forschungsergebnissen zeigen wir ferner, dass mit der Lipschitz-Parameterinitialisierung

tiefe Transformatoren mit der ursprünglichen Berechnungsreihenfolge konvergieren und

signifikante BLEU-Verbesserungen mit bis zu 24 Schichten produzieren können.

xv
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Die in Kapitel 4 vorgestellte Forschungsergebnisse für RQ 4 und 5 wurden in Xu et al.

(2020a) auf der ACL 2020 veröffentlicht.

Die Leistung neuronaler Modelle wird durch die Wahl der Hyperparameter stark beein-

flusst. Während sich viele frühere Forschungen (Sutskever et al., 2013; Duchi et al., 2011;

Kingma and Ba, 2015) auf die Beschleunigung der Konvergenz und die Verringerung der

Auswirkungen der Lernrate konzentrieren, fokussieren sich vergleichsweise wenige Artikel

auf den Effekt der Chargengröße (batch size). Es wurde jedoch festgestellt, dass die

Chargengröße ein wichtiger Hyperparameter für die Leistung des Transformers ist, und

einige Chargengrößen führen empirisch zu einer besseren Leistung als andere. Insbeson-

dere wurde gezeigt, dass die Leistung des Transformer-Modells (Vaswani et al., 2017) für

die neuronale maschinelle Übersetzung (Bahdanau et al., 2014; Gehring et al., 2017) stark

von der Chargengröße (Popel and Bojar, 2018; Ott et al., 2018; Abdou et al., 2017; Zhang

et al., 2019a) abhängt. Eine größere Charge führt normalerweise zu einer besseren Leis-

tung. Der Einfluss der Chargengröße auf die Leistung wirft die sechste Forschungsfrage

auf:

RQ6: Wie kann man während des Trainings dynamisch und automatisch die richtigen

und effizienten Chargengrößen finden?

Um diese Forschungsfrage zu lösen, empfehlen wir, die Gradienten während des Train-

ings zu beobachten, wo sie die Größe und Richtung für die Optimierung aufzeigen, und

die Beziehung zwischen der Chargengröße und den Gradienten zu untersuchen. Speziell

beobachten wir die Auswirkungen auf die Gradienten mit zunehmender Chargengröße

bei der Gradientenakkumulation, die Gradienten kleinerer Mini-Chargen als Gradienten

einer größeren Mini-Charge, die diese kleineren Mini-Chargen umfasst, akkumulieren, und

stellen fest, dass eine große Charge die Richtung der Gradienten stabilisiert. Basierend auf

unserer Beobachtung schlagen wir dann vor, die dynamischen Chargengrößen im Training

automatisch zu bestimmen, indem wir die Änderung der Gradientenrichtung überwachen,

während Gradienten kleiner Chargen akkumuliert werden, bis die Gradientenrichtung zu

schwanken beginnt.

xvi
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Leider kann ein Transformer Modell in der Praxis eine große Anzahl von Parametern

aufweisen, und die Kosten für die Berechnung der Gradientenrichtungsänderung sind rel-

ativ hoch, was die Effizienz des Trainings beeinträchtigen kann, wenn die Überwachung

der Gradientenrichtungsänderung zur dynamischen Berechnung von Chargengrößen ein-

gesetzt wird. Dies führt zu unserer siebten Forschungsfrage:

RQ7: Wie kann die Änderung der Gradientenrichtung effizient überwacht werden?

Um dieses Problem zu lösen, schlagen wir vor, Modellparameter in Gruppen zu un-

terteilen und die Änderung der Gradientenrichtung nur für eine ausgewählte Gruppe

zu überwachen, die in jedem Optimierungsschritt für den Hyperparameter der Char-

gengröße bedeutsam ist. Insbesondere zeichnen wir die Reduzierung der Gradienten-

richtungsänderung der überwachten Parametergruppe in jedem Optimierungsschritt auf.

Wir empfehlen, dass die Parametergruppe mit mehr Reduktion empfindlicher auf die

Chargengröße reagiert als die anderen mit weniger Reduktion. Somit normalisieren wir

die Reduktionen aller Parametergruppen und verwenden sie als Stichprobenwahrschein-

lichkeiten für entsprechende Parametergruppen.

Unsere in Kapitel 5 vorgestellten Forschungsergebnisse zu RQ 6 und 7 wurden in Xu et al.

(2020b) auf der ACL 2020 veröffentlicht.

Um unsere Forschung zu unterstützen, entwickeln wir die Neutron Implementierung des

Transformer-Modells und seiner verschiedenen Varianten. Wir präsentieren unsere tech-

nischen Arbeiten in Kapitel 6. Speziell um unsere eigenen Modelle zu entwickeln und

mit anderen Ansätzen vergleichen zu können, implementieren wir zusätzlich zur Stan-

dardimplementierung des Transformers einige neuere Forschungsergebnisse zum Trans-

former, während wir unsere Wege zur Verbesserung des Transformers entwickelt haben,

einschließlich des Durchschnitts Attention Network (Average Attention Network, AAN)

zur Beschleunigung der Dekodierung des Transformers (Zhang et al., 2018a), die hierar-

chische Schichtaggregation zur Verschmelzung flacher Schichten (Dou et al., 2018), die

Verwendung eines rekurrenten Decoders (Chen et al., 2018b), die Modellierung des sen-

tentialen Kontexts (Wang et al., 2019e) zur Verbesserung des MT Qualität, transparente

Aufmerksamkeit (Bapna et al., 2018), um die Konvergenz von Deep Encodern und dem
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Transformer auf Dokumentebene sicherzustellen (Zhang et al., 2018c). Wir unterstützen

auch den von Wang et al. (2018c) vorgeschlagenen effizienten Trainingsplaner (dynami-

scher Stichproben- und Überprüfungsmechanismus) und andere erweiterte Funktionen wie

neue Optimierer (z.B. RAdam (Liu et al., 2020), Lookahead (Zhang et al., 2019c) und

deren Kombination). Die Implementierung all unserer eigenen Ansätze in dieser Arbeit

ist ebenfalls enthalten und im Toolkit Open-Source verfügbar.
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English Summary

Over the past few decades, worldwide collaboration, trade and industrial connections

have enabled countries and regions to concentrate their developments on specific indus-

tries while making the most of the other countries’ specializations, which significantly

accelerates global development. However, globalization also increases cross-region com-

munication, and the language barriers between languages increase the demand for trans-

lation which is crucial to achieving deep collaboration between groups speaking different

languages. Language technology, specifically, Machine Translation (MT), holds great

promise to bridge between languages efficiently in real-time with minimal cost.

1) nowadays computers can perform computation in parallel very fast, which provides

machine translation to users with very low latency, 2) the evolution from Statistical Ma-

chine Translation (SMT) to Neural Machine Translation (NMT) with the utilization of

advanced deep learning algorithms has significantly boosted translation quality, and 3)

neural models designed for NMT have evolved several times over the last years, and the

amount of sentence-level parallel data for their training is very large for some language

pairs. At the same time, the state-of-the-art NMT model, the Transformer, which can

provide good translation results, is still far from accurately translating all input. Thus,

how to improve the performance of the state-of-the-art Transformer translation model

remains an important open research question, and has received a lot of attention. Fur-

thermore, as nowadays a wide range of Natural Language Processing (NLP) tasks are

based on fine-tuning a pre-trained BERT (Devlin et al., 2019) model, research on im-

proving the Transformer is highly relevant, as BERT is mainly based on the Transformer

encoder.

In terms of the recent evolution of NMT model design, the application of neural net-

works for MT started with Recurrent Neural Networks (RNNs), where two RNNs are

employed (Sutskever et al., 2014), one (namely, the encoder) to encode the source sen-

tence to a fixed dimension vector which in the process includes word sense disambiguation

in context, the other (the decoder) to take the encoded embedding and generate the corre-

sponding translation auto-regressively in a token-by-token manner, like a language model.
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As representing the information of a source sentence with a fixed dimension vector is likely

to incur information loss, especially with long sentences, an attention mechanism is in-

troduced to better connect the decoder with the encoder to jointly learn to translate and

align (Bahdanau et al., 2014). The attention mechanism enables the decoder to attend

the whole encoding sequence at each decoding step to continuously provide relevant infor-

mation of the source sentence to the generation of target tokens during decoding. While

RNNs compute in a sequential token-by-token manner, which prevents the model from

efficient parallelization on modern GPUs, to tackle this issue, Convolutional Neural Net-

works (CNNs) are applied to replace RNNs with position information provided by trained

positional embeddings (Gehring et al., 2017). However, CNNs can only utilize contexts

within a pre-specified window, and the multi-head attention machinery is proposed as part

of the Transformer translation model to enable modeling over the whole sequence while

ensuring independent evolution of token representations and enabling efficient paralleliza-

tion (Vaswani et al., 2017). The success of the Transformer which achieves state-of-the-art

translation performance, has received wide attention from both academia and industry.

That said, is the strong Transformer translation model good enough and “all we need”?

Apparently, there is room for improvement: the model still cannot fully translate all

translation queries correctly. The main aim of the research presented in this thesis is to

improve the translation quality of the Transformer model.

We describe our research approaches in two complementary ways: (i) the model archi-

tecture designed to enhance the ability of the Transformer in capturing long-distance

relationships, and (ii) improving the optimization (training) of the Transformer, includ-

ing parameter initialization and dynamic batch size selection.

Specifically, in the first part of our research, we focus on learning and utilizing additional

phrase representations of source sentences into the model architecture (described in Chap-

ter 3) to enhance its ability in long-range dependency learning, under the motivation that

the model may perform token-level attention better after attending the phrase represen-

tation sequence which is shorter than the corresponding token representation sequence,

especially when capturing long-distance dependencies.
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Tai et al. (2015) show that the Long Short-Term Memory Network (LSTM) handles

short sentences better than long sentences. In Linzen et al. (2016)’s subject-verb number

agreement prediction task which predicts the number of the following verb (plural or

singular) of the sentence, the accuracy of LSTM degrades consistently with increasing

distances between the subject and the verb. Yang et al. (2017) show that it is challenging

for the LSTM-based NMT model to capture long-distance dependencies. For assessing the

ability of NMT models to capture long-distance relations, Tang et al. (2018) examine the

performance of RNNs, CNNs and the Transformer on the Subject-Verb Agreement (SVA)

task which is the most popular choice for evaluating the ability to capture long-range

dependencies and has been used in many studies (Linzen et al., 2016; Sennrich, 2017).

They show that the Transformer models which connect distant tokens via shorter network

paths than RNNs are not particularly stronger than RNN models for long distances, and

that the number of heads in multi-head attention is crucial for its performance over long

distances. Yang et al. (2019b) show that the accuracies of encoders, including both the

Transformer self-attentional encoder and the Gated Recurrent Unit (GRU) (Cho et al.,

2014) encoder, decrease on long-distance cases across language pairs and they observe

the same for model variants on the word reordering detection task, which also suggests

that both GRU and the Self-Attention Network (SAN) fail to fully capture long-distance

dependencies. This leads us to our first Research Question (RQ).

RQ1: How to improve the ability of the Transformer in long-distance relation

capturing?

In Chapter 3, we provide a solution to this issue. Considering that modeling phrases in-

stead of words has significantly improved Statistical Machine Translation (SMT) through

the use of larger translation blocks (“phrases”) and that it has also improved its reordering

ability, modeling NMT at phrase level is an intuitive proposal to help the model capture

long-distance relationships better. Thus, we propose to let the Transformer utilize phrase

representations in addition to token representations.

However, there are many more potential phrases than tokens, and the phrase table is

magnitudes larger than the word vocabulary. For NMT due to memory limitations it
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is not possible to put phrase embeddings directly into GPUs, and the distribution over

phrases is much sparser than that over words, which may lead to data sparsity and hurt

the performance of NMT. This raises our second research question:

RQ2: How to avoid the potentially large phrase table while benefiting from phrase

representations?

To address the large phrase table issue, we propose an attentive feature extraction model

and generate phrase representation based on token representations on the fly (in Chapter

3). Specifically, our model first summarizes the representation of a given token sequence

with the vanilla mean- or max-over-time pooling operation, then computes the attention

weight of each token based on the original token representation and the summarized phrase

representation with a Feed-Forward Neural Network (FFNN), and generates the final

phrase representation by a weighted combination of the token representations in the phrase

after normalizing the attention weights. The main trick is that we do not use phrases as

blocks in translations: the translation is still word-based, but our attention model allows

the representation of words to be informed by the phrases which are computed on the fly.

After proposing the approach to generating phrase representations based on token repre-

sentations, the third research question is then:

RQ3: How to learn and utilize phrase representations in the Transformer translation

model?

In Chapter 3, we also show how we change the design of the Transformer translation model

to incorporate the learning and utilization of phrase representations into the model, al-

lowing all aspects of the model to be jointly trained together in an end-to-end manner.

Specifically, we propose an attentive combination network that attends phrase representa-

tions, and insert the attentive combination network into each encoder layer and decoder

layer of the Transformer translation model to let each token pay attention to phrases

before paying attention to the original source token representations. Note that in our

model phrases are only computed for source input. They are used in both the encoder
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and the decoder, but the decoder only has access to source phrases in a cross-attention

style manner. We do not compute target side output phrases in the decoder.

The research addressing RQ 1, 2 and 3 presented in Chapter 3 has been published in Xu

et al. (2020c) at ACL 2020.

In the second part of our research, we focus on the convergence and the effects of batch

sizes and automatic determination of dynamic batch sizes on the optimization of the

Transformer (described in Chapter 4 and 5, respectively).

As regards the topic of the convergence of the Transformer, Neural Networks (NN) are

normally first randomly initialized, then trained to minimize a pre-defined loss function,

and ensuring the convergence of neural models is crucial for benefiting from their perfor-

mance. A model which fails to converge cannot make meaningful predictions. However,

for the optimization of the Transformer, especially for deep Transformers, previous re-

search (Bapna et al., 2018) shows that even though the Transformer translation model

employs residual connections and layer normalization to ease the optimization difficul-

ties caused by its deep multi-layer encoder/decoder structure, vanilla deep Transformers

still have difficulty in training, and particularly Transformer models with more than 12

encoder/decoder layers fail to converge. Bapna et al. (2018) propose a Transparent Atten-

tion (TA) mechanism which combines weighted outputs of encoder layers for each decoder

layer rather than only taking the output of the last encoder layer. Their approach brings

the most improvements with a Transformer with 16 encoder layers. But in Computer

Vision (CV) tasks, residual connection has shown its strong ability in ensuring the con-

vergence of deep models with more than a hundred layers. Why does it fail with deep

Transformers? This leads to our fourth research question:

RQ4: Why do Transformers, specifically deep Transformers, have difficulty in

converging even with layer normalization and residual connections?

In Chapter 4, we first empirically demonstrate that a simple modification made in the

official implementation (Vaswani et al., 2018) which changes the computation order of

residual connection and layer normalization, can significantly ease the optimization of
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Figure 2: Two computation sequences of Transformer translation models: (a) the one
used in the original paper, (b) the official implementation.

deep Transformers. Specifically, the original paper (Vaswani et al., 2017) computes in

the order of processing → dropout → residual connection → layer normalization where

processing indicates the computing of multi-head attention or position-wise feed-forward

neural network, while the official implementation computes in the order of layer normal-

ization → processing → dropout → residual connection. Figure 2 shows the two kinds of

computation orders. We suggest to regard the output of layer normalization (outLN/res)

as the output of residual connection rather than the addition of inres and inmodel for

Figure 2 (a), because it (outLN/res) is the input (inres) of the next residual connection

computation. We then perform a theoretical analysis based on the difference between

computation orders, which points out that layer normalization over residual connections

in Figure 2 (a) may effectively reduce the impact of residual connections due to sub-

sequent layer normalization, in order to avoid a potential explosion of combined layer

outputs (Chen et al., 2018b). The analysis raises the fifth research question:

RQ5: How to prevent layer normalization from shrinking residual connections?

In Chapter 4, we present a parameter initialization method that leverages the Lipschitz

constraint on the initialization of Transformer parameters to prevent the layer normaliza-

tion shrinking residual connections that effectively ensures training convergence of deep

Transformers. In contrast to findings in previous research, we further demonstrate that

with Lipschitz parameter initialization, deep Transformers with the original computation

order can converge, and obtain significant BLEU improvements with up to 24 layers.
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The research addressing for RQ 4 and 5 presented in Chapter 4 has been published in Xu

et al. (2020a) at ACL 2020.

The performance of neural models is likely to be affected by the choice of hyperparameters.

While much previous research (Sutskever et al., 2013; Duchi et al., 2011; Kingma and

Ba, 2015) focuses on accelerating convergence and reducing the effects of the learning

rate, comparatively few papers concentrate on the effect of batch size. However, the

batch size has been found to be an important hyperparameter for the performance of the

Transformer, and some batch sizes empirically lead to better performance than the others.

Specifically, it has been shown that the performance of the Transformer model (Vaswani

et al., 2017) for Neural Machine Translation (Bahdanau et al., 2014; Gehring et al., 2017)

relies heavily on the batch size (Popel and Bojar, 2018; Ott et al., 2018; Abdou et al.,

2017; Zhang et al., 2019a), and a larger batch size normally leads to better performance.

The influence of batch size on performance raises the sixth research question:

RQ6: How to dynamically and automatically find proper and efficient batch sizes during

training?

To address this research question, we suggest to observe the gradients during training as

they point out the magnitudes and directions for the optimization, and investigate the

relationship between the batch size and gradients. Specifically, we observe the effects on

gradients with increasing batch size in gradient accumulation which accumulates gradients

of smaller mini-batches as the gradients of a larger mini-batch comprising these smaller

mini-batches, and find that a large batch size stabilizes the direction of gradients. Based

on our observation, we then propose to automatically determine dynamic batch sizes in

training by monitoring the gradient direction change while accumulating gradients of small

batches, by accumulating gradients of smaller mini-batches up to and until the gradient

direction starts to fluctuate.

Unfortunately in practice, a Transformer model may have a large number of parameters,

and the cost of computing the gradient direction change is relatively high, which may

hamper the efficiency of training while incorporating the monitoring of gradient direction

change to dynamically compute batch sizes. This leads to our seventh research question:
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RQ7: How to efficiently monitor gradient direction change?

To tackle this issue, we propose to divide model parameters into groups, and monitor

gradient direction change only on a selected group which are sensitive to the batch size

hyperparameter in each optimization step. Specifically, we record the reduction of gradient

direction change of the monitored parameter group in each optimization step. We suggest

the parameter group with more reduction is more sensitive to the batch size than the

others with less reduction. Thus we normalize the reductions of all parameter groups and

use them as sampling probabilities of corresponding parameter groups.

Our research addressing RQ 6 and 7 presented in Chapter 5 has been published in Xu

et al. (2020b) at ACL 2020.

In order to support our research, we develop the Neutron implementation of the Trans-

former model and its several variants. We present our engineering work in Chapter 6.

Specifically, to build on and compare our approaches, we implement some recent ad-

vanced research related to the Transformer in addition to the standard implementation of

the Transformer while we have developed our ways towards improving the Transformer,

including the Average Attention Network (AAN) to accelerate the decoding of the Trans-

former (Zhang et al., 2018a), Hierarchical Layer Aggregation to fuse shallow layers (Dou

et al., 2018), the use of a recurrent decoder (Chen et al., 2018b), the modeling of sentential

context (Wang et al., 2019e) for improving the MT quality, Transparent Attention (Bapna

et al., 2018) to ensure the convergence of deep encoders and the document-level Trans-

former (Zhang et al., 2018c). We also support the efficient training scheduler (dynamic

sampling and review mechanism) proposed by Wang et al. (2018c), and other advanced

features like new optimizers (e.g., RAdam (Liu et al., 2020), Lookahead (Zhang et al.,

2019c) and their combination). Implementations of all our approaches in this thesis are

also included and open-sourced in the toolkit.
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Chapter 1

Introduction

The main purpose of the research presented in this thesis is to improve the translation

quality of current NMT engines which transform texts between different human languages,

aiming to significantly help users speaking different languages exchange information at a

low cost. Improved Machine Translation (MT) quality also reduces the additional efforts

of human translators or post-editors in computer aided translation scenarios.

The work presented in this thesis specifically aims at improving the state-of-the-art Neural

Machine Translation (NMT) model, the Transformer translation model (Vaswani et al.,

2017).

Before the Transformer, sequence-to-sequence neural models were mainly based on stack-

ing of recurrent or convolutional layers in an encoder-decoder configuration, with the

attention mechanism to align source tokens and target tokens for NMT (Bahdanau et al.,

2014; Gehring et al., 2017). However, to collect information from contexts recurrent mod-

els have to compute in a token-by-token manner, which prevents them from parallelization

across the whole sequence. In comparison, convolutional models can only use contexts in

a pre-defined window size for word sense disambiguation. As a result, they lack the ability

to use the whole source sentence. The Transformer (Vaswani et al., 2017) which relies

entirely on the multi-head attention mechanism advances over both RNNs and CNNs, as

it is able to model dependencies between tokens over the whole sequence regardless of

their distance, and can be computed in parallel on modern GPUs efficiently.
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Chapter 1. Introduction

Even though the widely employed Transformer performs surprisingly well and has at-

tracted wide attention from both the research community and industry, it is still not

perfect. For example, Tang et al. (2018) examine the ability of sequence-to-sequence neu-

ral models on the subject-verb agreement task (where capturing long-range dependencies

is required), and find that although intuitively the multi-head attention machinery con-

nects distant words via shorter network paths than RNNs, self-attentional networks do not

outperform RNNs in modeling subject-verb agreement over long distances. Bapna et al.

(2018) find that even with residual connections and layer normalization adopted, Trans-

formers with deep encoders suffer from convergence issues, and particularly Transformer

models with more than 12 encoder layers fail to converge in their experiments.

In order to improve the performance of the Transformer translation model, we describe

our research approaches in this thesis in two areas: (i) improving the long-distance de-

pendency learning ability of the Transformer by learning and incorporating source phrase

representations, and (ii) improving the optimization of the Transformer through a proper

parameter initialization approach under the Lipschitz constraint and dynamically adjusted

training batch sizes by monitoring gradient direction change during gradient accumula-

tion.

Specifically, in the first part of our research described in Chapter 3, we concentrate on im-

proving the long-distance relation capturing ability of the Transformer translation model

by learning source phrase representations of source sentences and utilizing the learned

phrase representations in addition to token representations. Based on the fact that mod-

eling phrases instead of words has significantly improved the performance, especially the

reordering ability, of Statistical Machine Translation (SMT) approaches through the use

of larger translation blocks (“phrases”), modeling NMT at phrase level is an intuitive but

non-trivial proposal to help the model better capture long-distance relationships.

In the second part of our research, we focus on the optimization issues of the Transformer,

specifically, its parameter initialization and dynamic determination of batch sizes during

training. For parameter initialization, we first empirically compare the different behaviors

in the convergence of two computation orders between layer normalization and residual

connection of deep Transformers, then conduct a theoretical analysis of the interaction

between layer normalization and residual connection, and propose to initialize Transform-

ers under the Lipschitz constraint which ensures their convergence (described in Chapter

2
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4). For dynamically determining batch sizes during the training of the Transformer, we

observe the direction change of gradients during gradient accumulation, and propose to

perform optimization steps when it starts to fluctuate (described in Chapter 5).

Over a lot of NLP research with neural models on a wide range of tasks, the long-distance

dependency learning ability of neural networks has been widely examined, and a common

finding is that neural models normally perform better on short sentences than on long sen-

tences, which indicates that capturing long-distance relation can be challenging for neural

approaches. Tai et al. (2015) show that the Long Short-Term Memory Network (LSTM)

handles short sentences better than long sentences. In Linzen et al. (2016)’s subject-verb

number agreement prediction task which predicts the number of the following verb (plural

or singular) of the sentence, the accuracy of LSTM degrades consistently with increasing

distances between the subject and the verb. Yang et al. (2017) show that it is challenging

for the LSTM-based NMT model to capture long-distance dependencies. For assessing

the ability of NMT models in long-distance relation capturing, Tang et al. (2018) exam-

ine the performance of RNNs, CNNs and the Transformer on the subject-verb agreement

task which is the most popular choice for evaluating the ability to capture long-range

dependencies and has been used in many studies (Linzen et al., 2016; Sennrich, 2017).

They show that the Transformer models which connect distant tokens via shorter net-

work paths than RNNs are not particularly stronger than RNN models for long distances,

and that the number of heads in multi-head attention is crucial for its performance over

long distances. Yang et al. (2019b) show that the accuracies of encoders, including both

the self-attentional encoder and the GRU (Cho et al., 2014) encoder, decrease on long-

distance cases across language pairs and that variants of the models do the same on the

word reordering detection task, which also suggests that both GRU and the self-attention

network fail to fully capture long-distance dependencies.

In the evaluation of long-distance relation modeling ability specialized to the Transformer,

Tang et al. (2018) show that although intuitively the attentional network employed by the

Transformer can connect distant words via shorter network paths than RNNs, it does not

significantly outperform RNNs in their empirical analysis on the subject-verb agreement

task (Sennrich, 2017), and handling long-distance dependencies is still challenging for the

Transformer. This leads us to our first Research Question (RQ).

RQ1: How to improve the ability of the Transformer in long-distance relation capturing?

3
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Considering that modeling phrases instead of just words has significantly improved the

SMT approach through the use of larger translation blocks (“phrases”) and that it has

also improved its reordering ability (Koehn et al., 2003; Och and Ney, 2004), we propose

to model NMT at phrase level in addition to the token level to help the Transformer cap-

ture long-distance relationships. In Chapter 3, we describe our approach to using phrase

representations in the Transformer. We also provide experiment results and analysis of

comparisons between the performance of the Transformer with phrase representations

and that without phrase representations in both the WMT 14 English-German news

translation task and the subject-verb agreement task (Sennrich, 2017; Tang et al., 2018).

Specifically, we show that using phrase representations brings about more BLEU improve-

ments over the baseline Transformer on long sentences than on short sentences, and leads

to significant improvements in the subject-verb agreement accuracy when the distances

between the subject and the verb are long. Our analysis in Chapter 3 shows the positive

effects of incorporating phrase representations in long-distance dependency capturing and

machine translation.

Dahlmann et al. (2017) suggest that SMT usually performs better in translating rare words

and profits from using phrasal translations, and introduce a hybrid search algorithm for

attention-based NMT which extends the beam search of NMT with phrase translations

from SMT. Wang et al. (2017d) incorporate SMT into NMT through utilizing recommen-

dations from SMT in each decoding step of NMT to address the coverage issue and the

unknown word issue of NMT. Wang et al. (2017e) propose to translate phrases in NMT

by integrating target phrases from an SMT system with a phrase memory. We suggest our

research based on the Transformer model is different from most previous work focusing

on utilizing phrases from SMT in NMT to address its coverage problem (Tu et al., 2016)

of the at the time RNN-based NMT.

Our approach to learning phrase representations and integrating them into Transformer-

based NMT is non-trivial. Using phrase embeddings in a similar way like using word

embeddings is impossible, because there are a magnitude more phrases than tokens in

the bilingual parallel corpus, which leads to two main issues which prevent NMT from

directly using phrases:

� There are a magnitude more phrases than tokens, and the phrase table is much larger

than the word vocabulary. The corresponding embedding matrix is not affordable

4



Chapter 1. Introduction

for GPU memories.

� Distribution over phrases and co-occurrences between them is much sparser than

that over words, which may lead to a data sparsity issue and hurt the training of

phrase embeddings. The data may not provide sufficient usage examples of some

less frequent phrases for the learning of their high-dimensional dense embeddings.

These two issues raise our second research question.

RQ2: How to avoid the potentially large phrase table while benefiting from phrase repre-

sentations?

In Chapter 3, we address this large phrase table issue. Given that phrases are composed of

tokens, our proposal is to generate phrase representations from their corresponding token

sequences “on the fly”. We first employ the simple mean- and max-over-time pooling

approaches, then propose an attentive phrase representation generation algorithm, as

simply merging several token vectors into one is very likely to incur information loss, and

introducing an importance evaluation mechanism is better than treating tokens equally.

To highlight the most important features in a phrase, our attentive phrase representation

generation model learns to score tokens differently according to their importance in the

phrase. The model first roughly extracts features from all tokens into a vector with

the naive mean- or max-over-time pooling approach, then assigns a score to each token

by comparing each token vector with the extracted feature vector, and produces the

weighted accumulation of all token vectors as the phrase representation according to their

scores. We empirically validate the performance of different approaches in Chapter 3 in

the ablation study on the WMT 14 English-German news translation task.

After addressing the large phrase table issue by generating phrase representations “on

the fly” based on corresponding token representations, the remaining question is how to

integrate the learning of phrase representations into the Transformer translation model

and to enable the Transformer to benefit from phrase representations in Translation. This

is our third research question.

RQ3: How to learn and utilize phrase representation in the Transformer translation

model?
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Figure 1.1: The encoder/decoder layer of the Transformer model with phrase repre-
sentation. Residual connection and layer normalization are omitted for simplicity.

In Chapter 3, we propose an attentive combination network to incorporate the phrase

representation into the Transformer translation model to aid it modeling long-distance

dependencies. The attentive combination network is inserted into each encoder layer and

each decoder layer to bring in information from phrase representations. Thus all encoder

and decoder layers can benefit from phrase representations.

For the encoder layer with phrase representations, the new computation order is cross-

attention from source tokens to source phrases→ self-attention over tokens→ feed-forward

neural network to process collected features, while for a decoder layer it is: self-attention

over decoded tokens → cross-attention to source phrases → cross-attention to source

tokens → feed-forward neural network to process collected features. Compared to the

computation order of the standard Transformer, the new computation order performs

additional attending at phrase level before attending source token representations at the

token level. This bakes in phrase information into the token representations. We con-

jecture that attending at phrase level should be easier than at token level, and attention

results at phrase level may aid the attention computation at the token level. The struc-

tures of the Transformer encoder layer and the decoder layer with phrase representations

are shown in Figure 1.1.

Our Transformer with phrase representations described in Chapter 3 outperforms the

vanilla Transformer in multiple evaluations. On the WMT 14 English-German and
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English-French news translation tasks, we obtained +1.29 and +1.37 BLEU improve-

ments respectively on top of the strong Transformer Base baseline, which demonstrates

the effectiveness of our approach. Our approach helps Transformer Base models perform

at the level of Transformer Big models on the English-German task, and even significantly

better for long sentences, but with substantially fewer parameters and training steps. It

also shows its effectiveness with the Transformer Big setting.

It is worth noting that the WMT 14 English-French task provides a larger dataset (∼ 36M

sentence pairs) and achieves a higher baseline BLEU than the English-German task. We

suggest that the significant improvements (+1.09 BLEU) obtained by our approach on the

English-French task with the Transformer Big setting (a large amount of data plus a very

large model) support the effectiveness of our approach in challenging settings (production

scenarios).

We also conducted a length analysis, and the results show that our approach to incorpo-

rating phrase representations into the Transformer brings more gains with long sentences

than with short sentences, which supports our conjecture that phrase representation se-

quences can help the model capture long-distance relations better, as intuitively, in trans-

lating long sentences we should encounter more long-distance dependencies than in short

sentences. To further measure the capability of the NMT model to capture long-distance

dependencies, we conducted a linguistically-informed verb-subject agreement analysis on

the Lingeval97 dataset (Sennrich, 2017) following Tang et al. (2018). The evaluation

results (in Table 3.5) also show that our approach can improve the accuracy of long-

distance subject-verb dependencies, especially for cases where there are more than 10

tokens between the verb and the corresponding subject, given that the Transformer Base

with phrase representations outperforms the vanilla Transformer Big which has twice the

number of heads in multi-head attention networks as that of the Transformer Base (Tang

et al. (2018) suggest that increasing the number of attention heads improves the ability

of the Transformer in capturing long-distance dependencies). Thus, we suggest that our

approach improves the ability of the model, especially in handling long-distance relations

and translating long sentences.

Neural Networks (NN) are normally first randomly initialized, then trained to minimize a

predefined loss. Thus ensuring the convergence of neural models is crucial for benefiting

from their performance. However, for the optimization of the Transformer, especially for
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deep Transformers, previous research (Bapna et al., 2018) shows that even though the

Transformer translation model employs residual connections and layer normalization to

ease the optimization difficulties caused by its multi-layer encoder/decoder structure, deep

Transformers still have difficulty in training, and particularly Transformer models with

more than 12 encoder layers fail to converge. They propose the Transparent Attention

(TA) mechanism which individually aggregates the outputs of all encoder layers for each

decoder layer rather than using only that of the last encoder layer to enrich the gradients to

shallow encoder layers during backpropagation to further ensure the convergence of deep

Transformers. They obtain the most significant improvements with the deep Transformer

consisting of a 16-layer encoder and a 6-layer decoder on the WMT 14 English-German

and WMT 15 Czech-English news translation tasks. To ensure the convergence of deep

Transformer encoders, Wang et al. (2019c) propose an approach which additionally aggre-

gates the features extracted from all preceding layers for all encoder layers based on the

Dynamic Linear Combination of Layers (DLCL) mechanism. Wu et al. (2019c) propose

a two-stage training strategy which “grows” a well-trained NMT model into a deeper

network with three components specially designed to overcome the optimization difficulty

and best leverage the capability of both shallow and deep architectures. In more recent

work, Zhang et al. (2019a) attribute the convergence issue of deep Transformers to the

fact that layer normalization over residual connections effectively reduces the impact of

residual connections due to subsequent layer normalization. In order to avoid a potential

explosion of combined layer outputs (Chen et al., 2018b), similar in spirit to what we

do in our work, they propose a different layer-wise initialization approach to reduce the

standard deviation before normalization.

However, how the interaction between layer normalization and residual connection impacts

the convergence of the Transformer, especially for deep Transformers, has not been deeply

studied before. This leads to our fourth research question.

RQ4: Why do Transformers, specifically deep Transformers, have difficulty in converging

even with layer normalization and residual connections?

In Chapter 4, we deeply analyze this question based on empirical findings. We first

demonstrate that in our experiments, with a simple modification made in the official

implementation which changes the computation order of residual connection and layer

normalization and thereby avoids normalization of residual connections, can significantly

8
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Process Dropout + NormInput/Norm

Process Dropout +NormInput

(a)

(b)

Process Dropout +Norm Output

Process Dropout + Norm Output
inmodel

inres

inmodel

inres

outLN
outres

outLN/resoutLN/res

inres

inmodel

outLN/res

inres

inmodel

outresoutres

Figure 1.2: Two computation sequences of Transformer translation models: (a) the
one used in the original paper, (b) the official implementation. We suggest to regard
the output of layer normalization (outLN/res) as the output of residual connection rather
than the addition of inres and inmodel for (a), because it (outLN/res) is the input (inres)

of the next residual connection computation.

ease the optimization of deep Transformers. Specifically, the original paper (Vaswani

et al., 2017) computes in the order of processing → dropout → residual connection →

layer normalization where processing indicates the computing of multi-head attention or

position-wise feed-forward neural network, while the official implementation computes in

the order of layer normalization → processing → dropout → residual connection. Figure

1.2 shows the two kinds of computation orders. We then compare the subtle differences

in computation order in considerable detail, and attribute the convergence issue of deep

Transformers to that layer normalization over residual connections in Figure 1.2 (a) effec-

tively reduces the impact of residual connections due to subsequent layer normalization,

in order to avoid a potential explosion of combined layer outputs (Chen et al., 2018b),

which however, shrinks the gradients from residual connections during backpropagation.

Based on findings from our analysis, we raise the natural question which is also our fifth

research question.

RQ5: How to prevent layer normalization from shrinking residual connections?

To tackle this issue, we propose to constrain the standard deviation of input represen-

tations to the layer normalization to be smaller than 1. Thus the computation of layer

normalization (shown in Table 4.2) will not shrink the residual connection. To achieve

such a constraint, we further propose to initialize sub-models before layer normalization

under the k-Lipschitz constraint, and theoretically prove that as long as k ≤ 1, the goal

to constrain the standard deviation can be satisfied with constrained input (described in

Chapter 4).
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In practice, our simple approach effectively ensures the convergence of deep Transformers

with up to 24 layers, and achieves +1.50 and +0.92 BLEU improvements over the 6-layer

baseline on the WMT 14 English to German task and the WMT 15 Czech to English

task respectively. It is also worth noting that, unlike Zhang et al. (2019a), our parameter

initialization approach does not degrade the translation quality of the 6-layer Transformer,

and the 12-layer Transformer with our approach already achieves performance comparable

to the 20-layer Transformer in Zhang et al. (2019a).

We also investigate the effects of deep decoders for the Transformer in addition to the

deep encoders studied in previous works (Bapna et al., 2018; Wang et al., 2019c), and

show that deep decoders can also benefit the Transformer.

Another issue related to the optimization of the Transformer is that the performance of

the Transformer model (Vaswani et al., 2017) for NMT (Bahdanau et al., 2014; Gehring

et al., 2017) relies heavily on the choice of batch sizes (Popel and Bojar, 2018; Ott et al.,

2018; Abdou et al., 2017; Zhang et al., 2019a), and a larger batch size normally leads

to better performance. Specifically, Popel and Bojar (2018) demonstrate that the batch

size affects the performance of the Transformer, and a large batch size tends to benefit

performance in their experiments with various but fixed batch sizes. Abdou et al. (2017)

propose to use a linearly increasing batch size from 65 to 100, which slightly outperforms

their baseline. Smith et al. (2018) show that the same learning curve on both training and

test sets can be obtained by increasing the batch size during training instead of decaying

the learning rate.

Although the choice of hyperparameters affects the performance of neural models, much

previous research (Sutskever et al., 2013; Duchi et al., 2011; Kingma and Ba, 2015) focuses

on accelerating convergence and reducing the effects of the learning rate. Comparatively

few papers concentrate on the effect of batch size. The influence of batch size on perfor-

mance raises the sixth research question.

RQ6: How to dynamically and automatically find proper and efficient batch sizes during

training?

To address this research question, we take into consideration that gradients indicate the

direction and the magnitude of parameter updates to minimize the loss function in train-

ing. We first investigate the relationship between increasing batch size and direction
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k 1 2 3 4 5 6 7 8 9 10

Size 4064 8994 12768 17105 21265 25571 29411 33947 38429 43412

a(gk−10 , gk0 ) 51.52 30.37 27.42 22.61 20.87 19.80 19.59 18.92 19.23

a(gk−30 , gk0 ) 59.53 44.20 41.77 35.34 32.19 32.10 34.29

Table 1.1: The direction change of gradients while accumulating mini-batches.

change of gradients to reveal the effects of the increasing batch size on the gradient direc-

tion in optimization in Chapter 5. Specifically, we investigate the effects on the direction

and change of direction of gradients with increasing batch size during gradient accumu-

lation which incrementally sums up gradients of small mini-batches into that of a large

mini-batch consisting of these mini-batches. Table 1.1 shows a typical example. In our

study, we find that normally: (i) the gradient direction varies heavily at the beginning

of the gradient accumulation, (ii) the gradient direction change reduces with increasing

batch size, and (iii) eventually it will start fluctuating (here at k=10). Thus, we suggest

that a large batch size stabilizes the direction of gradients.

Table 1.1 shows that the optimization direction is less stable with a small batch than

with a large batch. But after the direction of gradients has stabilized, accumulating more

mini-batches seems useless as the gradient direction starts to fluctuate.

Thus, we suggest to compute dynamic and efficient batch sizes by accumulating gradients

of mini-batches, while evaluating the gradient direction change with each new mini-batch,

and stop accumulating more mini-batches and perform an optimization step when the

gradient direction fluctuates. The cumulative size of all mini-batches involved is then

the batch size of the current training step. We suggest our approach to dynamically

adjusting batch sizes during training is complementary to Sutskever et al. (2013); Duchi

et al. (2011); Kingma and Ba (2015), as their approaches decide the magnitude of the

movement in the optimization direction, while our approach provides a reliable gradient

direction.

But in practice, a neural model, and specifically the Transformer model in our work,

may have a large number of parameters, in which case the additional computational costs

for monitoring the gradient direction change during the gradient accumulation of small
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batches are relatively high. This prevents us from training efficiently and leads to our

seventh research question.

RQ7: How to efficiently monitor gradient direction change?

In Chapter 5, we propose to address this issue by dividing model parameters into groups,

and monitoring gradient direction change only on a dynamically selected group which is

sensitive to the batch size in each optimization step. Thus the costs in both memory

and computation for monitoring gradient direction change can be reduced by an order

of magnitude. For a multi-layer model, i.e., the Transformer, a group may consist of

parameters of one layer or several layers. In our approach, we regard parameters of

an encoder layer or a decoder layer as a parameter group, in which case, the cost for

monitoring only a parameter group is less than 1/10 of that for monitoring all parameters.

To sample the parameter group which is more sensitive to the batch size more frequently,

we propose to record the angle reduction of gradient direction change during the gradient

accumulation in optimization steps, and to normalize the average angle reduction of pa-

rameter groups during gradient accumulation into a probability distribution as sampling

probabilities of corresponding parameter groups. Thus the parameter group which has a

larger reduction in gradient direction change angle with the increasing batch size will be

more frequently sampled.

In our experiments (described in Chapter 5) on the WMT English-German and English-

French news translation tasks, we compared the results of our dynamic batch size approach

to two fixed batch size baselines, the 25k batch size which is the empirical value of Vaswani

et al. (2017) and the 50k batch size which is investigated by Zhang et al. (2019a). Our

dynamic batch size approach yielding +0.73 and +0.82 BLEU improvements respectively

over the fixed 25k batch size setting also outperforms the 50k batch size setting, while

being more efficient than the 50k batch size with average batch sizes of only around 26k

and 30k respectively.

For our research in this thesis, we also implement our own NMT toolkit, the Neutron

implementation of the Transformer and its variants, and introduce it and its various fea-

tures as our engineering work in Chapter 6. In addition to providing the basis of our

implementations for the approaches presented in this thesis, we support many advanced

features from recent cutting-edge research work, including the average attention decoder
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(Zhang et al., 2018a), RNMT decoder (Chen et al., 2018b), transparent attention (Bapna

et al., 2018), hierarchical layer aggregation (Dou et al., 2018), modeling sentential con-

text (Wang et al., 2019e), context-aware NMT (Zhang et al., 2018c), etc. In addition

to these we also include fundamental features, like label-smoothing loss, beam search,

length-penalty, ensemble, gradient accumulation, averaging checkpoints, multi-GPU par-

allelization, etc.

1.1 Publications Resulting from the Research Presented in

this Thesis

1.1.1 Chapter 3

� Hongfei Xu, Josef van Genabith, Deyi Xiong, Qiuhui Liu, and Jingyi Zhang.

Learning Source Phrase Representations for Neural Machine Translation. In Pro-

ceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics, pages 386–396, Online, July 2020. Association for Computational Linguistics.

Contributions: I am the first author of the paper, I developed the basic idea, I de-

veloped the implementation, I carried out the experiments and evaluations reported

in the paper, I wrote each of the main drafts of the paper, I discussed and refined

the ideas and the writeup of the papers with my co-authors. In this paper, (i) we

propose an attentive feature extraction model and generate phrase representations

based on token representations. Our model first summarizes the representation of a

given token sequence with the mean- or max-over-time pooling operation, then com-

putes the attention weight of each token by employing a 2-layer feed-forward neural

network to assign a weight for the token given the token representation and the

summarized representation, and generates the phrase representation by a weighted

combination of token representations, (ii) to help the Transformer translation model

better model long-distance dependencies, we propose to let both encoder layers and

decoder layers of the Transformer attend the source phrase representation sequence

which is shorter than the token sequence, in addition to the original token rep-

resentation. Since the phrase representations are produced and attended at each

encoder layer, the encoding of each layer is also enhanced with phrase-level atten-

tion computation, (iii) to the best of our knowledge, our work is the first to model
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phrase representations and incorporating them into the Transformer to improve its

long-distance dependency learning ability, and (iv) our approach empirically brings

about significant and consistent improvements over the strong Transformer baseline

in our experiments on the WMT 14 English-German (+1.29 and +1.11 BLEU for

Base and Big settings respectively) and English-French (+1.37 and +1.09 BLEU

respectively) news translation tasks. Our evaluation on the subject-verb agreement

task demonstrates the effectiveness of our approach in improving the long-distance

relation capturing ability of the Transformer.

1.1.2 Chapter 4

� Hongfei Xu, Qiuhui Liu, Josef van Genabith, Deyi Xiong, and Jingyi Zhang. Lip-

schitz Constrained Parameter Initialization for Deep Transformers. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, pages

397–402, Online, July 2020. Association for Computational Linguistics.

Contributions: I am the first author of the paper, I developed the basic idea, I de-

veloped the implementation, I carried out the experiments and evaluations reported

in the paper, I wrote each of the main drafts of the paper, I discussed and refined

the ideas and the writeup of the papers with my co-authors. In this paper, (i) we

empirically demonstrate that a simple modification made in the Transformer’s of-

ficial implementation Vaswani et al. (2018) which changes the computation order

of residual connection and layer normalization can effectively ease its optimization,

(ii) we deeply analyze how the subtle difference of computation order affects con-

vergence in deep Transformers, and point out that the convergence issue of deep

Transformers in the computation order of the original paper (Vaswani et al., 2017)

is because the layer normalization over residual connections may effectively reduce

the impact of residual connections due to subsequent layer normalization, in order

to avoid a potential explosion of combined layer outputs (Chen et al., 2018b), (iii)

we propose to initialize deep Transformers under the Lipschitz constraint to pre-

vent the layer normalization shrinking residual connections that effectively ensures

training convergence of deep Transformers, (iv) in contrast to previous works, we

empirically show that with proper parameter initialization, deep Transformers with

the original computation order can converge. (v) Our simple approach effectively
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ensures the convergence of deep Transformers with up to 24 layers, and achieves

+1.50 and +0.92 BLEU improvements over the baseline on the WMT 14 English to

German task and the WMT 15 Czech to English task, and (vi) we further investi-

gate deep decoders for the Transformer in addition to the deep encoders studied in

previous work, and show that deep decoders can also benefit the Transformer.

1.1.3 Chapter 5

� Hongfei Xu, Josef van Genabith, Deyi Xiong, and Qiuhui Liu. Dynamically Ad-

justing Transformer Batch Size by Monitoring Gradient Direction Change. In Pro-

ceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics, pages 3519–3524, Online, July 2020. Association for Computational Linguistics.

Contributions: I am the first author of the paper, I developed the basic idea, I de-

veloped the implementation, I carried out the experiments and evaluations reported

in the paper, I wrote each of the main drafts of the paper, I discussed and refined

the ideas and the writeup of the papers with my co-authors. In this paper, (i) we

propose to observe the effects of increasing batch size on the direction of gradients,

and find that a large batch size stabilizes the direction of gradients, (ii) we propose

to automatically determine dynamic batch sizes in training by monitoring the gra-

dient direction change while accumulating gradients of small batches. Specifically,

we suggest to compute dynamic and efficient batch sizes by accumulating gradients

of mini-batches, while evaluating the gradient direction change with each new mini-

batch, and stop accumulating more mini-batches and perform an optimization step

when the gradient direction fluctuates, (iii) to measure gradient direction change

efficiently with large models, we propose an approach to dynamically select those

gradients of parameters/layers which are sensitive to the batch size. Our sampling

approach significantly reduces the costs for monitoring gradient direction change,

and (iv) in machine translation experiments on the WMT 14 English to German

and English to French tasks, our approach improves the Transformer Base with a

fixed 25k batch size by +0.73 and +0.82 BLEU respectively, while being significantly

more efficient than the 50k batch size.
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Chapter 2

Literature Survey

This chapter provides an overview of previous work related to the research presented in

this thesis. Specific literature relevant to the topics of Chapter 3, 4, 5 and 6 in this chapter

will be further described in more detail in the corresponding sections of these chapters.

2.1 Introduction

MT is an Artificial Intelligence (AI) problem aiming to translate between languages

with computers. MT technologies have evolved from Rule-Based Machine Translation

(RBMT) to Statistical Machine Translation (SMT) and modern Neural Machine Trans-

lation (NMT).

We first present an overview of research in machine translation in the order of the evolution

of MT technologies in the following sections. We start with early RBMT technology in

Section 2.2, followed by research in the SMT era (Brown et al., 1993; Koehn et al., 2003;

Och, 2003; Chiang, 2007) in Section 2.3, and mainly focus on the more recent advances in

NMT (Sutskever et al., 2014; Bahdanau et al., 2014; Gehring et al., 2017; Vaswani et al.,

2017) in Section 2.4. Then we present several evaluation metrics for MT in Section 2.5.
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2.2 Rule-Based Machine Translation

Early MT systems perform translation by replacing words or phrases in the source lan-

guage with their target translations with a translation dictionary constructed in advance

(Hutchins, 1995). However, such approaches do not perform any word reordering and

word sense disambiguation using contexts, and the translation in the target language

normally does not follow the same word order of source sentence in fact.

In order to improve translation quality, some local syntactic and morphological analysis

has been introduced to perform local reordering before translation with the bilingual dic-

tionary in Rule-Based Machine Translation (RBMT). Applying limited syntactic analysis

in an RBMT system improves the fluency and readability of translations in the target

language to some extent, but it is hard to design linguistic rules to cover all cases for

reordering in translation well, especially when translating between “distant” languages.

It is also very challenging to find a good solution for source word sense disambiguation

with a limited local context. As a result, RBMT systems which may translate simple

source sentences well often lack capabilities of both word reordering in the target lan-

guage and word sense disambiguation in the source language important for translating

long or complex source sentences.

Early RBMT systems rely heavily on well-developed dictionaries and linguistic rules which

have to be constructed from scratch with very high manual efforts of linguistic experts

for every translation system/domain between language pairs. The costs for individually

building such systems for each use case are high.

The interlingua approach is proposed to extract a language-independent representation of

the source language text capturing all information required to generate the appropriate

target language translation (Hutchins, 1995). In theory, with a single language-agnostic

representation (that works for all languages), the costs for building multiple translation

systems, e.g., a multilingual system translating between many language pairs, can be

reduced. The source sentence is first converted to an interlingual representation, and the

translation is then produced from the interlingual representation. However, it is extremely

difficult to create a language-independent representation detailed enough for all human

languages, parse the source sentence into such a representation, and generate the target

translation with it (Dorr et al., 2006).
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2.3 Statistical Machine Translation

SMT models in general consist of a translation model which aligns between source tokens

(phrases) and target tokens (phrases) and a target language model which aims to assess

the fluency of target language strings.

SMT research starts with word-based models which estimate word alignments from a large

volume of bilingual parallel data, but due to their limited capability in capturing long-

range contexts well (the translation unit is an individual word), they often result in poor

lexical selection and may fail to maintain phrasal cohesion between the phrases of source

and target languages. The use of larger translation blocks (“phrases”) evolves SMT to

phrase-based models which improves the performance, especially the reordering ability

of SMT approaches. Instead of the original formulation of the translation problem as a

noisy-channel model in word-based models, Phrase-Based Statistical Machine Translation

(PBSMT) employs a log-linear interpolation over a set of features. Phrase-based models

can robustly perform translations localized to sub-strings frequently appearing in training

data, but they lack the ability to capture the recursive structure of languages. Syntax-

based SMT models are further proposed to model the syntax of source or target language

for SMT.

Word-Based Models. Brown et al. (1993) describe a series of five statistical models

(a.k.a. IBM 1 to 5) of the translation process and give algorithms for estimating the

parameters of these models given a set of parallel sentence pairs to make use of the grow-

ing availability of bilingual, machine-readable texts and to extract linguistically valuable

information from such texts. Vogel et al. (1996) address the problem of word alignments

for a bilingual corpus in statistical translation, they use a first-order Hidden Markov

Model (HMM) which has no monotonicity constraint for the possible word orderings for

the word alignment problem to make the alignment probabilities dependent on the dif-

ferences in the alignment positions rather than on the absolute positions. Och and Ney

(2003) present different methods for combining word alignments to perform a symmetriza-

tion of directed statistical alignment models, and propose to measure the quality of an

alignment model by comparing the quality of the most probable alignment, the Viterbi

alignment, with a manually produced reference alignment. Liang et al. (2006) propose

an unsupervised approach to symmetric word alignment in which two simple asymmetric
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models are trained jointly to maximize a combination of data likelihood and agreement

between the models. Dyer et al. (2013) propose a simple log-linear reparameterization of

IBM Model 2 that overcomes problems arising from Model 1’s strong assumptions and

Model 2’s over-parameterization, which provides efficient inference, likelihood evaluation

and parameter estimation algorithms.

Phrase-Based SMT. Koehn et al. (2003) propose a phrase-based translation model

and decoding algorithm. Their empirical comparison with several previously proposed

phrase-based translation models suggests that the highest levels of performance can be

obtained through relatively simple means: heuristic learning of phrase translations from

word-based alignments and lexical weighting of phrase translations. Galley and Manning

(2008) present a novel hierarchical phrase reordering model aimed at improving non-local

reorderings to perform the kind of long-distance reorderings possible with syntax-based

systems.

Syntax-Based Models. Wu (1997) introduces a novel stochastic inversion transduc-

tion grammar formalism for bilingual language modeling of sentence-pairs and the concept

of bilingual parsing with a variety of parallel corpus analysis applications. Galley et al.

(2006) construct a large number of derivations that include contextually richer rules, and

account for multiple interpretations of unaligned words. They also propose probability

estimates and a training procedure for weighting the very large rule sets. Liu et al. (2006)

present a linguistic syntax-based translation model based on tree-to-string alignment tem-

plates which describe the alignment between a source parse tree and a target string. Xiong

et al. (2006) propose a novel reordering model for phrase-based statistical machine trans-

lation that uses a maximum entropy model to predict reorderings of neighboring blocks

(phrase pairs). Chiang (2007) presents a model that uses hierarchical phrases—phrases

that contain subphrases. Huang and Chiang (2007) develop faster approaches for both

phrase-based and syntax-based MT systems based on k-best parsing algorithms. Mi and

Huang (2008) propose a forest-based approach that translates a packed forest of expo-

nentially many parses, and encodes many more alternatives than standard n-best lists.

Zhang et al. (2008) present a translation model based on tree sequence alignment which

automatically learns aligned tree sequence pairs with mapping probabilities from word-

aligned bi-parsed parallel texts. Shen et al. (2008) propose a novel string-to-dependency
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algorithm for SMT which employs a target dependency language model during decoding

to exploit long-distance word relations. Mi and Huang (2008) propose a novel approach

to extract rules from a packed forest that compactly encodes exponentially many parses

for translation rule extraction. Liu et al. (2009) propose a forest-based tree-to-tree model

based on a probabilistic synchronous tree substitution grammar that uses packed forests.

Chiang (2010) explores how to use source syntax and target syntax together.

2.4 Neural Machine Translation

Unlike SMT, NMT jointly models translation and target language reordering in an end-to-

end manner with neural models. NMT research has many research topics, in the following

paragraphs of this section, we will first introduce those most influential models (the evo-

lution of baseline models in NMT research). Then, we will present some widely studied

research topics in NMT including: model architecture, positional encoding, attention

mechanisms, layer aggregation, knowledge integration, deep models, improving efficiency,

robust NMT, back-translation, training of NMT models, non-auto-regressive translation,

empirical studies, analysis of NMT models and context-aware NMT.

The Evolution of Model Architectures. To utilize powerful neural models for

MT, Sutskever et al. (2014) propose to employ two LSTMs as encoder and decoder re-

spectively for sequence-to-sequence MT, where the encoder encodes the source to a vector,

and the decoder auto-regressively generates the corresponding translation in a token-by-

token manner. Their simple approach performs comparably to previous PBSMT systems

carefully tuned with many engineering efforts. As compressing the information of the

source sentence into a fixed-dimension vector is very likely to incur information loss, Bah-

danau et al. (2014) integrate the attention mechanism into the NMT decoder to jointly

learn to translate and align. The attention mechanism attends the source encoding in

every decoding step, which brings information from the source side and improves the

translation quality especially for long sentences. Given that RNNs have to compute in a

token-by-token manner which prevents RNN-based sequence-to-sequence from being ef-

ficiently parallelized on GPUs, Gehring et al. (2017) propose to use CNNs which evolve

token representations independently rather than sequentially as in RNNs for NMT, which

provides improved parallelization on GPUs. However, CNNs can only utilize contexts
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of a fixed window for word sense disambiguation, which prevents them from capturing

long-distance relations well. Vaswani et al. (2017) propose the Transformer based on the

multi-head attention mechanism which is able to model over the whole sequence rather

than contexts in a fixed window with CNNs for NMT while keeping the advantage of

parallelization, and establish the new state-of-the-art.

Improving NMT Models. Many approaches have been explored to improve the

performance of NMT by enhancing the design of its model architecture. Different from

the vanilla encoder-decoder model that generates target translations from hidden rep-

resentations of source sentences alone, Zhang et al. (2016) propose a variational model

which introduces a continuous latent variable to explicitly model underlying semantics of

source sentences and to guide the generation of target translations. Given that the vanilla

sequence-to-sequence model lacks a mechanism to copy source fragments to the target,

Gu et al. (2016) incorporate a copy mechanism into NMT which can choose subsequences

in the input sequence and put them at proper places in the output sequence. Considering

that the input to a neural sequence-to-sequence model is often determined by an upstream

system, e.g., a word segmenter, Part-of-Speech (PoS) tagger, or speech recognizer, and

these upstream models are potentially error-prone, Sperber et al. (2017) suggest that rep-

resenting inputs through word lattices allows making this uncertainty explicit by capturing

alternative sequences and their posterior probabilities in a compact form, and extend the

Tree LSTM (Tai et al., 2015) into a Lattice LSTM that is able to consume word lattices

for the NMT encoder. Tu et al. (2017) propose a novel encoder-decoder-reconstructor

framework reconstructing the input source sentence from the hidden layer of the output

target sentence. Wang et al. (2018d) show that the attention component can be effectively

replaced by the neural Hidden Markov Model (HMM) consisting of neural network based

alignment and lexicon models which are trained jointly using the forward-backward algo-

rithm. Bahar et al. (2018) treat translation as a two-dimensional mapping and employ

a multi-dimensional LSTM layer to define the correspondence between source and target

words. He et al. (2018) explicitly coordinate the learning of hidden representations of

the encoder and decoder together layer by layer, gradually from low level to high level.

Shah and Barber (2018) introduce a latent variable architecture to model the semantics

of the source and target sentences. Yang et al. (2019c) suggest Self-Attention Networks
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(SANs) can be further enhanced by allowing the model to attend to information from dif-

ferent representation subspaces, and propose convolutional self-attention networks which

offer SANs the abilities to strengthen dependencies among neighboring elements, and to

model the interaction between features extracted by multiple attention heads. Concern-

ing information aggregation, a common practice is to use a concatenation followed by a

linear transformation, which may not fully exploit the expressiveness of multi-head at-

tention, Li et al. (2019a) propose to improve the information aggregation for multi-head

attention with the routing-by-agreement algorithm. Hao et al. (2019c) suggest that the

Transformer model solely based on attention mechanisms lacks the ability of recurrence

modeling, which hinders its further improvement of translation capacity, and propose to

model recurrence for Transformers with an additional recurrence encoder. Given that

either word-level or subword-level segmentations have multiple choices to split a source

sequence with different word segmenters or different subword vocabulary sizes, Xiao et al.

(2019) hypothesize that the diversity in segmentation may affect the NMT performance,

and propose lattice-based encoders to explore effective word or subword representation

in an automatic way during training. Sperber et al. (2019) also suggest that lattices are

an efficient and effective method to encode ambiguity of upstream systems in NLP tasks,

and introduce probabilistic reachability masks that incorporate lattice structure into the

Transformer together with a method for adapting positional embeddings to lattice struc-

tures. Wang et al. (2019e) show that a shallow sentential context extracted from the top

encoder layer only, can improve translation performance via contextualizing the encoding

representations of individual words, and propose to exploit sentential context for NMT.

Wang et al. (2019b) investigate a novel capsule network with dynamic routing for linear

time NMT. Given that a hybrid of SANs and RNNs outperforms both individual archi-

tectures, Hao et al. (2019b) suggest that modeling hierarchical structure is an essential

complementary between SANs and RNNs, and propose to further enhance the strength of

hybrid models with an advanced variant of RNNs – Ordered Neurons LSTM (ON-LSTM)

which introduces a syntax-oriented inductive bias to perform tree-like composition.

Positional Encoding. For CNN-based translation models and the Transformer, the

position information of tokens relies heavily on positional encoding, and the approach for

positional encoding can impact the translation performance. Shaw et al. (2018) extend the
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self-attention mechanism with relative positional embeddings to efficiently consider repre-

sentations of the relative positions, or distances between sequence elements. They describe

an efficient implementation of their method and cast it as an instance of relation-aware

self-attention mechanisms that can generalize to arbitrary graph-labeled inputs. Wang

et al. (2019f) propose to augment SANs with structural position representations to model

the latent structure of the input sentence in representations that are complementary to

the standard sequential positional representations. They use dependency trees to repre-

sent the grammatical structure of a sentence, and propose two strategies to encode the

positional relationships among words in dependency trees. Considering that the reorder-

ing model plays an important role in PBSMT, Chen et al. (2019a) propose a reordering

mechanism to learn the reordering embedding of a word based on its contextual informa-

tion. As positional embeddings only involve static order dependencies based on discrete

numerical information, which is independent of word content, Chen et al. (2019b) propose

a recurrent positional embedding approach to encode word content-based order dependen-

cies with an RNN and integrate them into the multi-head attention model as independent

heads or part of each head. Wang et al. (2020) generalize word embeddings, previously

defined as independent vectors, to continuous word functions over their positions for mod-

eling both the global absolute positions of words and their order relationships.

Attention Mechanisms. Cross-attention networks align between source tokens and

target tokens, and their ability to produce correct alignments is crucial to generating ac-

curate translation. In Transformer variants, self-attention networks are crucial for context

modeling and word sense disambiguation. Mi et al. (2016) improve the attention of NMT

by utilizing the alignments (human-annotated data or machine alignments) of sentence

pairs in the training data and minimizing the distance between the machine attention

matrices and the “true” alignments of training sentence pairs. Shen et al. (2018a) intro-

duce the Directional Self-Attention Network (DiSAN) which is composed of a directional

self-attention with temporal order encoded by masking. Miculicich Werlen et al. (2018)

suggest that the target-side context in NMT is solely based on the sequence model, which

is prone to a recency bias and lacks the ability to effectively capture non-sequential depen-

dencies among words, and propose a target-side-attentive residual recurrent network for

decoding, where attention over previous words contributes directly to the prediction of the

next word. Li et al. (2018b) suggest the attention model used to identify the aligned source
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words for a target word (target foresight word) in order to select translation context does

not make use of any information of this target foresight word at all, and propose a new

attention model enhanced by the implicit information of the target foresight word. Yang

et al. (2018a) propose to model localness for self-attention networks to enhance the ability

of capturing useful local context, given that SANs have proven to be of profound value for

their strength of capturing global dependencies. They cast localness modeling as a learn-

able Gaussian bias which indicates the central position and scope of the local region to be

paid more attention. Lin et al. (2018) suggest that the conventional attention mechanism,

which treats the decoding at each time step equally with the same matrix, is problematic

since the softness of the attention for different types of words (e.g., content words and

function words) should differ, and propose to control the softness of attention with an

attention temperature. Shankar et al. (2018) show that a simple beam approximation

of the joint distribution between attention and output is an easy, accurate and efficient

attention mechanism for NMT. Their method combines the advantage of sharp focus in

hard attention and the implementation ease of soft attention. Yang et al. (2019a) suggest

that SANs calculate the dependencies between representations without considering the

contextual information which has proven useful for modeling dependencies among neural

representations in various natural language tasks, and propose to incorporate the con-

text representation into the transformations of the query and key of SANs. Shankar and

Sarawagi (2019) present Posterior Attention Models that after a principled factorization

of the full joint distribution of the attention and output variables in which the position

where attention is marginalized is changed from the input to the output, and the attention

propagated to the next decoding stage is a posterior attention distribution conditioned

on the output. Xu et al. (2019) suggest that the hidden states of each word hierarchically

calculated by attending to all words in the sentence, which assembles global information

and takes all signals into account, may lead to overlooking neighboring information (e.g.,

phrase pattern), and further propose a hybrid attention mechanism using a gating scalar

to dynamically leverage both local and global information. Given that in NMT, words are

sometimes dropped from the source or generated repeatedly in the translation, Malaviya

et al. (2018) address the coverage problem that changes only the attention transforma-

tion by allocating fertilities to source words to bound the attention they can receive, and

propose a constrained sparsemax. Peters et al. (2019) suppose that dense alignments and

strictly positive output probabilities resulting from the softmax transformation in both
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attention mechanisms and the classifier respectively are wasteful, make models less in-

terpretable and assign probability mass to many implausible outputs. As a result, they

introduce entmax sparse attention which includes softmax and sparsemax as particular

cases into sequence-to-sequence models. Correia et al. (2019) suggest that the standard

softmax attention leads to a dense alignment matrix, and assigns a non-zero weight to all

context words, and propose to replace softmax with sparse alpha-entmax in multi-head

attention. Thus alignment matrices have flexible, context-dependent sparsity patterns.

Indurthi et al. (2019) propose a hard-attention-based NMT model which selects a subset

of source tokens for each target token to effectively handle long sequence translation.

Layer Aggregation. Advanced NMT models generally employ multi-layer encoders

and decoders. However, usually only the top layers of the encoder and decoder are lever-

aged in the subsequent process, even though exploiting useful information embedded in

other layers may benefit performance. Wang et al. (2018b) design three multi-layer repre-

sentation fusion functions to fuse stacked layers. Dou et al. (2018) propose to use outputs

of all encoder layers with layer aggregation and multi-layer attention mechanisms, and

introduce an auxiliary regularization term to encourage different layers to capture di-

verse information. Dou et al. (2019) propose to use routing-by-agreement strategies to

aggregate layers dynamically.

Knowledge Integration. Utilizing knowledge beyond the training data for machine

translation may help produce accurate and meaningful translations. He et al. (2016a)

incorporate SMT features, including a translation model and an n-gram language model,

with the NMT model under the log-linear framework. Arthur et al. (2016) propose to im-

prove the translation of low-frequency content words by augmenting NMT systems with

discrete translation lexicons that efficiently encode translations of these low-frequency

words. Stahlberg et al. (2016) investigate the use of hierarchical phrase-based SMT lat-

tices in NMT. Li et al. (2017) show that source syntax can be explicitly incorporated into

NMT effectively, which brings significant improvements. Wu et al. (2017) jointly con-

struct and model the target word sequence and its corresponding dependency structure

with sequence-to-dependency NMT. Eriguchi et al. (2017) learn to parse and translate by

combining recurrent neural network grammar into NMT. Zhang et al. (2017c) explicitly

incorporate the word reordering knowledge into attention-based NMT. Chen et al. (2017a)
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improve NMT by explicitly incorporating source-side syntactic trees. Chen et al. (2017b)

integrate source dependency representation into NMT. Wang et al. (2017c) propose to in-

corporate the SMT model into the NMT framework utilizing an auxiliary classifier to score

the SMT recommendations and a gating function to combine the SMT recommendations

with NMT generations. Zhang et al. (2017b) investigate how to integrate multiple over-

lapping, arbitrary prior knowledge sources, and propose to use posterior regularization to

provide a general framework for integrating prior knowledge into NMT. Hokamp and Liu

(2017) extend beam search to allow the inclusion of pre-specified lexical constraints. Feng

et al. (2017) propose a memory-augmented NMT architecture to integrate the knowledge

learned from conventional SMT into NMT. Dahlmann et al. (2017) introduce a hybrid

search algorithm for attention-based NMT, which extends the beam search of NMT with

phrase translations from SMT. Wang et al. (2017e) propose to translate phrases in NMT

by integrating target phrases from an SMT system with a phrase memory. Yang et al.

(2017) propose a hierarchical attentional neural translation model focusing on enhanc-

ing source-side hierarchical representations by covering both local and global semantic

information using a bidirectional tree-based encoder. Chen et al. (2018a) improve NMT

by incorporating multiple levels of granularity. Kiperwasser and Ballesteros (2018) pro-

pose a framework in which the model begins learning syntax and translation interleaved,

gradually putting more focus on translation. Pu et al. (2018) demonstrate that Word

Sense Disambiguation (WSD) can improve NMT by widening the source context con-

sidered when modeling the senses of potentially ambiguous words. Zhang et al. (2018d)

propose a method for recalling previously seen translation examples and incorporating

them into the NMT decoding process. Ugawa et al. (2018) incorporate named entity tags

of source-language sentences. Cao and Xiong (2018) propose a novel method to com-

bine the strengths of both translation memories and NMT for high-quality translation.

Marcheggiani et al. (2018) incorporate semantic-role representations into NMT. Currey

and Heafield (2018) incorporate source syntax into NMT using linearized parses. Wang

et al. (2018a) employ a shared reconstructor and jointly learn to translate and predict

dropped pronouns. Wang et al. (2019a) propose a unified and discourse-aware zero pro-

noun translation approach for NMT. Song et al. (2019) study the usefulness of Abstract

Meaning Representation (AMR) on NMT. Guo et al. (2019c) propose a densely connected

Graph Convolutional Network (GCN) for syntax-based neural machine translation and

AMR-to-text generation. Yang et al. (2019e) introduce a new latent variable model to
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capture the co-dependence between syntax and semantics. Hao et al. (2019a) present

multi-granularity self-attention for the Transformer. Zhang et al. (2019b) propose to use

the intermediate hidden representations of a well-trained end-to-end dependency parser

for NMT. Zhu et al. (2020) fuse representations extracted from BERT with each layer of

the encoder and decoder of the NMT model through attention mechanisms.

Deep NMT models. Increasing the depth of models allows to model complicated

functions and increases their capacity but may also cause optimization difficulties. Zhou

et al. (2016) introduce fast-forward linear connections for deep LSTM networks and an

interleaved bi-directional architecture for stacking the LSTM layers. Wang et al. (2017b)

propose a novel linear associative unit that uses linear associative connections between

input and output of the recurrent unit and allows unimpeded information flow through

both space and time to reduce the gradient propagation path inside the recurrent unit.

Bapna et al. (2018) show that Transformer models with more than 12 encoder layers fail

to converge, and propose the Transparent Attention (TA) mechanism which combines

outputs of all encoder layers into weighted encoded representations. Wang et al. (2019c)

find that deep Transformers with proper use of layer normalization are able to converge

and propose to aggregate previous layers’ outputs for each layer. Wu et al. (2019c) explore

incrementally increasing the depth of the Transformer Big by freezing pre-trained shallow

layers. Zhang et al. (2019a) attribute the convergence issue of deep Transformers to

the fact that layer normalization over residual connections effectively reduces the impact

of residual connections due to subsequent layer normalization, and propose a layer-wise

initialization approach to reduce the standard deviation before normalization.

Efficiency. Improving the efficiency of NMT models reduces translation cost and la-

tency. Kaiser et al. (2018) study how to apply depthwise separable convolutions into

NMT which enables a significant reduction of the parameter count and amount of com-

putation. Shen et al. (2018b) propose a densely connected NMT architecture to improve

training efficiency. Zhang et al. (2018b) propose an addition subtraction twin-gated re-

current network which heavily simplifies the number of weight matrices among units of

all existing gated RNNs. Zhang et al. (2018a) propose average attention as an alternative

to the self-attention network in the Transformer decoder to accelerate decoding. Wang

et al. (2018c) propose an efficient method to dynamically sample sentences in order to
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accelerate NMT training. Zhang et al. (2018e) apply cube pruning into NMT to speed

up translation. Zhang et al. (2018f) use a simple n-gram suffix based equivalence function

and adapt it into beam search decoding. Wu et al. (2019b) introduce dynamic convolu-

tions which are simpler and more efficient than self-attention. Guo et al. (2019b) replace

the fully-connected attention structure with a star-shaped topology, in which every two

non-adjacent nodes are connected through a shared relay node. Tay et al. (2019) propose

the lightweight and memory efficient Quaternion Transformer. Bai et al. (2019) propose

the deep equilibrium model that directly finds these equilibrium points via root-finding

which has the notable advantage that training and prediction in these networks require

only constant memory, regardless of the effective “depth” of the network, as analytical

backpropagation can be performed through the equilibrium point using implicit differen-

tiation. Gu et al. (2019) develop the Levenshtein Transformer, a partially autoregressive

model devised for more flexible and amenable sequence generation. Dehghani et al. (2019)

introduce a dynamic per-position halting mechanism to the Transformer. Elbayad et al.

(2020) train Transformer models which can make output predictions at different stages of

the network and investigate different ways to predict how much computation is required

for a particular sequence. Kitaev et al. (2020) replace dot-product attention with one that

uses locality-sensitive hashing, and use reversible residual layers instead of the standard

residuals, which allows storing activations only once in the training process.

Robustness. Small perturbations in the input can severely distort intermediate rep-

resentations and thus impact the translation quality of NMT models. Belinkov and Bisk

(2018) confront NMT models with synthetic and natural sources of noise and find that

state-of-the-art models fail to translate even moderately noisy texts that humans have no

trouble comprehending. Heigold et al. (2018) investigate the robustness of NLP against

perturbed word forms. Zhao et al. (2018) propose a framework to generate natural and

legible adversarial examples that lie on the data manifold, by searching in semantic space

of dense and continuous data representation, utilizing recent advances in Generative Ad-

versarial Networks (GANs). Cheng et al. (2018) propose to improve the robustness of

NMT models with adversarial stability training. Michel and Neubig (2018) propose a

benchmark dataset for Machine Translation of Noisy Text (MTNT). Liu et al. (2019a)

propose to improve the robustness of NMT to homophone noises by jointly embedding

both textual and phonetic information of source sentences, and augmenting the training
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dataset with homophone noises. Cheng et al. (2019) propose to improve the robustness

of NMT models by attacking the translation model with adversarial source examples and

defending the translation model with adversarial target inputs to improve its robustness

against the adversarial source inputs. Zhang et al. (2019d) improve the decoding ro-

bustness by sampling context words not only from the ground truth sequence but also

from the predicted sequence by the model during training. Sato et al. (2019) investigate

approaches to apply adversarial perturbation to NMT. Michel et al. (2019) propose an

evaluation framework for adversarial attacks on sequence-to-sequence models that takes

the semantic equivalence of the pre-perturbation and post-perturbation input into ac-

count. Vaibhav et al. (2019) propose methods to enhance the robustness of MT systems

by emulating naturally occurring noise in otherwise clean data.

Back-Translation. Back-translation has been proven effective in improving NMT

performance by utilizing monolingual data. Sennrich et al. (2016b) propose to utilize

target monolingual data by back-translating. Edunov et al. (2018) investigate a number

of methods to generate synthetic source sentences, and find that in all but resource-poor

settings, back-translations obtained via sampling or noised beam outputs are most ef-

fective. Fadaee and Monz (2018) explore different aspects of back-translation, showing

that words with high prediction loss during training benefit most from the addition of

synthetic data, and introduce several variations of sampling strategies targeting difficult-

to-predict words using prediction losses and frequencies of words. Wang et al. (2019d)

propose to quantify the confidence of NMT model predictions based on model uncertainty,

and to better cope with noise in back-translation with word-level and sentence-level con-

fidence measures based on uncertainty. Zheng et al. (2020) propose the mirror-generative

NMT which simultaneously integrates the source to target translation model, the target

to source translation model, and two language models.

Training of NMT Models. The training approach and objectives affect the per-

formance of the trained model. Wiseman and Rush (2016) introduce a model and beam

search training scheme to learn global sequence scores. Shen et al. (2016) propose mini-

mum risk training for NMT to directly optimize evaluation metrics. Weng et al. (2017)

propose to use word predictions as a mechanism for direct supervision. Li et al. (2018a)
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introduce a disagreement regularization to explicitly encourage the diversity among multi-

ple attention heads. Kuang et al. (2018a) study how to strengthen the connection between

source and target words in translation by bridging source and target word embeddings.

Yang et al. (2019d) propose a sentence-level agreement module to directly minimize the

difference between the representation of source and target sentence. Yang et al. (2018b)

introduce a discriminator to distinguish NMT outputs from golden target sentences. Wi-

eting et al. (2019) introduce a semantic similarity based reward function for optimizing

NMT systems. Yang et al. (2019f) propose a contrastive learning approach to reduc-

ing word omission errors in NMT. Garg et al. (2019) present an approach to training a

Transformer model to produce both accurate translations and alignments. Cohn-Gordon

and Goodman (2019) present a method to define a less ambiguous translation system in

terms of an underlying pre-trained neural sequence-to-sequence model. Platanios et al.

(2019) propose a framework to decide which training samples are shown to the model

at different times during training, based on the estimated difficulty of a sample and the

current competence of the model. Kumar et al. (2019) use reinforcement learning to learn

a curriculum framework that allows examples to appear an arbitrary number of times and

generalizes data weighting, filtering and fine-tuning schemes.

Non-Autoregressive Translation. NMT normally conditions each output word on

previously generated outputs. Non-autoregressive translation avoids this autoregressive

property and produces its outputs in parallel, reducing inference latency. Gu et al. (2018)

introduce a model that avoids autoregressive decoding and produces translations in par-

allel, allowing an order of magnitude lower latency during inference. Lee et al. (2018)

propose a conditional Non-Autoregressive Translation (NAT) model based on iterative

refinement. Libovický and Helcl (2018) present an NAT architecture based on connec-

tionist temporal classification. Ma et al. (2019) propose a simple, efficient and effective

NAT model using latent variable models. Li et al. (2019c) propose to leverage the hints

from hidden states and word alignments to help train NAT models. Wei et al. (2019)

propose an imitation learning framework for NAT. Shao et al. (2019) propose approaches

to retrieve target sequential information for NAT to enhance its translation ability while

preserving the fast-decoding property. Guo et al. (2019a) propose to enhance the de-

coder inputs with a phrase table from SMT and transformed source word embeddings to

improve NAT models. Wang et al. (2019g) propose to regularize the similarity between
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consecutive hidden states based on the corresponding target tokens and to minimize a

backward reconstruction error for NAT.

Empirical Studies. Empirical studies reveal how the specific model design affects

performance. Luong et al. (2015) examine global attention (including 3 score functions:

dot-product, general and concatenation) and local attention. Britz et al. (2017) pro-

vide practical insights into the relative importance of factors including embedding size,

network depth, RNN cell type, residual connections, attention mechanism and decoding

heuristics. Chen et al. (2018b) tease apart the new architectures of the Transformer and

their accompanying techniques in two ways to identify several key modeling and train-

ing techniques, and apply them to the RNN architecture. They additionally analyze the

properties of each fundamental seq2seq architecture and devise new hybrid architectures

to combine their strengths. Pappas and Henderson (2019) investigate the usefulness of

more powerful shared mappings for output labels, and propose a deep residual output

mapping with dropout between layers to better capture the structure of the output space

and avoid overfitting. So et al. (2019) apply Neural Architecture Search (NAS) to search

for a better alternative to the Transformer.

Analysis of NMT Models. Analysis of NMT models helps understanding of the

behavior and characteristics of NMT models and guides the design of new model archi-

tectures. Domhan (2018) show that recurrent and convolutional models can perform very

close to the Transformer by borrowing concepts from the Transformer architecture, and

that self-attention is much more important on the encoder side than on the decoder side.

Tang et al. (2018) examine the capabilities of RNNs, CNNs, and self-attention networks

in modeling long-range dependencies and semantic feature extraction on the subject-verb

agreement task and the word sense disambiguation task respectively. Tran et al. (2018)

find that LSTMs are notably more robust with respect to the presence of misleading fea-

tures in the agreement task, and that LSTMs generalize better than the fully attentional

Transformer to longer sequences in a logical inference task. They suggest that recurrence

is a key model property that should not be sacrificed for efficiency when hierarchical

structure matters for the task. Bisazza and Tump (2018) performs a fine-grained anal-

ysis of how various source-side morphological features are captured at different levels of

the NMT encoder. While they are unable to find any correlation between the accuracy
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of source morphology encoding and translation quality, they discover that morphological

features are only captured in context and only to the extent that they are directly trans-

ferable to the target words. Li et al. (2019b) analyze word alignment quality in NMT

with prediction difference, and further analyze the effect of alignment errors on transla-

tion errors, which demonstrates that NMT captures good word alignment for those words

mostly contributed from source, while their word alignment is much worse for those words

mostly contributed from target. Voita et al. (2019d) evaluate the contribution of individ-

ual attention heads to the overall performance of the model and analyze the roles played

by them in the encoder. Yang et al. (2019b) propose a word reordering detection task

to quantify how well word order information is learned by the Self-Attention Network

(SAN) and RNN, and reveal that although recurrence structure makes the model more

universally-effective on learning word order, learning objectives matter more in down-

stream tasks such as machine translation. Tsai et al. (2019) regard attention as applying

a kernel smoother over the inputs with the kernel scores being the similarities between

inputs, and analyze individual components of the Transformer’s attention with the new

formulation via the lens of the kernel. Tang et al. (2019) find that encoder hidden states

outperform word embeddings significantly in word sense disambiguation. He et al. (2019)

measure word importance by attributing the NMT output to every input word and reveal

that words of certain syntactic categories have higher importance while the categories

vary across language pairs. Voita et al. (2019a) use canonical correlation analysis and

mutual information estimators to study how information flows across Transformer layers

and find that representations differ significantly depending on the objectives (MT, LM

and MLM).

Context-Aware NMT. NMT systems are generally trained on a large amount of

sentence-level parallel data, and during prediction sentences are independently translated,

ignoring cross-sentence contextual information. This leads to inconsistency between trans-

lated sentences. In order to address this issue, context-aware models have been proposed.

Tiedemann and Scherrer (2017) discuss the effect of increasing the segments beyond sin-

gle translation units, and observe cross-sentential attention patterns that improve textual

coherence in translation. Läubli et al. (2018) show that human assessment has a stronger

preference for human over machine translation when evaluating documents as compared

to isolated sentences. Bawden et al. (2018) present hand-crafted, discourse test sets to
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test the models’ ability to exploit previous source and target sentences, and highlight the

importance of target-side context. Voita et al. (2018) introduce a context-aware NMT

model which controls the flow of information from the context to the translation model,

and show that the model deals with pronoun translation and implicitly captures anaphora.

Voita et al. (2019c) perform a human study on an English-Russian subtitle dataset and

identify deixis, ellipsis and lexical cohesion as three main sources of inconsistency, and

create test sets targeting these phenomena, and propose the CADec model which demon-

strates major gains over a context-agnostic baseline on their benchmarks without sac-

rificing BLEU. Wang et al. (2017a) summarize the history in a hierarchical way, and

propose a cross-sentence context-aware approach to integrate the history representation

into NMT. Maruf and Haffari (2018) present a document-level NMT model which takes

both source and target document context into account using memory networks. Tu et al.

(2018) augment NMT models with a cache-like memory network which stores recent hid-

den representations as translation history. Kuang et al. (2018b) propose a cache-based

approach to modeling coherence for NMT by capturing contextual information either from

recently translated sentences or the entire document. Kuang and Xiong (2018) propose an

inter-sentence gating model that uses the same encoder to encode adjacent sentences and

controls the amount of information flowing from the preceding sentence to the translation

of the current sentence. Maruf et al. (2019) propose a hierarchical attention approach for

context-aware NMT which first uses sparse attention to selectively focus on relevant sen-

tences in the document context and then attends to key words in those sentences. Zhang

et al. (2018c) extend the Transformer model with a new context encoder to represent

document-level context which is then incorporated into the original encoder and decoder.

Miculicich et al. (2018) propose to integrate a hierarchical attention model into the origi-

nal NMT architecture to capture context. Tan et al. (2019) propose a hierarchical model

consisting of a sentence encoder to capture intra-sentence dependencies and a document

encoder to model document-level information. Xiong et al. (2019) propose to train a

model to learn a policy that produces discourse coherent text by a reward teacher. Voita

et al. (2019b) perform automatic post-editing on a sequence of sentence-level translations

with a DocRepair model trained on very large monolingual document-level data in the

target language and their round-trip translations of each isolated sentence, and analyze

which discourse phenomena are hard to capture using monolingual data only. Xu et al.

(2020d) present an efficient architecture for context-aware NMT.
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2.5 Evaluation Metrics

Human evaluations of many aspects of translation, including adequacy, fidelity and flu-

ency of the translation, are time-consuming, expensive and hard to reproduce. Thus,

automatic machine translation evaluation approaches correlating well with human eval-

uation and which are quick, inexpensive and language-independent are proposed. As

automatic evaluation approaches are usually convenient to use, easy to reproduce and

can be used to make comparisons with the work of others, they are popular in machine

translation research, including the research presented in this thesis.

Papineni et al. (2002) propose BLEU, to date still the most frequently used MT evaluation

metric, which ranks translation outputs using combinations of modified n-gram precisions

with a sentence brevity penalty. Koehn (2004) presents bootstrap resampling methods to

compute statistical significance of test results, and validates them on the concrete example

of the BLEU score to measure differences between test results. Banerjee and Lavie (2005)

propose METEOR to enhance the BLEU metric which is solely based on an explicit word-

to-word matching between the MT output being evaluated and one or more reference

translations. The METEOR matching approach supports not only matching between

words that are identical in the two strings being compared, but can also match words

that are simple morphological variants of each other (i.e., they have an identical stem),

and words that are synonyms of each other. Snover et al. (2006) introduce Translation Edit

Rate (TER) which measures the amount of editing that a human would have to perform

to change a system output so it exactly matches a reference translation, and propose

the Human-targeted Translation Edit Rate (HTER) which yields higher correlations with

human judgments than BLEU, even when BLEU is given human-targeted references.

2.6 Conclusion

This chapter presents a literature review of research relevant to the studies presented

in the thesis, including RBMT, SMT, NMT and evaluation metrics for MT, but mostly

focuses on approaches relevant to NMT.

In the following chapters, we present our research and show: (i) how we learn source

phrase representations and how we incorporate source phrase representation learning into
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the state-of-the-art Transformer to improve its long-distance dependency capturing ability

(in Chapter 3), (ii) our approach to stabilize the convergence of the Transformer model,

especially for deep Transformers, by initializing their parameters under the Lipschitz

constraint with both empirical results and theoretical analysis (in Chapter 4), (iii) the

relation between the batch size and the gradient direction, how we dynamically find

proper batch sizes for the training of the Transformer by monitoring gradient direction

change in gradient accumulation, and how we achieve efficient monitoring of gradient

direction change by sampling (in Chapter 5), and finally (iv) present our Neutron NMT

implementation which supports our research (in Chapter 6).

36



Chapter 3

Learning Source Phrase

Representations for Neural

Machine Translation

The Transformer translation model (Vaswani et al., 2017) based on a multi-head attention

mechanism can be computed effectively in parallel and has significantly pushed forward

the performance of Neural Machine Translation (NMT).

Though intuitively the attentional network can connect distant words via shorter network

paths than RNNs, empirical analysis demonstrates that its ability to capture long-range

dependencies does not significantly outperform RNNs. Instead, self-attentional networks

are good at word sense disambiguation and semantic feature extraction, while it is still

a problem for the Transformer to fully model long-distance dependencies (Tang et al.,

2018).

Considering that modeling phrases instead of words has significantly improved the Sta-

tistical Machine Translation (SMT) approach through the use of larger translation blocks

(“phrases”) and its reordering ability, modeling NMT at phrase level is an intuitive pro-

posal to help the model better capture long-distance relationships. However, using phrases

directly leads to large vocabulary size and data sparsity issues which are not acceptable

for a deep learning approach.
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This chapter addresses RQ1: How to improve the ability of the Transformer in long-

distance relation capturing?, RQ2: How to avoid the potentially large phrase table while

benefiting from phrase representations? and RQ3: How to learn and utilize phrase rep-

resentation in the Transformer translation model?

Instead of using phrases directly in NMT, we first propose an attentive phrase repre-

sentation generation mechanism that is able to generate phrase representations from

corresponding token representations. In addition, we incorporate the generated phrase

representations into the Transformer translation model to enhance its ability to capture

long-distance relationships.

In our experiments, we obtain significant improvements on the WMT 14 English-German

and English-French tasks on top of the strong Transformer baseline, which shows the

effectiveness of our approach. Our approach helps Transformer Base models perform at

the level of Transformer Big models on the En-De task, and even significantly better for

long sentences, but with substantially fewer parameters and training steps. The fact that

phrase representations help even in the Big setting further supports our conjecture that

they make a valuable contribution to long-distance relations.

The core part of the research presented in this chapter has been previously published in

Xu et al. (2020c).

3.1 Introduction

Throughout much previous NLP research with neural models on a wide variety of tasks,

the long-distance dependency learning ability of neural networks has been widely ex-

amined, and a common finding is that neural models normally perform better on short

sentences than on long sentences, which indicates that capturing long-distance relations is

often challenging for neural approaches. Specifically, Tai et al. (2015) show that the Long

Short-Term Memory Network (LSTM) handles short sentences better than long sentences.

In Linzen et al. (2016)’s number prediction task which predicts the number of the verb

following the subject (plural or singular) of the sentence, the accuracy of LSTM degrades

consistently with increasing distances between the subject and the verb. Yang et al. (2017)
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show that it is challenging for the LSTM-based NMT model to capture long-distance de-

pendencies. For assessing the ability of NMT models in long-distance relation capturing,

Tang et al. (2018) examine the performance of RNNs, CNNs and the Transformer on the

subject-verb agreement task which is the most popular choice for evaluating the ability to

capture long-range dependencies and has been used in many studies (Linzen et al., 2016;

Sennrich, 2017). Tang et al. (2018) show that the Transformer models which connect

distant tokens via shorter network paths than RNNs are not particularly stronger than

RNN models for long distances, and the number of heads in multi-head attention is cru-

cial for its performance over long distances. Yang et al. (2019b) show that the accuracies

of encoders, including both the self-attentional encoder and the GRU (Cho et al., 2014)

encoder, decrease on long-distance cases across language pairs and model variants on the

word reordering detection task, which also suggest that both GRU and the self-attention

network fail to fully capture long-distance dependencies.

In machine translation, the word sense disambiguation of a source word may not only rely

on several other tokens nearby, but also on some other words far from it. Some tokens

with long-distance relationships in the decoding history may also play an important role

in the generation of a target token in addition to several previous tokens.

The Transformer (Vaswani et al., 2017), which has outperformed previous RNN/CNN

based translation models (Bahdanau et al., 2014; Gehring et al., 2017), is based on multi-

layer multi-head attention networks and can be trained in parallel very efficiently. Though

attentional networks can connect distant words via shorter network paths than RNNs,

empirical results show that its ability in capturing long-range dependencies does not

significantly outperform RNNs. Instead, self-attentional networks have been found good

at word sense disambiguation and semantic feature extraction, while it is still a problem

for the Transformer to fully model long-distance dependencies (Tang et al., 2018).

Using phrases instead of words enables conventional SMT to condition on a wider range

of context, and results in better performance in reordering and modeling long-distance

dependencies. It is intuitive to let the NMT model additionally condition on phrase-level

representations to capture long-distance dependencies better. However, there are two

main issues that prevent NMT from directly using phrases:
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� There are more phrases than tokens, and the phrase table is much larger than the

word vocabulary, which is not affordable for NMT.

� Distribution over phrases is much sparser than that over words, which may lead to

data sparsity and hurt the performance of NMT.

Instead of using phrases directly in NMT, in this chapter, we address the issues above

with the following contributions:

� To address the large phrase table issue, we propose an attentive feature extraction

model and generate phrase representation based on token representations “on the

fly”. Our model first summarizes the representation of a given token sequence with

mean or max-over-time pooling, then computes the attention weight of each token

based on the token representation and the summarized representation, and generates

the phrase representation by a weighted combination of token representations.

� To help the Transformer translation model better model long-distance dependencies,

we let both encoder layers and decoder layers of the Transformer attend the phrase

representation sequence which is shorter than the token sequence, in addition to the

original token representation. Since the phrase representations are produced and

attended at each encoder layer, the encoding of each layer is also enhanced with

phrase-level attention computation.

� To the best of our knowledge, our work is the first to model phrase representations

and incorporating them into the Transformer.

Our approach empirically brings about significant and consistent improvements over the

strong Transformer model (both Base and Big settings). We conduct experiments on the

WMT 14 English-German and English-French news translation task, and obtain +1.29

and +1.37 BLEU improvements respectively on top of the strong Transformer Base base-

line, which demonstrates the effectiveness of our approach. Our approach helps Trans-

former Base models perform at the level of Transformer Big models, and even significantly

better for long sentences, but with substantially fewer parameters and training steps. It

also shows effectiveness with the Transformer Big setting. We also conduct length analy-

sis with our approach, and the results show how our approach improves long-distance de-

pendency capturing, which supports our conjecture that phrase representation sequences
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can help the model capture long-distance relations better, given that in translating long

sentences, we shall encounter more long-distance dependencies than translating short sen-

tences. In the linguistically-informed subject-verb agreement analysis on the Lingeval97

dataset (Sennrich, 2017) following Tang et al. (2018), our approach improves the accuracy

of long-distance subject-verb dependencies, especially for cases where there are more than

10 tokens between the verb and the related subject.

3.2 Background and Related Work

In this section, we first review previous work which utilizes phrases in recurrent sequence-

to-sequence models, then give a brief introduction to the stronger Transformer translation

model that our work is based on.

3.2.1 Utilizing Phrases in RNN-based NMT

Most previous work focuses on utilizing phrases from SMT in NMT to address its coverage

(Tu et al., 2016) problem.

Dahlmann et al. (2017) suggest that SMT usually performs better in translating rare

words and using phrasal translations, though NMT reaches better translation quality. To

benefit from SMT features, including phrase-level translation probabilities and a target

language model, they introduce a hybrid search algorithm for attention-based NMT which

extends the beam search of NMT with phrase translations from SMT. When to use phrase

translations is decided based on attention weights of the NMT decoder which provides a

soft coverage of the source sentence words, and a log-linear model is applied to combine

the NMT translation score with phrase-based scores and n-gram target language model

scores.

Wang et al. (2017d) propose that while NMT generally produces fluent but often inade-

quate translations, SMT yields adequate translations though less fluent. They incorporate

SMT into NMT by utilizing recommendations from SMT in each decoding step of NMT

to address the coverage issue and the unknown word issue of NMT. They employ an aux-

iliary classifier and a gating mechanism to score and combine SMT outputs with NMT

decoding. With the proposed architecture, they integrate SMT into the training of NMT
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in an end-to-end manner. As for the unknown word issue, they select a proper SMT

candidate to replace an unknown target word conditioned on both attention weights of

the NMT model and the coverage information from the SMT model.

Wang et al. (2017e) suggest that phrases play a vital role in machine translation, and

propose to translate phrases in NMT by integrating target phrases from an SMT system

with a phrase memory given that it is hard to integrate phrases into NMT which reads

and generates sentences in a token-by-token way. The phrase memory is provided by the

SMT model which dynamically picks relevant phrases with the partial translation from the

NMT decoder in each decoding step. Alignment information derived from the attention

mechanism of the NMT is introduced to the ranking of phrases of the SMT model, which

leads to better interaction between SMT and NMT. The NMT decoder then decides to

generate a word or to select an appropriate phrase from the phrase memory with a neural

balancer. If a phrase was selected, the NMT decoder would perform phrase translation

and update its decoding state by force decoding all words in that phrase.

3.2.2 The Transformer Translation Model

Our research is based on the Transformer translation model (Vaswani et al., 2017) shown

in Figure 3.1, which significantly outperforms the previous recurrent sequence-to-sequence

approach and can be efficiently computed in parallel.

The Transformer includes an encoder and a decoder. Both encoder and decoder are a

stack of 6 layers. Besides the embedding matrix and positional embedding matrix in both

encoder and decoder, the decoder also has a softmax classifier layer to produce translated

tokens. The weights of the softmax classifier are normally tied to the target embedding

matrix.

Each encoder layer consists of a self-attention network attending the whole input sequence

to build contextual representations, and a feed-forward neural network to process the

collected information. A decoder layer has an additional cross-attention layer between

the self-attention sub-layer and the feed-forward neural network sub-layer to attend to

the encoder’s outputs to provide information from the encoded representation of the given

source sentence. To stabilize training, a residual connection (He et al., 2016) is employed

around each sub-layer, followed by layer normalization (Ba et al., 2016).
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6x

Embedding
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Source Shifted Target

Output (Target)
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Figure 3.1: The Transformer translation model. Residual connection and layer nor-
malization are omitted for simplicity.

Both encoder layers and decoder layers make use of the multi-head attention mechanism.

The multi-head attention mechanism calculates the attention results of given queries on

corresponding keys and values. It first projects queries, keys and values with 3 independent

linear transformations, then splits the transformed key, query and value embeddings into

several chunks of dk dimension vectors, each chunk is called a head, 1 and scaled dot-

product attention is independently applied in each head:

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (3.1)

where Q, K and V stand for the query vectors, key vectors and value vectors. Finally, the

1dk is 64 for both the Transformer Base and the Transformer Big, and the numbers of heads for them
are 8 and 16 respectively.
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network concatenates the outputs of all heads and transforms the concatenation into the

target space with another linear layer. The self-attention network uses the query sequence

also as the key sequence and the value sequence in computation, while the cross-attention

feeds another vector sequence to attend as queries and values.

Comparing the computation of the attentional network with RNNs, it is obvious that the

attention computation connects distant words with a shorter network path, and intuitively

it should perform better in capturing long-distance dependencies. However, empirical

results show that its ability in modeling long-range dependencies does not significantly

outperform RNNs. Instead, it leads to good performance on word sense disambiguation

and semantic feature extraction.

3.2.3 Comparison with Previous Works

Compared to previous works using RNN-based NMT (He et al., 2016b; Wang et al.,

2017d,e; Dahlmann et al., 2017), our proposed approach is based on the Transformer

model, with the following further important differences:

� Our approach aims to improve the long-distance dependency modeling ability of

NMT instead of coverage (Tu et al., 2016).

� Our approach does not require to train an SMT system or to extract aligned phrase

translation from the training corpus, which makes it efficient and avoids suffer-

ing from potential error propagation from the SMT system. Instead, we directly

generate and utilize our phrase representations during encoding rather than using

recommended phrase translation pairs from SMT to aid decoding. There is no re-

quirement to interact with the part of the algorithm which generates phrases. Our

proposed neural phrase representation learning model is deeply integrated into the

translation model, and the whole neural model can be trained in an end-to-end

manner simply through backpropagation.

� We iteratively and dynamically generate phrase representations with token vectors.

Previous work does not use SMT phrases in this way. Benefiting from the powerful

multi-head attention mechanism (Vaswani et al., 2017) and the proposed attentive

phrase representation generation algorithm, dense phrase embeddings should be
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more powerful and informative than discrete phrase sequences recommended by

SMT in previous approaches.

In more recent work, Wang et al. (2019f) propose to augment SANs with structural po-

sition representations to model the latent structure of the input sentence complementing

standard sequential positional representations. They use dependency trees to represent

the grammatical structure of a sentence, and propose two strategies to encode the posi-

tional relationships among words in the dependency tree. Hao et al. (2019a) also suggest

to improve NMT performance from explicit modeling of phrases, as prior work on SMT

has shown that extending the basic translation unit from words to phrases has produced

substantial improvements. But they propose the multi-granularity self-attention mech-

anism which performs phrase-level (either n-grams or syntactic phrases) attention with

several attention heads, rather than learning source phrase representations as in our work.

3.3 Transformer with Phrase Representation

In this section, we introduce our approach to generating phrase representations and in-

tegrating phrase representations into the Transformer model. In contrast to phrases in

SMT which are bilingual pairs, in our approach they are segments on the monolingual

source side.

Unlike SMT which learns phrase translations from alignment information, NMT trans-

lates in a token-by-token manner, and does not have a procedure to do phrase translation,

since it cannot use phrases directly due to the large sparse phrase table. Fortunately,

neural models have been proven powerful in combining representations even without ex-

plicitly modeling linguistic structures (Cho et al., 2014; Hochreiter and Schmidhuber,

1997; Vaswani et al., 2017; Devlin et al., 2019). To avoid a large phrase table while at

the same time availing of its advantages, we generate phrase representations out of the

token sequence vectors with an attentional network. Then we let the Transformer model

attend the shorter phrase representation sequence before attending the original longer

token representation sequence, with the expectation that it can perform token-level at-

tention better with the previous information gained from phrase-level attention, especially

when capturing long-distance dependencies.
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For the segmentation of phrases, given that n-gram phrases with a fixed n are very effective

for tensor libraries, we first try to cut a token sequence into a phrase sequence with a

fixed phrase length which varies with the sequence length. Specifically, for long sentences,

each phrase contains at most 8 tokens. We do not use a larger value because this setting

can already significantly reduce the length of sequences, i.e., it turns the longest sequence

of 256 tokens in the training set into a sequence of 32 phrases, and a reasonably small

maximum phrase length value helps reduce inevitable information loss in merging several

token vectors into one. Since short sentences suffer fewer problems in modeling long-

distance dependencies and merging more token vectors into one fixed dimension vector

will result in a loss of information, we try to cut a short sentence into at least 6 phrases

while ensuring that there are at least 3 tokens inside a phrase. In practice, we implement

this as:

ntok = max(min(8, seql/6), 3) (3.2)

where ntok and seql stand for the number of tokens in each phrase and the length of a

sentence respectively.

We pad the last phrase in case it does not have sufficient tokens. Thus we can transform

the whole sequence into a tensor.

The n-gram phrase segmentation is efficient and simple, and we suggest the drawbacks of

such “casual” segmentation boundaries can be alleviated with self-attention computation

across the whole sequence and the attention mechanism applied in the generation of phrase

representations which values tokens differently to a large extent, given that neural models

have been proven good at learning competitively effective representations with the gate

or attention mechanism even without modeling linguistic structures (Cho et al., 2014;

Hochreiter and Schmidhuber, 1997; Vaswani et al., 2017; Devlin et al., 2019).

In our experiments, we also explore phrases extracted from the Stanford Parser (Socher

et al., 2013) as an alternative to our simple segmentation strategy. The maximum number

of tokens allowed is consistent with the simple segmentation approach, and we try to use

the tokens from the largest sub-tree that complies with the maximum token limitation or

from several adjacent sub-trees of the same depth as a phrase for efficiency. Our algorithm

to extract phrases from parse trees is shown in Algorithm 1.

46



Chapter 3. Learning Source Phrase Representations

Algorithm 1 Extracting phrases from a parse tree. Input: A parse tree T , maximum
tokens allowed in a phrase n; Output: Extracted phrase sequence S.

1: while T is not empty do

2: Initialize a phrase sequence p = [], maximum tokens allowed in this phrase mt = n;

3: Find the largest sub-tree ST with nst tokens (nst < n) and depth dst from the

right side of T ;

4: Add the token sequence in ST into p;

5: Remove ST from T ;

6: while mt > 0 do

7: Find the adjacent sub-tree STA of depth dst with nsta tokens from the right side

of T ;

8: if STA exists and nsta ≤ mt then

9: Insert the token sequence of STA to the beginning of p;

10: Remove STA from T ;

11: mt = mt− nsta;

12: else

13: Break;

14: end if

15: end while

16: Append p to S;

17: end while

18: Reverse S;

19: return S

To efficiently parallelize parser-based phrases of various lengths in a batch of data, we pad

short phrases to the same length as the longest phrases in the batch of sentences. Thus

a batch of sequences of phrases can be saved into a tensor. However, significantly more

“<pad>” tokens will be introduced, and the syntax-informed model is slightly slower than

the simple approach. An example of the two phrase segmentation approaches is shown in

Figure 3.2.
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This is ultimately a starting point for identity .

This is ultimately a starting point for identity .

Parse:

N-gram:

Figure 3.2: Example of parse phrases and n-gram phrases.

3.3.1 Attentive Phrase Representation Generation

Merging several token vectors into one is very likely to incur information loss, and in-

troducing an importance evaluation mechanism is better than treating tokens equally.

To highlight the most important features in a segmented phrase chunk, we introduce an

attentive phrase representation generation model to value tokens differently according to

their importance in the phrase. The model first roughly extracts features from all tokens

in a phrase into a vector, then assigns a score to each token by comparing each token

vector with the extracted phrase feature vector, and produces the weighted accumulation

of all token vectors according to their scores as the final representation of the phrase.

Phrase representations are generated in every encoder layer. For the kth encoder layer,

we generate phrase representation Rkephrase from its input representation. Assume the

phrase contains m tokens {t1, ..., tm}, and {Rket1 , R
k
et2
, ..., Rketm} are the corresponding

input vectors to the encoder layer, we first generate a summary representation by:

48



Chapter 3. Learning Source Phrase Representations

Rkeall = Fglance(R
k
et1
, ..., Rketm ) (3.3)

where Fglance is a function to extract features of the vector sequence into a fixed-dimension

vector. We explore both element-wise mean operation and max-over-time pooling opera-

tion in our work.

After the summarized representation is produced, we calculate a score for each token in

the phrase. The score of the ith token ski is calculated as:

ski = W k
2 σ(W k

1 [Rketi
|Rkeall ] + bk1) + bk2 (3.4)

where σ is the sigmoid activation function, and “|” means concatenation of vectors. The

rationale for designing this approach is further explained below.

Then we normalize the score vector to weights with the softmax function, and the prob-

ability of the ith token pki is:

pki =
es

k
i

m∑
i=1

es
k
i

(3.5)

Finally, the representation of the phrase in the kth encoder layer Rkephrase is generated by

a weighted combination of all token vectors:

Rkephrase =

m∑
i=1

pkiR
k
eti

(3.6)

The representation of the phrase sequence can be computed efficiently in parallel. Each

encoder layer will produce a vector sequence as the phrase representation. We do not

use the multi-head attention in the computation of the phrase-representation attention

because of two reasons:

� The multi-head attention calculates weights through dot-product. We suggest that a

2-layer neural network might be more powerful at semantic level feature extraction,
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and it is less likely to be affected by positional embeddings which are likely to vote

up adjacent vectors.

� Though we employ a 2-layer neural network, it only has one linear transformation

and a vector to calculate attention weights, which contains fewer parameters than

the multi-head attention model that has 4 linear transformations.

Recent studies show that different encoder layers capture linguistic properties of different

levels (Peters et al., 2018), and aggregating layers is of profound value to better fuse se-

mantic information (Shen et al., 2018b; Dou et al., 2018; Wang et al., 2018b; Dou et al.,

2019). We assume that different decoder layers may value different levels of information,

i.e., the representations of different encoder layers, differently. Thus we weighted com-

bined phrase representations from every encoder layer for each decoder layer with the

Transparent Attention (TA) mechanism (Bapna et al., 2018). For the decoder layer j, the

phrase representation Rjdphrase fed into that layer is calculated by:

Rjdphrase =
d∑
i=0

wjiR
i
ephrase

(3.7)

where wji are softmax normalized parameters trained jointly with the full model to learn

the importance of encoder layers for the jth decoder layer. d is the number of encoder

layers, and 0 corresponds to the embedding layer.

3.3.2 Incorporating Phrase Representation into NMT

After the phrase representation sequence for each encoder layer and decoder layer is cal-

culated with the approach described above, we propose an attentive combination network

to incorporate the phrase representation for each layer into the Transformer translation

model to aid it modeling long-distance dependencies. The attentive combination network

is inserted in each encoder layer and each decoder layer to bring in information from the

phrase representation. The architectures of the encoder layer and the decoder layer of the

Transformer model with phrase representation are shown in Figure 3.3.

For an encoder layer, the new computation order is cross-attention from source tokens

to source phrases → self-attention over tokens → feed-forward neural network to process

50



Chapter 3. Learning Source Phrase Representations

Self-
Attention

Feed-
Forward

Attentive Phrase 
Representation

Attentive 
Combining

query

key/value

Input

Output

Self-
Attention

Feed-Forward

Cross-
Attention

Attentive 
Combining

Input

Output

Transparent Attentive
Phrase Representation

Encoder 
Representation

key/value

query

Encoder Layer Decoder Layer

Figure 3.3: The encoder/decoder layer of the Transformer model with phrase repre-
sentation. Residual connection and layer normalization are omitted for simplicity.

collected features, while for a decoder layer, it is: self-attention over decoded tokens

→ cross-attention to source phrases → cross-attention to source tokens → feed-forward

neural network to process collected features. Compared to the computation order of the

standard Transformer, the new computation order performs additional attending at phrase

level before attending source token representations at the token level. We conjecture that

attending at phrase level should be easier than at token level, and attention results at

phrase level may aid the attention computation at the token level.

For a given input token representation sequence x and a phrase vector sequence Rphrase,

the attentive combination network inserted into encoder and decoder layers first attends

the phrase representation sequence and computes the attention output outphrase as follows:

outphrase = AttnMH(x,Rphrase) (3.8)

where AttnMH is a multi-head cross-attention network with x as keys and Rphrase as

corresponding queries and values.

The attention result is then combined again with the original input sequence x with a

2-layer neural network which aims to make up for potential information loss in the phrase

representation with the original token representation:
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out = W4σ(W3[x|outphrase] + b3) + b4 (3.9)

We also employ a residual connection around the attentive combination layer, followed by

layer normalization to stabilize training.

Since the phrase representation is produced inside the Transformer model and utilized as

the input of layers, and all related computations are differentiable, the attentive phrase

representation model is simply trained as part of the whole model through backpropaga-

tion.

3.4 Experiments

In this section, we report our experiment settings and results, along with discussions and

analysis. To compare with Vaswani et al. (2017), we conducted our experiments on the

WMT 14 English to German and English to French news translation tasks.

3.4.1 Settings

We implemented our approaches based on our Neutron implementation (Xu and Liu,

2019) of the Transformer translation model described in Chapter 6. We applied joint

Byte-Pair Encoding (BPE) (Sennrich et al., 2016a) with 32k merge operations on both

data sets to address the unknown word problem. We only kept sentences with a maximum

of 256 subword tokens for training. Training sets were randomly shuffled in every training

epoch. The concatenation of newstest 2012 and newstest 2013 was used for validation

and newstest 2014 as test sets for both tasks.

The number of warmup steps was set to 8k, 2 and each training batch contained at

least 25k target tokens. Our experiments ran on 2 GTX 1080 Ti GPUs, and a large

batch size was achieved through gradient accumulation. We used a dropout of 0.1 for

all experiments except for the Transformer Big on the En-De task which was 0.3. The

training steps for Transformer Base and Transformer Big were 100k and 300k respectively

following Vaswani et al. (2017). We employed a label smoothing value of 0.1 (Szegedy

2https://github.com/tensorflow/tensor2tensor/blob/v1.15.6/tensor2tensor/models/transformer.py#L1850
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Models En-De En-Fr

Transformer Base 27.38 39.34

+PR 28.67† 40.71†

Transformer Big 28.49 41.36

+PR 29.60† 42.45†

Table 3.1: Results on WMT 14 En-De and En-Fr.

et al., 2016). We used the Adam (Kingma and Ba, 2015) optimizer with 0.9, 0.98 and

10−9 as β1, β2 and ε. The other settings were the same as Vaswani et al. (2017) except

that we did not bind the embedding between the encoder and the decoder for efficiency,

because if the source and target embeddings were bound, the number of classes of the

classifier and the corresponding computation would increase due to the fact that there

are some tokens which only appear in the source side.

We used a beam size of 4 for decoding, and evaluated tokenized case-sensitive BLEU 3

with the averaged model of the last 5 checkpoints for Transformer Base and 20 checkpoints

for Transformer Big saved with an interval of 1, 500 training steps (Vaswani et al., 2017).

We also conducted significance tests (Koehn, 2004).

3.4.2 Main Results

We applied our approach to both the Transformer Base setting and the Transformer Big

setting, and conducted experiments on both tasks to validate the effectiveness of our

approach. Since parsing a large training set (specifically, the WMT 14 En-Fr dataset)

is slow, we did not use phrases from linguistic parse results in this experiment (reported

in Table 3.1). 4 Results are shown in Table 3.1. † indicates p < 0.01 compared to the

baseline for the significance test.

Table 3.1 shows that modeling phrase representation can bring consistent and signifi-

cant improvements on both tasks, and benefit both the Transformer Base model and the

stronger Transformer Big model. “+PR” is the Transformer with Phrase Representation,

corresponding to the “+Max+Attn+TA” setting in Table 3.2.

3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
4We show results for Transformer Base with linguistic parse driven phrases in the ablation study in

Table 3.2.
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Models BLEU ∆ Para. (M)
Time

Train Decode

Transformer Base 27.38 88.1 1.00x 1.00x

+Mean 27.99 0.61
129.0

1.64x 1.45x

+Max 28.13 0.75 1.60x 1.40x

+Max+Attn 28.52 1.14

173.0

1.74x 1.52x

+Max+Attn+TA 28.67 1.29 1.75x 1.53x

+Max+Attn+TA+Parsing Phrase 28.76 1.38 1.83x 1.60x

Transformer Big 28.49 1.11 264.1 7.73x 2.68x

Table 3.2: Ablation study on the WMT 14 En-De task. ∆ indicates the BLEU im-
provements compared to the Transformer Base. Time represents the time consumption
compared to the Transformer Base (in training and decoding). The Transformer Big

consumes 3 times the training steps of the Transformer Base.

The En-Fr task used a larger dataset (∼ 36M sentence pairs) and achieved a higher base-

line BLEU than the En-De task. We suggest that the significant improvements obtained

by our approach on the En-Fr task with the Transformer Big supports the effectiveness

of our approach in challenging settings in the sense that our approach also produces

improvements in large data settings.

We did not compare our methods with previous RNN-based approaches (Wang et al.,

2017d,e) which use phrases recommended by an SMT system in the decoding to address

the coverage issue because of the following reasons:

� Our approach is to learn phrase representations and to incorporate them into Trans-

formers, which set higher baselines than RNN-based NMT, to enhance its long-

distance dependency modeling ability. This is quite different from previous work.

� Introducing SMT phrases to the Transformer requires its decoder to do step-by-step

decoding, which prevents the training of the Transformer decoder from availing of

efficient parallelization.

� The unknown target word problem which was part of the focus and motivation in

the previous work has already been addressed by BPE.
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3.4.3 Ablation Study

We also conducted a Transformer Base based ablation study on the WMT 14 En-De task to

assess the influence of phrase representation, attention mechanism in phrase representation

generation, transparent attention and phrases from parser output on performance. Results

are shown in Table 3.2.

“+Mean” and “+Max” are only using element-wise mean operation and max-over-time

pooling to generate an initial rough phrase representation of a given token sequence.

“+Attn” indicates generating phrase representations with our attentive approach, on top

of the max-over-time pooling as Fglance in Equation 3.3. “+TA” indicates the use of the

Transparent Attention mechanism to fuse information generated from every encoder layer

for different decoder layers, 5 otherwise only outputs of the last encoder layer are fed

into all decoder layers. “+Parse” means using phrases extracted from parse results with

Algorithm 1.

Table 3.2 shows that introducing phrase representation can significantly improve the

strong Transformer Base baseline, even just a simple element-wise mean operation over

token representations brings about a +0.61 BLEU improvement (p < 0.01). Summariz-

ing representations with max-over-time pooling performs slightly better than with the

element-wise mean operation. Our attentive phrase representation generation approach

can bring further improvements over the max-over-time pooling approach. Though uti-

lizing phrases from the parser can make use of linguistic knowledge and obtain most

improvements, our simple and effective segmenting approach performs competitively, and

we interpret these comparisons to show the positive effects of collapsing token sequences

into shorter phrase sequences on the modeling of long-distance dependencies.

Though a significant amount of parameters are introduced for incorporating phrase rep-

resentation into the Transformer model, our approach (“+Max+Attn+TA”) improved

the performance of the Transformer Base model by +1.29 BLEU on the WMT 14 En-De

news translation task, and our proposed Transformer model with phrase representation

still performs competitively compared to the Transformer Big model with only about half

5This only introduces an additional 7 ∗ 6 parameter matrix, which does not show significant influence
in view of the number of parameters.
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Figure 3.4: BLEU scores with respect to various input sentence lengths.

the number of parameters and 1/3 of the training steps. Thus, we suggest our improve-

ments are not only because of introducing parameters, but also due to the modeling and

utilization of phrase representation.

3.4.4 Length Analysis

To analyze the effects of our phrase representation approach on performance with increas-

ing input length, we conducted a length analysis on the news test set of the WMT 14

En-De task. Following Bahdanau et al. (2014) and Tu et al. (2016), we grouped sentences

of similar lengths together and computed BLEU scores of standard Transformers and

Transformers with phrase representations for each group. Results are shown in Figure

3.4.

Figure 3.4 shows that our approach incorporating phrase representation into the Trans-

former significantly improves its performance in all length groups, and longer sentences

show significantly more improvements than shorter sentences. In the Transformer Base

setting, our approach improved the group with sentences of more than 45 tokens by +1.72
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BLEU, almost twice of the improvements for sentences with less than 15 tokens which

was +0.93 BLEU.

The effects of incorporating phrase representations into the Transformer are more signifi-

cant, especially when compared to the Transformer Big which has about twice the number

of parameters as our approach and consumes 3 times the training steps. According to

Tang et al. (2018), the number of attention heads in Transformers impacts their ability to

capture long-distance dependencies, and specifically, many-headed multi-head attention

is essential for modeling long-distance phenomena with only self-attention. The Trans-

former Big model, with twice the number of heads in the multi-head attention network

compared to those in the Transformer Base model, should be better at capturing long-

distance dependencies. However, comparing with the Transformer Base, the improvement

of the Transformer Big on long sentences (+1.20 BLEU for sentences with more than 45

tokens) was similar to that on short sentences (+1.14 BLEU for sentences with no more

than 15 tokens), while our approach to model phrases in the Transformer model even

brings significantly (p < 0.01) more improvements (+1.72 BLEU) on the performance

of long sentences with the Transformer Base setting (8 heads) than the Transformer Big

with 16 heads (+1.20 BLEU).

The length analysis result is consistent with our conjecture, given that there are likely to

be more long-distance dependencies in longer source sentences. We suggest that phrase

sequences which are shorter than the corresponding token sequences can help the model

capture long-distance dependencies better, and modeling phrase representations for the

Transformer can enhance its performance on long sequences.

3.4.5 Subject-Verb Agreement Analysis

Intuitively, in translating longer sentences, we expect to encounter more long-distance

dependencies than in short sentences. To verify whether our method can improve the

capability of the NMT model to capture long-distance dependencies, we also conducted a

linguistically-informed subject-verb agreement analysis on the Lingeval97 dataset (Sen-

nrich, 2017) following Tang et al. (2018).

In German, subjects and verbs must agree with one another in grammatical number and

person. In Lingeval97, each contrastive translation pair consists of a correct reference
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Figure 3.5: Subject-verb agreement analysis. X-axis and y-axis represent subject-verb
distance in words and the accuracy respectively.

translation, and a contrastive example that has been minimally modified to introduce one

translation error. Specifically, the grammatical number of a verb is modified to introduce

an agreement error. The accuracy of a model is the number of times it assigns a higher

score to the reference translation than to the contrastive one, relative to the total number

of predictions. Results are shown in Figure 3.5.

Figure 3.5 shows that both increasing the number of heads (i.e., the Transformer Big)

and incorporating phrase representations can improve the accuracy of subject-verb de-

pendencies in almost all distances, especially for long distances. However, the accuracy

improvements brought by our approach to integrating phrase representations into the

Transformer Base are larger than that by the Transformer Big, especially for cases where

there are more than 10 tokens between the verb and the corresponding subject.

3.5 Conclusion

Considering that the strong Transformer translation model still has difficulty in fully

capturing long-distance dependencies (Tang et al., 2018), and that using a shorter phrase
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sequence (in addition to the original longer token sequence) is an intuitive approach

to help the model capture long-distance features, in this chapter, we first propose an

attention mechanism to generate phrase representations by merging corresponding token

representations. In addition, we incorporate the generated phrase representations into the

Transformer translation model to help it better capture long-distance relationships.

We obtain statistically significant improvements on the WMT 14 English-German and

English-French tasks over the strong Transformer baseline, which demonstrates the ef-

fectiveness of our approach. Our further analyses (on both source input length and

subject-verb agreement) show that integrating phrase representation learning into the

Transformer empirically improves its performance, especially in handling long-distance

dependencies.
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Chapter 4

Lipschitz Constrained Parameter

Initialization for Deep

Transformers

The Transformer translation model employs residual connection and layer normaliza-

tion to ease the optimization difficulties caused by its multi-layer encoder/decoder struc-

ture. Previous research shows that even with residual connection and layer normalization,

Transformers with deep encoders still have difficulty in training, and particularly Trans-

former models with more than 12 encoder layers fail to converge according to Bapna et al.

(2018).

In this chapter, we address RQ4: Why do Transformers, specifically deep Transformers,

have difficulty in converging even with layer normalization and residual connections? and

RQ5: How to prevent layer normalization from shrinking residual connections?

We first empirically demonstrate that a simple modification made in the official imple-

mentation, which changes the computation order of residual connection and layer normal-

ization, can significantly ease the optimization of deep Transformers.

We then compare the subtle differences in computation order in considerable detail, and

present a parameter initialization method that leverages the Lipschitz constraint on the

initialization of Transformer parameters that effectively ensures training convergence.
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In contrast to findings in previous research, we further demonstrate that with Lipschitz

parameter initialization, deep Transformers with the original computation order can con-

verge, and obtain significant BLEU improvements with up to 24 layers. In contrast

to previous research which focuses on deep encoders, our approach additionally enables

Transformers to also benefit from deep decoders. Large parts of the research presented in

this chapter are based on Xu et al. (2020a).

4.1 Introduction

Neural machine translation has achieved great success in the last few years (Bahdanau

et al., 2014; Gehring et al., 2017; Vaswani et al., 2017). The Transformer (Vaswani et al.,

2017), which has outperformed previous RNN/CNN based translation models (Bahdanau

et al., 2014; Gehring et al., 2017), is based on multi-layer self-attention networks and can

be trained very efficiently.

The multi-layer structure allows the Transformer to model complicated functions. In-

creasing the depth of models can increase their capacity but may also cause optimization

difficulties (Mhaskar et al., 2017; Telgarsky, 2016; Eldan and Shamir, 2016; He et al., 2016;

Bapna et al., 2018). In order to ease optimization, the Transformer employs residual con-

nection and layer normalization techniques which have been proven useful in reducing

optimization difficulties of deep neural networks for various tasks (He et al., 2016; Ba

et al., 2016).

However, even with residual connections and layer normalization, deep Transformers are

still hard to train: the original Transformer (Vaswani et al., 2017) only contains 6 encoder

layers and 6 decoder layers. Bapna et al. (2018) show that Transformer models with

more than 12 encoder layers fail to converge, and propose the Transparent Attention

(TA) mechanism which combines outputs of all encoder layers into a weighted encoded

representation. Wang et al. (2019c) find that deep Transformers with proper use of layer

normalization are able to converge and propose to aggregate previous layers’ outputs for

each layer. Wu et al. (2019c) explore incrementally increasing the depth of the Transformer

Big by freezing pre-trained shallow layers. Concurrent work closest to ours is Zhang et al.

(2019a). They address the same issue, but propose a different layer-wise initialization

approach to reduce the standard deviation.
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Figure 4.1: Training loss.

Our contributions are as follows:

� We empirically demonstrate that a simple modification made in the Transformer’s

official implementation (Vaswani et al., 2018) which changes the computation order

of residual connection and layer normalization can effectively ease its optimization.

� We deeply analyze how the subtle difference of computation order affects conver-

gence in deep Transformers, and propose to initialize deep Transformers under the

Lipschitz constraint.

� In contrast to previous work, we empirically show that with proper parameter ini-

tialization, deep Transformers with the original computation order can converge.

� Our simple approach effectively ensures the convergence of deep Transformers with

up to 24 layers, and achieves +1.50 and +0.92 BLEU improvements over the baseline

on the WMT 14 English to German task and the WMT 15 Czech to English task.

� We further investigate deep decoders for the Transformer in addition to the deep

encoders studied in previous work, and show that deep decoders can also benefit

the Transformer.
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Figure 4.2: Two computation sequences of Transformer translation models: (a) the
one used in the original paper, (b) the official implementation. We suggest to regard
the output of layer normalization (outLN/res) as the output of residual connection rather
than the addition of inres and inmodel for (a), because it (outLN/res) is the input (inres)

of the next residual connection computation.

4.2 Convergence of Different Computation Orders

We plot the loss averaged over every 500 training steps of the 6-layer Transformer model

(Vaswani et al., 2017) and of the corresponding 12-layer model on the WMT 14 English-

German training set in Figure 4.1.

Figure 4.1 shows that the deeper model is not over-fitting on the training set, it in fact

performs worse than its shallower counterpart even on the training set.

In this paper, we focus on the convergence of the training of deep Transformers and the

factors that prevent them from convergence (as opposed to other important issues such

as over-fitting on the training set). To alleviate the training problem for the standard

Transformer model, Layer normalization (Ba et al., 2016) and residual connection (He

et al., 2016) are adopted.

4.2.1 Empirical Study of the Convergence Issue

The official implementation (Vaswani et al., 2018) of the Transformer uses a different

computation order (Figure 4.2 b) compared to the published version (Vaswani et al., 2017)

(Figure 4.2 a), since it (Figure 4.2 b) seems better for harder-to-learn models. 1 Even

though several studies (Chen et al., 2018b; Domhan, 2018) have mentioned this change and

1https://github.com/tensorflow/tensor2tensor/blob/v1.6.5/tensor2tensor/layers/common_
hparams.py#L110-L112.
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although Wang et al. (2019c) analyze the difference between the two computation orders

during backpropagation, and Zhang et al. (2019a) point out the effects of normalization

in their work, how this modification impacts on the performance of the Transformer,

especially for deep Transformers, has not been deeply studied before. Here we present

both empirical convergence experiments (Table 4.1) and a theoretical analysis of the effect

of the interaction between layer normalization and residual connection (Table 4.2).

In order to compare with Bapna et al. (2018), we used the same datasets from the WMT

14 English to German task and the WMT 15 Czech to English task for our experiments.

Duplicate data in the training set were removed. 2 All data were tokenized and truecased

with Moses (Koehn et al., 2007). The concatenation of newstest 2012 and newstest 2013

was used for validation and newstest 2014 as the test set for the English to German task,

and newstest 2013 as the validation set and newstest 2015 as the test set for the Czech

to English task.

Parameters were initialized with Glorot Initialization (Glorot and Bengio, 2010) like in

many other Transformer implementations (Klein et al., 2017; Hieber et al., 2017; Vaswani

et al., 2018):

Uniform(−

√
6

(isize+ osize)
,+

√
6

(isize+ osize)
) (4.1)

where isize and osize are the two dimensions of the matrix.

We conducted experiments based on the Neutron implementation (Xu and Liu, 2019) of

the Transformer translation model described in Chapter 6.

We applied joint Byte-Pair Encoding (BPE) (Sennrich et al., 2016a) with 32k merge

operations to address the unknown word issue. We only kept sentences with a maximum

of 256 sub-word tokens for training. The training set was randomly shuffled in every

training epoch.

The number of warmup steps was set to 8k, 3 and each training batch contained at least

25k target tokens. We used a dropout of 0.1. We used the Transformer Base setting

(Vaswani et al., 2017) where the embedding dimension and the hidden dimension of the

2We only kept those most frequent source sentences for the same translation, and vice versa.
3https://github.com/tensorflow/tensor2tensor/blob/v1.15.4/tensor2tensor/models/transformer.py#

L1818.
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Models

Layers En-De Cs-En

Encoder Decoder v1 v2 v1 v2

Bapna et al. (2018)∗ 16 6 28.39 None 29.36 None

Wang et al. (2019c) 30 6 29.3

None
Wu et al. (2019c) 8 29.92

Zhang et al. (2019a) 20 28.67

Transformer∗

6 27.77‡ 27.31 28.62 28.40

12 ¬ 28.12 ¬ 29.38

18 ¬ 28.60 ¬ 29.61

24 ¬ 29.02 ¬ 29.73

Table 4.1: Results of different computation orders. “¬” means fail to converge, “None”
means not reported in original works, “*” indicates our implementation of their approach.
† and ‡ mean p < 0.01 and p < 0.05 while comparing between v1 (the official publication)
and v2 (the official implementation) with the same number of layers in the significance
test. Wu et al. (2019c) use the Transformer Big setting, while the others are based on
the Transformer Base Setting. Zhang et al. (2019a) use merged attention decoder layers

with a 50k batch size.

position-wise feed-forward neural network were 512 and 2, 048 respectively. We employed

a label smoothing (Szegedy et al., 2016) value of 0.1. We used the Adam optimizer

(Kingma and Ba, 2015) with 0.9, 0.98 and 10−9 as β1, β2 and ε. We followed Vaswani

et al. (2017) for the other settings.

We trained the model on 2 GTX 1080 Ti GPUs, and performed decoding on 1 of them. We

used a batch size of 25k target tokens which was achieved through gradient accumulation

of small batches, and the model was trained for 100k training steps.

We used a beam size of 4 for decoding, and evaluated tokenized case-sensitive BLEU with

the averaged model of the last 5 checkpoints saved with an interval of 1, 500 training steps.

Results of the two different computation orders are shown in Table 4.1, which shows that

deep Transformers with the computation order of the official implementation (v2) have

no convergence issue.
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v1 v2

µ = mean(inmodel + inres)

σ = std(inmodel + inres)

outLN = (inmodel+inres−µ)
σ ∗ w + b

outv1res = outLN = w
σ ∗ out

v2
res − w

σ ∗µ+ b outv2res = inres + inmodel

Table 4.2: Computation with layer normalization and residual connection. v1 and v2
stand for the computation order of the original Transformer paper and that of the official
implementation respectively. “mean” and “std” are the computation of mean value and
standard deviation. inmodel and inres stand for output of current layer and accumulated
outputs from previous layers respectively. w and b are the trainable weight and bias of
layer normalization which are initialized with a vector full of 1s and another vector full
of 0s. outLN is the computation result of the layer normalization. outv1res and outv2res are

results of residual connections of v1 and v2.

4.2.2 Theoretical Analysis

Since the subtle change of computation order results in large differences in convergence,

we further analyze the differences between the computation orders to investigate how they

affect convergence.

We conjecture that the convergence issue of deep Transformers is perhaps due to the fact

that layer normalization over residual connections in Figure 4.2 (a) effectively reduces

the impact of residual connections due to the subsequent layer normalization, in order to

avoid a potential explosion of combined layer outputs (Chen et al., 2018b), which is also

studied by Wang et al. (2019c); Zhang et al. (2019a). We therefore investigate how the

layer normalization and the residual connection are computed in the two computation

orders, shown in Table 4.2.

Table 4.2 shows that the computation of residual connection in v1 is weighted by w
σ

compared to v2, and the residual connection of previous layers will be shrunk if w
σ < 1.0,

which makes it difficult for deep Transformers to converge.

We suggest that Bapna et al. (2018) introduce the TA mechanism to compensate nor-

malized residual connections through combining outputs of shallow layers to the final

encoder output for the published Transformer, to further obtain significant improvements
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with Transformers with deep encoders. Wang et al. (2019c) additionally aggregate out-

puts of all preceding encoder layers for each encoder layer instead of only aggregating for

decoder layers.

The layer aggregation approach (Yu et al., 2018) may also help alleviate training problems

in a way similar to the transparent attention approach, but significantly more parameters

will be introduced and Dou et al. (2018, 2019) only focused on benefiting from com-

bining shallow layers’ representations through aggregating layers of the 6-layer baseline

Transformer.

4.3 Lipschitz Constrained Parameter Initialization

Since the diminished residual connections (Table 4.2) may cause the convergence issue

of deep v1 Transformers, is it possible to constrain w
σ ≥ 1? Given that w is initialized

with 1, we suggest that the standard deviation of inmodel + inres should be constrained

as follows:

0 < σ = std(inmodel + inres) ≤ 1 (4.2)

in which case w
σ will be greater than or at least equal to 1, and the residual connection

of v1 will not be shrunk anymore. To achieve this goal, we can constrain elements of

inmodel + inres to be in [a, b] and ensure that their standard deviation is smaller than 1.

Let’s define P (x) as any probability distribution of x between [a, b]:

b∫
a

P (x)dx = 1 (4.3)

then the standard deviation of x is:

σ(P (x), x) =

√√√√√ b∫
a

P (x)
(
x−

b∫
a

P (x)xdx
)2
dx (4.4)
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Given that (x−
b∫
a
P (x)xdx) < (b − a) for x ∈ [a, b] as P (x) is constrained by Equation

4.3, we reformulate Equation 4.4 as follows:

σ(P (x), x) <

√√√√√ b∫
a

P (x)(b− a)2dx (4.5)

From Equation 4.5 we obtain:

σ(P (x), x) < (b− a)

√√√√√ b∫
a

P (x)dx (4.6)

After applying Equation 4.3 in Equation 4.6, we find that:

σ(P (x), x) < b− a (4.7)

Thus, as long as b−a ≤ 1 (the range of elements of the representation x), the requirements

for the corresponding σ described in Equation 1 can be satisfied.

To achieve this goal, we can simply constrain the range of elements of x to be smaller than

1 and initialize the sub-model before layer normalization to be a k-Lipschitz function,

where k ≤ 1. Because if the function F of the sub-layer is a k-Lipschitz function, for

inputs x, y ∈ [a, b], |F (x) − F (y)| < k|x − y| holds. Given that |x − y| ≤ b − a, we can

get |F (x)− F (y)| < k(b− a), the range of the output of that sub-layer is constrained by

making it a k-Lipschitz function with constrained input.

The k-Lipschitz constraint can be satisfied effectively through weight clipping, 4 but we

empirically find that deep Transformers are only hard to train at the beginning and only

applying a constraint to parameter initialization is sufficient, which is more efficient and

can avoid a potential risk of weight clipping on performance. Zhang et al. (2019a) also

show that decreasing parameter variance at the initialization stage is sufficient for ensuring

the convergence of deep Transformers, which is consistent with our observation.

4Note that the weight of the layer normalization cannot be clipped. Otherwise, residual connections
will be more heavily shrunk.
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Layers

En-De Cs-En

v1-L v2-L v1-L v2-L

6 27.96† 27.38 28.78‡ 28.39

12 28.67† 28.13 29.17 29.45

18 29.05‡ 28.67 29.55 29.63

24 29.46 29.20 29.70 29.88

Table 4.3: Results with Lipschitz constrained parameter initialization.

4.4 Experiments

We use the training data described in Section 4.2.1 to examine the effectiveness of the

proposed Lipschitz constrained parameter initialization approach.

In practice, we initialize embedding matrices and weights of linear transformations with

uniform distributions of [−e,+e] and [−l,+l] respectively. We use
√

2
esize+vsize as e and√

1
isize as l where esize, vsize and isize stand for the size of embedding, vocabulary size

and the input dimension of the linear transformation respectively. 5

Results for the two computation orders with the new parameter initialization method are

shown in Table 4.3. v1-L indicates v1 with Lipschitz constrained parameter initialization,

the same for v2-L.

Table 4.3 shows that deep v1-L models do not suffer from convergence problems anymore

with our new parameter initialization approach. It is also worth noting that unlike Zhang

et al. (2019a), our parameter initialization approach does not degrade the translation qual-

ity of the 6-layer Transformer, and the 12-layer Transformer with our approach already

achieves performance comparable to the 20-layer Transformer in Zhang et al. (2019a)

(shown in Table 4.1).

While previous approaches (Bapna et al., 2018; Wang et al., 2019c) only increase the

depth of the encoder, we suggest that deep decoders should also be helpful. We analyzed

the influence of deep encoders and decoders separately with the original paper (Vaswani

et al., 2017)’s computation order, and results are shown in Table 4.4.

5To preserve the magnitude of the variance of the weights in the forward pass.
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Encoder Decoder En-De Cs-En

6 27.96 28.78

24 6 28.76 29.20

6 24 28.63 29.36

24 29.46 29.70

Table 4.4: Effects of encoder and decoder depth with Lipschitz constrained parameter
initialization (v1-L).

Table 4.4 shows that the deep decoder can indeed benefit performance in addition to the

deep encoder, especially on the Czech to English task.

4.5 Related Work

4.5.1 Deep NMT

Zhou et al. (2016) introduce the fast-forward connection, based on deep LSTM networks,

and an interleaved bi-directional architecture for stacking the LSTM layers. Fast-forward

connections play an essential role in propagating the gradients and building a deep topol-

ogy of depth 16.

Given that NMT with deep architecture in its encoder or decoder RNNs often suffer

from severe gradient diffusion due to the non-linear recurrent activations, optimization

of such networks is often very difficult. Wang et al. (2017b) propose a novel Linear

Associative Unit (LAU) to reduce the gradient propagation path inside the recurrent

unit. Different from conventional approaches (LSTM unit and GRU), LAU uses linear

associative connections between input and output of the recurrent unit, thus allowing

unimpeded information flow through both space and time.

4.5.2 Deep Transformers

Bapna et al. (2018) attempt to train significantly (2-3x) deeper Transformer and Bi-RNN

encoders for machine translation. They show that Transformer models with more than 12

encoder layers fail to converge, and propose the Transparent Attention (TA) mechanism
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which improves gradient flow during backpropagation by allowing each decoder layer to

attend weighted combinations of all encoder layer outputs, instead of just the top encoder

layer.

Wang et al. (2019c) find that by relocating the layer normalization unit, Transformers with

deep encoders can be optimized smoothly. They propose the Dynamic Linear Combination

of Layers (DLCL) approach which additionally aggregates previous layers’ outputs for each

encoder layer to memorize the features extracted from all preceding layers, suggesting it

overcomes the problem with the standard residual network where a residual connection

just relies on the output of one-layer below and may forget the earlier layers. They

successfully train a 30-layer encoder, surpassing the 16-layer encoder of Bapna et al.

(2018).

Wu et al. (2019c) propose an effective two-stage approach with three specially designed

components to construct deeper NMT models, which incrementally increases the depth of

the encoder and the decoder of the Transformer Big model by freezing both parameters

and the encoder-decoder attention computation of pre-trained shallow layers, and stacking

2 new encoder and decoder layers upon frozen layers.

Zhang et al. (2019a) perform empirical analysis which suggests that the convergence of

deep Transformers is poor due to gradient vanishing caused by the interaction between

residual connection and layer normalization, and propose the layer-wise Depth-Scaled

Initialization (DS-Init) approach, which decreases parameter variance at the initialization

stage, and reduces output variance of residual connections so as to ease gradient backprop-

agation through normalization layers. To reduce the computational cost of decoder layers,

they additionally propose the Merged Attention sub-layer (MAtt) which combines a sim-

plified average-based self-attention sub-layer and the encoder-decoder attention sub-layer

on the decoder side.

4.6 Conclusion

In contrast to previous studies (Bapna et al., 2018; Wang et al., 2019c; Wu et al., 2019c)

which show that deep Transformers with the computation order as in Vaswani et al.
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(2017) have difficulty in convergence, we show that deep Transformers with the original

computation order can converge as long as proper parameter initialization is performed.

We first investigate convergence differences between the published Transformer (Vaswani

et al., 2017) and its official implementation (Vaswani et al., 2018), and compare the differ-

ences of computation orders between them. We conjecture that the convergence issue of

deep Transformers is because layer normalization sometimes shrinks residual connections.

We support our conjecture with a theoretical analysis (Table 4.2), and propose a Lipschitz

constrained parameter initialization approach for solving this problem.

Our experiments show the effectiveness of our simple approach on the convergence of

deep Transformers, which achieves significant improvements on the WMT 14 English to

German and the WMT 15 Czech to English news translation tasks. We also study the

effects of deep decoders in addition to deep encoders extending previous studies.
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Chapter 5

Dynamically Adjusting

Transformer Batch Size by

Monitoring Gradient Direction

Change

The choice of hyperparameters affects the performance of neural models. While much

previous research (Sutskever et al., 2013; Duchi et al., 2011; Kingma and Ba, 2015) focuses

on accelerating convergence and reducing the effects of the learning rate, comparatively

few papers concentrate on the effect of batch size.

In this chapter, we address RQ6: How to dynamically and automatically find proper

and efficient batch sizes during training? and RQ7: How to efficiently monitor gradient

direction change?

Specifically, we analyze how increasing batch size affects gradient direction, and propose

to evaluate the stability of gradients with their angle change. Based on our observations,

the angle change of gradient direction first tends to stabilize (i.e., gradually decrease)

while accumulating mini-batches, and then starts to fluctuate.

We propose to automatically and dynamically determine batch sizes by accumulating

gradients of mini-batches and performing an optimization step at just the time when the

direction of gradients starts to fluctuate.

75



Chapter 5. Dynamically Adjusting Transformer Batch Size

To improve the efficiency of our approach for large models, we propose a sampling ap-

proach to select gradients of parameters sensitive to the batch size. Our approach dy-

namically determines proper and efficient batch sizes during training.

In our experiments on the WMT 14 English to German and English to French tasks, our

approach improves over the Transformer with a fixed 25k batch size by +0.73 and +0.82

BLEU respectively.

5.1 Introduction

The performance of neural models is likely to be affected by the choice of hyperparameters.

While many previous studies (Sutskever et al., 2013; Duchi et al., 2011; Kingma and Ba,

2015) focus on accelerating convergence and reducing the effects of the learning rate,

comparatively few papers concentrate on the effect of batch size.

However, the batch size is also an important hyperparameter, and some batch sizes em-

pirically lead to better performance than others.

Specifically, it has been shown that the performance of the Transformer model (Vaswani

et al., 2017) for Neural Machine Translation (Bahdanau et al., 2014; Gehring et al., 2017)

relies heavily on the batch size (Popel and Bojar, 2018; Ott et al., 2018; Abdou et al.,

2017; Zhang et al., 2019a).

The influence of batch size on performance raises the question, how to dynamically find

proper and efficient batch sizes during training? In this chapter, we investigate the rela-

tionship between the batch size and gradients, and propose a dynamic batch size approach

by monitoring gradient direction changes. Our contributions are as follows:

� We observe the effects on gradients with increasing batch size, and find that a large

batch size stabilizes the direction of gradients.

� We propose to automatically determine dynamic batch sizes in training by moni-

toring the gradient direction change while accumulating gradients of small batches.

� To measure gradient direction change efficiently with large models, we propose an

approach to dynamically select those gradients of parameters/layers which are sen-

sitive to the batch size.
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� In machine translation experiments, our approach improves the training efficiency

and the performance of the Transformer model.

5.2 Gradient Direction Change and Automated Batch Size

Gradients indicate the direction and size of parameter updates to minimize the loss func-

tion in training. To reveal the effects of the batch size in optimization, we evaluate its

influence on the direction change of gradients.

5.2.1 Gradient Direction Change with Increasing Batch Size

To investigate the influence of batch size on gradient direction, we gradually accumulate

gradients of small mini-batches as the gradients of a large batch that consists of those

mini-batches, and observe how the direction of gradients varies.

Let dji : (xji , y
j
i ) stand for the large batch concatenated from the ith mini-batch to the

jth mini-batch, where xji and yji are inputs and targets. Then the gradients gji of model

parameters θ on dji are:

gji =
∂L(θ, xji , y

j
i )

∂θ
(5.1)

In gradient accumulation, the gradients gk0 are the sum of gk−10 and gkk :

gk0 = gk−10 + gkk (5.2)

To measure the change of gradient direction during accumulation, we regard the two

gradients gk−10 and gk0 as 2 vectors, and compute the angle a(gk−10 , gk0 ) between them:

a(gk−10 , gk0 ) = arccos(
gk−10 • gk0
|gk−10 ||gk0 |

) (5.3)

where “•” indicates the inner-product of vectors.

We use the angle of 2 vectors rather than cosine similarity because:
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k 1 2 3 4 5 6 7 8 9 10

Size 4064 8994 12768 17105 21265 25571 29411 33947 38429 43412

a(gk−10 , gk0 ) 51.52 30.37 27.42 22.61 20.87 19.80 19.59 18.92 19.23

a(gk−30 , gk0 ) 59.53 44.20 41.77 35.34 32.19 32.10 34.29

Table 5.1: The direction change of gradients while accumulating mini-batches.

� The angle indicates the change between gradient directions.

� When the angle is small, a significant change in the angle only results in a subtle

difference in cosine similarity. 1

We observe the gradient direction varying during accumulating gradients of a Transformer

model training on the WMT 14 English-German task following the settings of Vaswani

et al. (2017) except for a batch size of around 50k target tokens. To achieve the gradient

of the large batch size, we gradually accumulate gradients of mini-batches with around

4k target tokens.

Table 5.1 shows a typical example: (i) gradient change is big at the beginning, (ii) gradient

change reduces with increasing batch size, and (iii) eventually it will start fluctuating (here

at k=10). 2

Intuitively, the less the direction of accumulated gradients is moved by the gradients of

a new mini-batch, the more certainty there is about the gradient direction. Thus we

propose that the magnitude of the angle fluctuation relates to the certainty of the model

parameter optimization direction, and may therefore serve as a measure of optimization

difficulty.

5.2.2 Automated Batch Size with Gradient Direction Change

Table 5.1 shows that the optimization direction is less stable with a small batch than

with a large batch. But after the direction of gradients has stabilized, accumulating more

mini-batches seems useless as the gradient direction starts to fluctuate.

1cos(5◦) ≈ 0.9961, cos(10◦) ≈ 0.9848.

2By comparing
n∑

i=0

a(gk−i−1
0 , gk−i

0 ) with a(gk−n−1
0 , gk0 ), we can find the direction changes from gk−i−1

0

to gk0 are inconsistent. Otherwise,
n∑

i=0

a(gk−i−1
0 , gk−i

0 ) ≈ a(gk−n−1
0 , gk0 ).
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Thus, we suggest to compute dynamic and efficient batch sizes by accumulating gradients

of mini-batches, while evaluating the gradient direction change with each new mini-batch,

and stop accumulating more mini-batches and perform an optimization step when the

gradient direction fluctuates.

In practice, we only monitor a(gk−10 , gk0 ) for efficiency. We record the minimum angle

change amin while accumulating gradients, and suppose that the gradient direction starts

to fluctuate and stop accumulating more mini-batches when a(gk−10 , gk0 ) > amin ∗ α. In

this way, we can achieve a dynamic batch size (the size of dk0), where α is a pre-specified

hyperparameter.

5.2.3 Efficiently Monitoring Gradient Direction Change

In practice, a model may have a large number of parameters, and the cost for computing

the cosine similarity between two corresponding gradient vectors is relatively high. To

tackle this issue, we propose to divide model parameters into groups, and monitor gradient

direction change only on a selected group in each optimization step. For a multi-layer

model, i.e., the Transformer, a group may consist of parameters of 1 layer or several layers.

To select the parameter group which is sensitive to the batch size, we record the angles of

gradient direction change a(g00, g
1
0), ..., a(gk−10 , gk0 ) during the gradient accumulation, and

define amax and amin as the maximum and minimum direction change:

amax = max(a(g00, g
1
0), ..., a(gk−10 , gk0 )) (5.4)

amin = min(a(g00, g
1
0), ..., a(gk−10 , gk0 )) (5.5)

We then use ∆a to measure the uncertainty reduction in the optimization direction:

∆a = amax − amin (5.6)

Intuitively, the optimization direction of the parameter group which results in a larger

∆a profits more from the batch size, and the group with a larger ∆a should be more

frequently sampled.
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We average the recent history of ∆ak of the kth parameter group into ∆ak. Inspired by

Gumbel (1954); Maddison et al. (2014); Zhang et al. (2019d), we first add Gumble noise

to each ∆ak to prevent the selection falling into a fixed group:

∆a∗k = ∆ak − log(− log u) (5.7)

where u ∈ (0, 1) is a uniform distribution.

Then we zero negative values 3 in ∆a∗1, ..., ∆a∗n and normalize them into a probability

distribution:

pk =
∆a∗k

β

n∑
i=1

∆a∗i
β

(5.8)

We use pk as the probability to sample the kth group, and β is a hyperparameter to

sharpen the probability distribution. We do not use softmax because it would heavily

sharpen the distribution when the gap between values is large, and makes it almost im-

possible to select and evaluate the other groups in addition to the one with the highest

∆a∗k.
4

5.3 Experiments

We implemented our approaches based on the Neutron implementation (Xu and Liu, 2019)

of the Transformer translation model. We applied our approach to the training of the

Transformer, and to compare with Vaswani et al. (2017), we conducted our experiments

on the WMT 14 English to German and English to French news translation tasks on 2

GTX 1080Ti GPUs. The concatenation of newstest 2012 and newstest 2013 was used for

validation and newstest 2014 as test sets for both tasks.

3∆ak is positive, but after adding Gumble noise, there is a small possibility that it turns negative. In
our case, negative values only occur very few times.

4For example, the result of softmax over [22, 31, 60] is [3.13e-17, 2.54e-13, 1.00], the last element takes
almost all possibility mass. But we later find that if ∆a is normalized (∆a = (amax − amin)/amax) in
Equation 5.6, the softmax works comparably well, which avoids using the hyperparameter β in Equation
5.8.
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Batch Size En-De En-Fr Time

25k 27.38 39.34 35h21m

50k 27.93 39.97 60h38m

dyn 28.11† 40.16† 33h37m

Table 5.2: Performance. Time is the training time on the WMT 14 En-De task for
100k training steps. † indicates p < 0.01 in the significance test.

We applied joint Byte-Pair Encoding (BPE) (Sennrich et al., 2016a) with 32k merge

operations to address the unknown word issue. We only kept sentences with a maximum

of 256 sub-word tokens for training. All models were trained for 100k steps. The training

set was randomly shuffled in every training epoch.

The number of warmup steps was set to 8k. 5 We used a dropout of 0.1. We used the

Transformer Base setting (Vaswani et al., 2017) of which the embedding dimension and

the hidden dimension of the position-wise feed-forward neural network were 512 and 2, 048

respectively. We employed a label smoothing (Szegedy et al., 2016) value of 0.1. We used

the Adam optimizer (Kingma and Ba, 2015) with 0.9, 0.98 and 10−9 as β1, β2 and ε. We

followed all settings of Vaswani et al. (2017) except for the batch size.

We used a beam size of 4 for decoding, and evaluated case-sensitive tokenized BLEU 6 of

the averaged model of the last 5 checkpoints with significance test (Koehn, 2004).

We used an α of 1.1 to determine the fluctuation of gradient direction by default. We

regarded each encoder/decoder layer as a parameter group, and used a β of 3 for the

parameter group selection. Hyperparameters were tuned on the development set.

5.3.1 Performance

We compared the results of our dynamic batch size approach to two fixed batch size

baselines. The 25k batch size is the empirical value of Vaswani et al. (2017), while Zhang

et al. (2019a) investigate 50k batch size. Results are shown in Table 5.2 with the statistics

of batch sizes of our approach shown in Table 5.3 and the detailed distribution of batch

sizes for the En-De task shown in Figure 5.1.

5https://github.com/tensorflow/tensor2tensor/blob/v1.15.6/tensor2tensor/models/transformer.py#L1850
6https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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En-De En-Fr

min 7069 8025

avg 26264.19 30248.90

max 102165 103352

Table 5.3: Statistics of batch sizes.
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Figure 5.1: Distribution of dynamic batch sizes. Values on y-axis are percentages.

Table 5.2 and 5.3 show that our approach outperforms both the fixed 25k and 50k batch

size settings with an average batch size of around 26k, and our approach is slightly faster

than the 25k setting despite the additional cost for monitoring gradient direction change.

7

Figure 5.1 shows an interesting fact that the most frequently used automated batch sizes

were close to the fixed value (25k) of Vaswani et al. (2017).

5.3.2 Analysis of Minimum Gradient Direction Change

In order to observe the varying minimum gradient direction change during training, we

averaged the minimum angle for every 2.5k training steps. Results are shown in Figure

7It is hard to accumulate an accurate 25k target tokens in a batch, and in fact, the fixed 25k setting
results in an average batch size of 26729.79.
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Figure 5.2: Minimum gradient direction change during training. X-axis 2.5k training
steps, y averaged amin (Equation 5.5).

α

Batch Size

BLEU Timeavg max

1.0 19367.76 60945 27.90 24h50m

1.1 26264.19 102165 28.11 33h37m

1.2 36208.47 164908 28.39 46h04m

1.3 51470.34 205210 28.37 63h56m

Table 5.4: Effects of different α.

5.2.

Figure 5.2 shows that the minimum direction change of gradients was small at the begin-

ning, and gradually increased with training. Given that a small angle change indicates

that there is more certainty in the gradient direction, this observation is consistent with

the fact that finding the optimization direction is harder and harder with training.
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5.3.3 Effects of α

We studied the effects of different α values on the En-De task, and results are shown in

Table 5.4. 8

Table 5.4 shows that with increasing α, the average batch size and the time cost increases

along with the performance. A wide range of values works relatively well, indicating that

its selection is robust, and 1.1 seems to be a good trade-off between the cost and the

performance in our experiments. 9 It is also worth noting that α = 1 outperforms the

25k baseline while being 1.42 times faster (Table 5.2).

5.4 Related Work

Popel and Bojar (2018) demonstrate that the batch size affects the performance of the

Transformer, and a large batch size tends to benefit performance, but they use fixed batch

sizes during training. Abdou et al. (2017) propose to use a linearly increasing batch size

from 65 to 100 which slightly outperforms their baseline. Smith et al. (2018) show that

the same learning curve on both training and test sets can be obtained by increasing the

batch size during training instead of decaying the learning rate.

For fast convergence, Balles et al. (2017) propose to approximately estimate the mean

value of the batch size for the next batch by maximizing the expected gain with a sample

gradient variance (||g||2) computed on the current batch, while our approach compares

the gradient direction of change (a(gk−10 , gk0 )) during accumulation of mini-batches in the

assembling of a large batch.

We suggest our approach is complementary to Sutskever et al. (2013); Duchi et al. (2011);

Kingma and Ba (2015), as their approaches decide the magnitude of the movement in the

optimization direction, while our approach provides reliable gradient direction.

8We observed that the minimum batch size does not change significantly with increasing α, so we omit
it for space.

9For α = 1.2 on the En-Fr task, the corresponding values are: 44294.16, 185972, 40.35 and 54h12m.

84



Chapter 5. Dynamically Adjusting Transformer Batch Size

5.5 Conclusion

In this chapter, we analyze the effects of accumulated batches on the gradient direction,

and propose to achieve efficient automated batch sizes by monitoring change in gradient

accumulation and performing an optimization step when the accumulated gradient direc-

tion is almost stable. To improve the efficiency of our approach with large models, we

propose a sampling approach to select gradients of parameters sensitive to the batch size.

Our approach improves the Transformer with a fixed 25k batch size by +0.73 and +0.82

BLEU on the WMT 14 English to German and English to French tasks respectively while

preserving efficiency.
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Chapter 6

Neutron: an Implementation of

the Transformer Translation

Model and its Variants

The Transformer translation model is easier to parallelize and provides better performance

compared to recurrent seq2seq models, which makes it popular among industry and the

research community. We introduce our Neutron implementation 1 in this Chapter, pro-

viding the Transformer model and a wide range of recent variants targeting, amongst

others, decoding speed, convergence, sentence and document context, advanced optimiz-

ers, unlimited batch size and high-performance parallelization modules. Neutron is highly

optimized, easy to modify, and provides competitive performance with interesting features

while keeping code readability. The code follows the design pattern of PyTorch and can

be easily adapted to other projects.

6.1 Introduction

Vaswani et al. (2017) propose the Transformer architecture which contains only the

attention mechanism and standard feed-forward neural networks augmented by resid-

ual connection, dropout, layer normalization and label smoothing loss for its training.

1We open-source our implementation at https://github.com/anoidgit/transformer.
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The Transformer parallelizes better and outperforms previous RNN-based sequence-to-

sequence models in many cases. It is widely applied in industry and attracts wide atten-

tion from researchers. As a result, many recent studies have been conducted based on

the Transformer, and enhanced architectures have been proposed. Good code-bases are

important to best support rapidly developing research.

Our implementation supports popular features provided in most Machine Translation

(MT) libraries, including beam search, ensemble, length penalty and averaging of models.

In addition, we implement influential variants of the Transformer from recent research

along with the standard implementation of the Transformer in Neutron, such as the

average attention network (to accelerate the decoding of the Transformer) (Zhang et al.,

2018a), the hierarchical layer aggregation (to reuse outputs of shallow encoder layers)

(Dou et al., 2018), recurrent decoder (Chen et al., 2018b) and modeling sentential context

(Wang et al., 2019e) for improving the MT quality, transparent attention (Bapna et al.,

2018) to ensure the convergence of deep encoders and the document-level Transformer

(Zhang et al., 2018c). We also support the more efficient training scheduler (dynamic

sampling and review mechanism) proposed by Wang et al. (2018c), and other features,

like some advanced optimizers (e.g., Lookahead, RAdam).

Besides, we support unlimited batch size with limited memory available on a single GPU

by gradient accumulation which accumulates gradients of small mini-batches as the gra-

dient of a large batch consisting of these small batches, which is important for the Trans-

former given that it has been shown that the performance of the Transformer model

(Vaswani et al., 2017) relies heavily on the batch size (Popel and Bojar, 2018; Ott et al.,

2018; Abdou et al., 2017; Zhang et al., 2019a). In addition to the large batch size support

on a single GPU, we provide almost-from-scratch designed high-performance multi-GPU

parallelization modules, which reduces unnecessary communication between GPUs and

makes the parallelization over multiple GPUs more effective.

We will introduce features of the Neutron implementation in the next Section (6.2), its

design in Section 6.3, performance in Section 6.4, followed by related work (in Section

6.5) and conclusion (in Section 6.6).
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6.2 Features

We support a wide range of features for research purposes in the Neutron implementation,

and we introduce them in this section.

6.2.1 Fundamental Features Supported

6.2.1.1 Basic Features

We support a wide range of fundamental features which are usually used in MT, including

beam search with length penalty, ensemble of models, etc.

Beam search records the top-k translations during decoding and selects the translation

with the highest overall probability rather than simply taking the token with the highest

probability in each decoding step in greedy decoding. Since beam search helps keep some

translations with higher overall scores even though their predicted probabilities in some

decoding steps are not the highest, beam search normally results in better translation

performance. Given that beam search is widely employed in many studies and supported

by most MT toolkits, we also support beam search in the Neutron implementation. Our

beam decoding is implemented at batch level, which performs beam search for a batch of

source sentences rather than translating source sentence one-by-one, and is computation-

ally efficient and friendly for GPUs.

Wu et al. (2016) suggest that beam search has to compare hypotheses of different length,

and without some form of length normalization regular beam search will favor shorter

results over longer ones on average since a negative log-probability is added at each step,

yielding lower (more negative) scores for longer sentences. Thus they propose the length

penalty, as shown in Equation 6.1.

lp(Y ) =
5 + |Y |α

(5 + 1)α
(6.1)

where Y stands for the hypothesis decoded, and |Y | indicates its length. α is a hyperpa-

rameter selected on the development set.
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The score of each hypothesis of the beam results is normalized by dividing it by its length

penalty factor. We support length penalty in the beam search implementation.

Compared to predicting with only one model, an ensemble of several models constructed

by averaging their prediction probabilities in each decoding step usually leads to further

improvements. It is widely employed in shared task submissions. We also support the

ensemble of models.

6.2.1.2 Gradient Accumulation

As studied by Popel and Bojar (2018); Ott et al. (2018); Abdou et al. (2017); Zhang et al.

(2019a), the batch size of the Transformer impacts its optimization and performance,

Vaswani et al. (2017) use a batch size of approximately 25k source tokens and 25k target

tokens which is distributed to 8 NVIDIA P100 GPUs. However, using many GPUs for

one experiment is not viable in many cases, especially when training large models, which

requires more GPU memory than a small model with the same batch size.

To achieve theoretically unlimited batch sizes with even only one GPU, we implement gra-

dient accumulation which computes the gradients of several mini-batches one-by-one, and

accumulates their gradients as the corresponding gradients of the large batch consisting

of these small mini-batches.

6.2.1.3 Training Support

Label Smoothing Loss. We support the label smoothing loss (Szegedy et al., 2016)

applied in the Transformer (Vaswani et al., 2017) which optimizes the KL-divergence

rather than the perplexity and improves accuracy and BLEU score.

Learning Rate Scheduler. Vaswani et al. (2017) use a learning rate scheduler which

increases the learning rate linearly for the first warmup training steps, and then decreases

it after that proportionally to the inverse square root of the step number, as shown in

Equation 6.2. We implement their learning rate scheduler for training.

lrate(step) = dmodel−0.5 ∗min(step−0.5, step ∗ warmup steps−1.5) (6.2)
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where dmodel and warmup step are the input dimension of the Transformer and the

number of warmup steps respectively.

6.2.1.4 Data Storage and Retrieval

In our NMT implementation, we introduce a data processing procedure to convert parallel

corpora into tensors loadable for training and testing scripts. The processing includes the

following steps:

1. sorting the bilingual corpora according to their length (number of source and target

tokens);

2. building separate vocabularies or a shared vocabulary with the training data;

3. segmenting the training set into mini-batches;

4. padding and mapping mini-batches into tensors with corresponding vocabularies

and saving them into an HDF5 format file on the hard drive.

We use the HDF5 format for the storage of tensors because it has the following advantages:

On-Disk Shuffling of the Whole Training Set. The training set is normally

shuffled in each training epoch to provide a data distribution close to that of the whole

training set in each optimization step, and to avoid that the particular part of the whole

training period overfits the distribution represented in localized batches of data.

For NMT, data are usually sorted to gather translation pairs of similar lengths together

to reduce the number of the special padding tokens introduced and corresponding com-

putation waste. Shuffling is particularly important in this case. Otherwise, the model is

likely to overfit into batches of similar lengths.

In many other NMT toolkits, the shuffling is normally addressed in two ways: 1) loading

the whole training set into memory. Thus any parts of the data can be retrieved efficiently.

2) shuffling the whole training set, loading part of the training set into memory as the

cache, and sorting the cache to reduce padding tokens.
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While it is challenging for the first solution to load a large dataset (e.g., the training

set for the WMT 14 English-French task which consists of ∼ 36M sentence pairs) with

limited memory resources. For the second solution, there might be a gap between the

distribution of the sorted cache and that of the full training set.

In our implementation, we first sort the full training set, then convert them into tensors,

but we save tensors into an HDF5 format 2 file on the hard drive. The HDF5 file format

and library 3 integrate a rich set of performance features that allow for access time and

storage space optimizations, enabling us to retrieve any part of the training set from the

hard drive like accessing the memory. Thus, we can shuffle very large datasets under low

memory costs by loading batches of random indexes from HDF5 files.

Compression. HDF5 library supports gzip, lzf and szip compression algorithms. Gzip

is one of these most popular compression algorithms which can provide a good compression

ratio with moderate speed. Lzf provides a low to moderate compression rate, but it is

very fast. Szip has both high speed and compression, but due to a patent-encumbered

filter used in the NASA community, szip is not available with all installations of HDF5

for legal reasons.

Tensors converted from parallel corpora for machine translation are normally highly com-

pressible for the following reasons:

1. Natural languages are normally compressible, as words and their co-occurrences are

usually not uniformly distributed;

2. Tensors are an array of 32-bit integers, while in most cases, the vocabulary size for

NLP is smaller than 65536 (216), which means that 16-bit is usually sufficient for

saving vocabulary indexes, and the 32-bit integer word indexes are highly compress-

ible.

We compress data sets to reduce I/O. Given that the dataset is normally saved once and

will be read many times, we select the gzip algorithm available for almost all platforms for

tensor compression by default as it provides a good compression ratio even though with

2https://www.hdfgroup.org/.
3http://www.h5py.org/.

92

https://www.hdfgroup.org/
http://www.h5py.org/


Chapter 6. NMT Implementation

only moderate compression speed, but it is configurable to select the other algorithms

supported by the HDF5 library.

6.2.2 Multi-GPU Parallelization

The default multi-GPU parallelization model of PyTorch (Paszke et al., 2019) automati-

cally synchronizes parameters during the forward pass and collects gradients after back-

propagation. Specifically, it will automatically send model parameters to all utilized GPUs

before the forward propagation and collect gradients from these GPUs after the backward

propagation. However, when working with gradient accumulation, this results in two

kinds of redundant communications between GPUs:

1. Even though small mini-batches of a large batch are computed one-by-one, parame-

ters of the model do not change in the gradient accumulation before the optimization

step is performed. Thus sending model parameters before the forward propagation

to all involved GPUs is redundant for all mini-batches following the first mini-batch.

2. Collecting and accumulating gradients of all involved GPUs after the backward prop-

agation of each mini-batch is unnecessary. Gradients computed on one involved GPU

of a mini-batch can be accumulated only on that device without accumulating gra-

dients from the other GPUs until the optimization step after backward propagating

the last mini-batch.

We provide a new implementation of the parallelization model which requires explicit calls

to distribute parameters and to accumulate gradients across GPUs but avoids the redun-

dant communication and significantly accelerates the multi-GPU gradient accumulation

case. Specifically, we distribute parameters only once after an optimization step, then per-

form independent forward propagation and backward propagation of mini-batches com-

posing the large batch on all involved GPUs, finally we collect and accumulate gradients

from all involved GPUs before performing the next optimization step. Our multi-GPU

parallelization model also supports multi-GPU decoding which is normally not imple-

mented in the other libraries.

In addition to the multi-GPU model parallelization feature, we also support the multi-

GPU parallelization of the optimizer for the model’s training. Thus, in our toolkit, all
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computations for the model training are parallelized across multiple GPUs, not only the

forward/backward propagation, but also optimization steps to update model parameters,

while in many other toolkits, only the forward propagation and backward propagation of

the model can be parallelized. In detail, we divide model parameters into n groups, where

n is the number of GPUs utilized, and employ n optimizers respectively for parameter

groups on corresponding GPU devices. Before each optimization step, the gradients of the

group’s parameters are accumulated from the other GPUs, and after the optimization step,

the new parameters of the group are sent back to the other GPUs. This is particularly

helpful for big models (e.g., Transformer Big and deep Transformers) and costly optimizers

(e.g., Adam).

6.2.3 Models

Two Computation Orders. The official implementation of the Transformer (Vaswani

et al., 2018) uses a different computation order than the Transformer described in the

paper (Vaswani et al., 2017), which leads to differences in performance and convergence

(Xu et al., 2020a). Specifically, in the original paper (Vaswani et al., 2017), for each multi-

head attention sub-layer or the position-wise feed-forward neural network sub-layer, the

computation of that a sub-layer is processing → dropout → residual connection → layer

normalization, where processing stands for either the multi-head attention machinery

or the feed-forward neural network. The official implementation (Vaswani et al., 2018)

suggests that the computation order of layer normalization → processing → dropout →

residual connection, seems better for harder-to-learn models. 4 While some other NMT

implementations only implement one of the two computation orders, we support both

computation orders in our implementation with empirical results and theoretical analysis

described in Chapter 4.

Self-Attention with Relative Position. In contrast to recurrent and convolutional

neural networks, the Transformer does not explicitly model relative or absolute position

information in its architecture. Instead, it requires adding representations of absolute

positions to its inputs. Shaw et al. (2018) present an alternative approach, extending

the self-attention mechanism to efficiently consider representations of relative positions,

4https://github.com/tensorflow/tensor2tensor/blob/v1.6.5/tensor2tensor/layers/common_
hparams.py#L110-L112.
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or distances between sequence elements. They describe an efficient implementation of

the method and cast it as an instance of relation-aware self-attention mechanisms that

can generalize to arbitrary graph-labeled inputs. We implement their approach in our

self-attention implementation, supporting both encoder and decoder.

Average Attention. With parallelizable attention networks, the neural Transformer

is very fast to train. However, due to the self-attention in the decoder, Zhang et al.

(2018a) suggest that the decoding procedure becomes slow. To alleviate this issue, they

propose an average attention network as an alternative to the self-attention network in

the decoder of the neural Transformer. The average attention network consists of two

layers, with an average layer that models dependencies on previous positions and a gating

layer that is stacked over the average layer to enhance the expressiveness of the proposed

attention network. They apply this network on the decoder part of the neural Transformer

to replace the original target-side self-attention model to accelerate decoding with almost

no loss in training time and translation performance. We implement their approach in

our work to provide support for potential practical applications.

Transparent Attention. Bapna et al. (2018) take the first step towards training

extremely deep models for translation, by training deep encoders for Transformer and

LSTM-based models. They find that the vanilla Transformer models completely fail

to train when increasing the encoder depth. To ease optimization, they propose the

transparent attention mechanism, which allows them to train deeper models which results

in consistent gains on the WMT 14 English to German and WMT 15 Czech to English

tasks. We implement their approach (Bapna et al., 2018) which ensures the convergence

of deep Transformer encoders for our study on the convergence of deep Transformers (in

Chapter 4).

Hierarchical Layer Aggregation. Advanced NMT models generally implement en-

coder and decoder as multiple layers, which allows systems to model complex functions

and capture complicated linguistic structures. However, Dou et al. (2018) suggest that

only the top layers of encoder and decoder are leveraged in the subsequent process, which

misses the opportunity to exploit useful information embedded in other layers. They pro-

pose to simultaneously expose all of these signals with layer aggregation and multi-layer
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attention mechanisms. In addition, they introduce an auxiliary regularization term to

encourage different layers to capture diverse information. We implement their hierar-

chical layer aggregation model which leads to the best performance in their paper while

investigating the effects of shallow layer’s outputs in machine translation.

RNMT Decoder. Chen et al. (2018b) quantify the effect of several modeling improve-

ments (including multi-head attention and layer normalization) as well as optimization

techniques (such as synchronous replica training and label smoothing), which are used

in recent architectures. They demonstrate that these techniques are applicable across

different model architectures. Inspired by their findings of the relative strengths and

weaknesses of individual model architectures, they propose new model architectures that

combine the RNMT decoder with the Transformer encoder. We implement the recur-

rent decoder in their work which may lead to improved performance compared to the

Transformer decoder. We also support other recurrent models like ATR (Zhang et al.,

2018b).

Sentential Context. Wang et al. (2019e) show that a shallow sentential context

extracted from the top encoder layer only can improve translation performance via con-

textualizing the encoding representations of individual words. Next, they introduce a deep

sentential context, which aggregates the sentential context representations from all of the

internal layers of the encoder to form a more comprehensive context representation. We

implement their approach using the transparent attention model to aggregate sentence

representations in our work.

Learning Source Phrase Representations. In Chapter 3, we (Xu et al., 2020c)

improve the long-distance dependency capturing ability of the Transformer by incorporat-

ing source phrase representations. Specifically, we propose an attentive feature extraction

model and generate phrase representations based on token representations, and incor-

porate phrase representation learning into the Transformer to improve its long-distance

relation capturing ability. We implement our approach, which is also naturally integrated

as part of the Neutron implementation.
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Document-level Transformer. Zhang et al. (2018c) extend the Transformer model

with a new context encoder to represent document-level context, which is then incorpo-

rated into the original encoder and decoder by inserting corresponding cross-attention

network(s) into each layer. As large-scale document-level parallel corpora are usually not

available, they introduce a two-step training method to take full advantage of abundant

sentence-level parallel corpora and limited document-level parallel corpora. We implement

their approach as a baseline for context-aware NMT.

6.2.4 Advanced Features

Lipschitz Constrained Parameter Initialization. In Chapter 4 and in Xu et al.

(2020a), after the theoretical analysis of the convergence issue of deep Transformers of

the original computation order, we propose to ensure the convergence of deep Transform-

ers by the Lipschitz constrained parameter initialization approach. Unlike in previous

work (Zhang et al., 2019a) our approach does not degrade the performance of the 6-layer

Transformer while ensuring the convergence of deep Transformers with significant BLEU

improvements. We integrate this parameter initialization approach as the default in our

implementation.

Dynamic Batch Sizes. In Chapter 5 and in Xu et al. (2020b), we first analyze

how increasing batch size affects gradient direction, and propose to evaluate the stabil-

ity of gradients with their angle change. Based on our observations, the angle change

of gradient direction first tends to stabilize (i.e., gradually decrease) while accumulating

mini-batches, and then starts to fluctuate. Thus, we propose to automatically and dynam-

ically determine batch sizes by accumulating gradients of mini-batches and performing an

optimization step at just the time when the direction of gradients starts to fluctuate. In

addition, we propose a sampling approach to select gradients of parameters sensitive to

the batch size to improve the efficiency of our approach for large models. We support our

dynamic batch size approach in our Neutron implementation.

Reducing Optimization Difficulty. We suggest that the biases of linear transfor-

mations for projection between representation spaces and before the layer normalization

are redundant, as the layer normalization (Ba et al., 2016) will add another bias. Thus,
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we suggest that removing redundant biases may reduce the computation costs along with

these bias parameters, will go hand-in-hand with a small acceleration, and may ease the

optimization of models.

Dynamic Sentence Sampling. Traditional NMT involves a fixed training procedure

where each sentence is sampled once during each epoch. Wang et al. (2018c) suggest that

in reality, some sentences are well-learned during the initial few epochs, and the well-

learned sentences would continue to be used in training along with those sentences that

were not well learned for 10-30 epochs, which results in a waste of time and effort. They

propose an efficient method to dynamically sample the sentences in order to accelerate

NMT training. In their approach, a weight is assigned to each sentence based on the

measured difference between the training costs of two iterations. Further, in each epoch,

a certain percentage of sentences are dynamically sampled according to their weights. We

implement their approaches, including a dynamic sampling and review mechanism, in the

training script.

Activation Functions. Though Devlin et al. (2019) use the Transformer encoder

for BERT, they replace the Rectified Linear Unit (ReLU) activation function by the

Gaussian Error Linear Unit (GELU) activation function (Hendrycks and Gimpel, 2016).

Ramachandran et al. (2017) propose to leverage automatic search techniques to discover

new activation functions. Using a combination of exhaustive and reinforcement learning-

based search, they discover the Swish activation function. Although the Transformer uses

the ReLU activation function in Vaswani et al. (2017), we provide a variety of activation

functions, including GELU and Swish. Simply alternating the ReLU with these activation

functions may provide further improvements.

Optimizers. The Transformer uses the Adam optimizer (Kingma and Ba, 2015) for

its training by default. Given that the learning rate warmup heuristic achieves remarkable

success in stabilizing training, accelerating convergence and improving generalization for

adaptive stochastic optimization algorithms like RMSprop and Adam, Liu et al. (2020)

study its mechanism in details. Pursuing the theory behind warmup, they identify a prob-

lem of the adaptive learning rate (i.e., it has a problematically large variance in the early
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stage), suggest warmup works as a variance reduction technique, and provide both em-

pirical and theoretical evidence to verify the hypothesis. They further propose RAdam,

a new variant of Adam, by introducing a term to rectify the variance of the adaptive

learning rate. Zhang et al. (2019c) propose the Lookahead optimization algorithm, which

is orthogonal to previous approaches and iteratively updates two sets of weights. Intu-

itively, the algorithm chooses a search direction by looking ahead at the sequence of “fast

weights” generated by another optimizer. They show that Lookahead improves the learn-

ing stability and lowers the variance of its inner optimizer with negligible computation

and memory cost. We support both RAdam (Liu et al., 2020) and Lookahead (Zhang

et al., 2019c) and their combination.

6.2.5 Data Cleaning

Normally, parallel corpora for training MT systems are not collected directly from trans-

lators at the sentence level. Some of the corpus data are crawled from the internet, and

automatic sentence alignment tools are utilized to extract sentence-level translation pairs.

As a result, there might be some incorrect translations (sentence pairs) in the parallel data.

We provide some tools to clean data sets to alleviate this issue. Removing this noisy data

will reduce the size of data and the corresponding vocabulary size, and usually leads to

faster training with better performance than using the raw data in practice.

6.2.5.1 Max Keeper

Parallel data are usually the combination of several corpora, and these corpora may con-

tain some common sentence pairs, which will be redundant after concatenation. Redun-

dancy may also introduce biases into the dataset. A sentence pair that appears k times

as frequently as another does not mean that it is also k times as important or correct as

another. In addition to that, alignment tools may wrongly align the same source sentence

to several translations in different parallel documents, especially for short sentences.

To remove redundant data, we implement a script that counts all sentences and their

translations in the corpus, and only saves those translations with the highest frequency

for each source sentence. We also replace potentially repeated blanks or tabulars into a

single blank during cleaning to normalize the dataset.
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6.2.5.2 Cleaning with Vocabulary

In the bilingual training data crawled from the Internet, some sentence pairs are mean-

ingless or even do not belong to the language pairs.

We implement a vocabulary-based cleaning approach for this case. Specifically, we first

collect the vocabulary and count frequencies of tokens on the training set. Then we filter

the training set with a hyperparameter named vratio. We regard vratio tokens of the

full vocabulary with lowest frequency counts as rare words, and if the percentage of rare

tokens in a sentence is higher than another hyperparameter vkratio, we suggest that the

sentence is unlikely to be part of the language pair, and we will remove it from the data.

6.2.5.3 Cleaning with Length Ratios

Length ratio is widely employed in the data pre-processing procedure for MT, since there

are some incorrectly aligned sentence pairs in the training data which have abnormally

large length ratios. We provide enhanced support at the sub-word level (Sennrich et al.,

2016a), in addition to filtering tokenized texts.

Assume a sentence contains nsub tokens after BPE processing, nsubadd tokens are addi-

tionally produced by BPE separation, nsep tokens of the original tokenized sentence which

has ntok tokens are segmented into sub-word units. The following ratios are defined at

the monolingual level:

cratio = nsubadd/nsub (6.3)

bratio = nsub/ntok (6.4)

sratio = nsep/ntok (6.5)

Assume a source sentence contains nsubsrc sub-word tokens and nsrc tokens before ap-

plying BPE, nsubtgt and ntgt correspondingly for its translation, we define two bilingual

ratios:

uratio =
max(nsubsrc, nsubtgt)

min(nsubsrc, nsubtgt)
(6.6)
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oratio =
max(nsrc, ntgt)

min(nsrc, ntgt)
(6.7)

Thus, we have introduced another four ratios in addition to the original length ratio

oratio. The reason why we clean the training set with ratios related to sub-word units

is that rare words in noisy sentence pairs are likely to be segmented into many sub-word

units, especially for URLs, which will significantly increase those ratios. Filtering with

sub-word level ratios and ratios between token-level and sub-word level may help address

these cases.

We provide tools to calculate the above ratios on the validation set, which are good and

safe choices for data cleaning.

6.2.6 Additional Tools

Averaging Models. The training of the Transformer periodically saves checkpoints

(specifically, for every 1.5k training steps). Vaswani et al. (2017) average parameters of

several checkpoints and evaluate the performance of the averaged model, which normally

leads to more stable and better performance than evaluating the last model. We sup-

port this function which loads parameters of given checkpoints and saves the averaged

parameters into a new model file.

Ranking. A ranking tool is provided to rank data sets with a pre-trained model,

where either per-token loss or the loss of a sentence pair can be measured efficiently. This

tool can be employed for data cleaning, data selection for domain adaptation or in the

evaluation of linguistic phenomena, e.g., the subject-verb agreement analysis in Chapter

3.

Web Server. We provide a simple translation web server with REST API support in

addition to the translation scripts, which we think may be helpful for integrating trained

models into the other MT-based applications and platforms. It can also run as a demo

to provide a friendly User Interface (UI) when performing human evaluation of some

particularly designed examples.
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Conversion to C Libraries. We implement a conversion tool based on Cython 5

which can convert Python implementations of core modules and functions into C code

and compile them into loadable C libraries. This may bring about a slight acceleration

and make it easier to integrate our toolkit into MT services or the other applications

depending on MT.

Forbidden Indexes for the Shared Vocabulary. In practical application scenarios,

there might be some tokens that only appear on the source side when a shared vocabulary

is adopted, and these tokens which never appear in the target side training data will still

get a small smoothing probability in the loss function. We provide a tool to extract those

indexes and save them into a file that can be loaded to prevent the effects of those tokens

on the decoder classifier bias and the label smoothing loss.

6.3 Design

In this section, we present the design of our implementation, i.e., the way we organize the

code.

Scripts. We provide scripts for processing training and test data under “scripts/”. The

training data processing script utilizes several implemented tools to 1) sort the training

set and the development set. As a result, sentences with similar lengths will be gathered

together, and the number of padding tokens can be reduced. 2) collect vocabularies given

the training data. 3) convert parallel sentences to tensors. The test script processes

similarly to the training script as regards the first three steps except that it handles

only monolingual data and uses the vocabulary produced by the training step rather

than rebuilding a new one. After these procedures, it then: 4) uses the translation

implementation to translate. 5) restores the order of the sorted test set and corresponding

translations. 6) merges sub-word units into tokens.

5https://cython.org/
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Basic Modules. We provide our implementations of basic modules under “modules/”,

including the multi-head attention network, the positional embedding, the position-wise

feed-forward network, the average attention network, RNNs, etc.

Loss. We implement the label smoothing loss (Szegedy et al., 2017) which minimizes

the Kullback-Leibler divergence instead of the cross-entropy under “loss/”.

Learning Rate Scheduler. We implement the learning rate of the Transformer

(Vaswani et al., 2017) in Equation 6.2 in “lrsch.py”.

Parallelization. Our multi-GPU parallelization model which avoids the redundant

communication between GPUs described in Section 6.2.2 is implemented under “paral-

lel/”.

Support Functions. We implement basic functions for data processing, training

and decoding such as conversion from texts to tensors, HDF5 serialization, parameter

initialization approaches, freezing/unfreezing parameters of models, padding list of tensors

to the same size on the assigned dimension under “utils/”.

Transformer and its Variants. We gather the implementation of the Transformer

model and its variants, including transparent attention, RNMT decoder, etc., under

“transformer/”.

Optimizers. The implementation of optional optimizers (RAdam, Lookahead) can be

loaded from “optm/”.

Tools. All tools to support data processing, averaging checkpoints, etc., are imple-

mented under “tools/”.
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6.4 Performance

To compare with Vaswani et al. (2017), we tested our Neutron implementation on the

WMT 14 English to German news translation task following Vaswani et al. (2017) in this

Chapter. The performance on some other datasets can be found in the other chapters

(Chapter 3, 4 and 5).

To address the unknown word issue, we applied joint Byte-Pair Encoding (BPE) (Sennrich

et al., 2016a) with 32k merge operations and 8 as the vocabulary threshold for the BPE

to reduce the vocabulary size (Sennrich and Zhang, 2019).

We only kept sentences with a maximum of 256 sub-word tokens for training. The training

set was randomly shuffled in every training epoch. The concatenation of newstest 2012

and newstest 2013 was used for validation and newstest 2014 as the test set.

The number of warmup steps was set to 8k, 6 and each training batch contained at least

25k target tokens. The large batch size was achieved through gradient accumulation of

small batches. We trained the model on 2 GTX 1080 Ti GPUs, and performed decoding

on 1 of them.

We employed the pre-norm computation order (Vaswani et al., 2018). We used a dropout

of 0.1. We used the Transformer Base setting (Vaswani et al., 2017) with embedding

dimension and hidden dimension of the position-wise feed-forward neural network 512

and 2, 048 respectively, and the model was trained for 100k training steps. We employed

a label smoothing (Szegedy et al., 2016) value of 0.1. We used the Adam optimizer

(Kingma and Ba, 2015) with 0.9, 0.98 and 10−9 as β1, β2 and ε. We followed Vaswani

et al. (2017) for the other settings.

We used a beam size of 4 without length penalty for decoding, and evaluated tokenized

case-sensitive BLEU 7 with the averaged model of the last 5 checkpoints saved with an

interval of 1, 500 training steps (Vaswani et al., 2017). Results are shown in Table 6.1.

Table 6.1 shows that our Neutron implementation of the Transformer surpasses Vaswani

et al. (2017) in terms of BLEU while being extremely fast in both training and decoding.

6https://github.com/tensorflow/tensor2tensor/blob/v1.15.4/tensor2tensor/models/transformer.py#
L1818.

7https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl.
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BLEU Speed

En-De En-Fr Training Decoding

Vaswani et al. (2017) 27.3 38.1

Neutron 27.38 39.34 23213.65 150.15

Table 6.1: Performance and speed. Training speed and decoding speed are measured on
the En-De task by the number of target tokens per second and the number of sentences

per second.

Our implementation of many other approaches also performs competitively on publicly

available datasets.

6.5 Related Work

6.5.1 Baseline Models

Sutskever et al. (2014); Bahdanau et al. (2014); Luong et al. (2015); Gehring et al. (2017);

Vaswani et al. (2017) and many other researchers proposed various kinds of NMT mod-

els, shifting the MT technology from RNN-based approaches to CNN-based models, and

further to Transformer-based methods.

Sutskever et al. (2014) propose to employ two LSTMs as encoder and decoder respectively

for sequence-to-sequence MT, the encoder encodes the source to a vector, and the decoder

auto-regressively generates the corresponding translation in a token-by-token manner.

Their simple approach solely based on neural models performs comparably to previous

PBSMT systems carefully tuned with substantial engineering effort.

Bahdanau et al. (2014) integrate the attention mechanism into the NMT decoder to

jointly learn to translate and align. The attention mechanism attends the source encod-

ing in every decoding step, which brings information from the source side and improves

translation quality, especially for long sentences, and alleviates the information loss issue

of representing the information of the source sentence with only a fixed-dimension vector.

Gehring et al. (2017) propose to use CNNs that evolve token representations independently

rather than RNNs which compute in a token-by-token manner for NMT. Their approach

improves parallelization on GPUs.
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Vaswani et al. (2017) propose the Transformer based on the multi-head attention mech-

anism which is able to model over the whole sequence rather than contexts in a fixed

window with CNNs for NMT while keeping the advantage of parallelization. The Trans-

former establishes the new state-of-the-art.

6.5.2 Open-Source Toolkits

Often coming from research work, there are now many open-source implementations,

including:

fairseq. fairseq (Ott et al., 2019) is an open-source sequence modeling toolkit that

allows researchers and developers to train custom models for translation, summarization,

language modeling, and other text generation tasks. The toolkit supports distributed

training across multiple GPUs and machines and fast mixed-precision training and infer-

ence on modern GPUs.

OpenNMT. Klein et al. (2017) develop OpenNMT. The toolkit prioritizes efficiency,

modularity, and extensibility with the goal of supporting NMT research into model ar-

chitectures, feature representations, and source modalities, while maintaining competitive

performance and reasonable training requirements. OpenNMT consists of modeling and

translation support, as well as detailed pedagogical documentation about the underlying

techniques.

Tensor2Tensor. Tensor2tensor (Vaswani et al., 2018) is the official implementation

of the Transformer (Vaswani et al., 2017). It is a library based on TensorFlow (Abadi

et al., 2016) for deep learning models that is well-suited for neural machine translation.

Sockeye. Hieber et al. (2017) present Sockeye. Sockeye is a production-ready frame-

work for training and applying models as well as an experimental platform for researchers.

Written in Python and built on MXNet (Chen et al., 2015), the toolkit offers scalable

training and inference for the three most prominent encoder-decoder architectures: at-

tentional recurrent neural networks, self-attentional Transformers, and fully convolutional
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networks. Sockeye also supports a wide range of optimizers, normalization and regular-

ization techniques, and inference improvements from the current NMT literature.

Marian. Marian (Junczys-Dowmunt et al., 2018) is an efficient and self-contained

NMT framework with an integrated automatic differentiation engine based on dynamic

computation graphs. It is written entirely in C++, and can achieve high training and

translation speed.

THUMT. THUMT (Zhang et al., 2017a) implements the standard attention-based

encoder-decoder framework and supports three training criteria: maximum likelihood es-

timation, minimum risk training, and semi-supervised training. It features a visualization

tool for displaying the relevance between hidden states in neural networks and contextual

words, which helps to analyze the internal workings of NMT.

Lingvo. Lingvo (Shen et al., 2019) is a Tensorflow framework (Abadi et al., 2016)

offering a complete solution for collaborative deep learning research, with a particular

focus towards sequence-to-sequence models. Models are composed of modular building

blocks that are flexible and easily extensible, and experiment configurations are centralized

and highly customizable. Lingvo supports distributed training and quantized inference

directly within the framework, and it contains existing implementations of a large number

of utilities, helper functions, and the newest research ideas.

These implementations play a vital role in both NMT research and applications. They

also provide valuable starting points for us to implement our NMT models. This granted,

we suggest that our Neutron implementation has its own specialization and focus:

1. It mainly concentrates on cutting-edge research and provides implementations of

many approaches that are not included in other libraries.

2. It is very carefully optimized to run efficiently (as shown in Table 6.1) on cheap

hardware. When using GPUs, Neutron utilizes at most n CPU cores, where n is

the number of GPUs used, takes less than 4GB memory, and can effectively train

on old GPUs with even no more than 8GB GPU memory.
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6.6 Conclusion

In this chapter, we introduce our Neutron implementation (Xu and Liu, 2019) of the

Transformer, including its supported features, advantages, design and performance, etc.

with a particular focus on the Transformer and its recent state-of-the-art variants for

NMT, implemented as Neutron based on the PyTorch.

Our NMT implementation is able to obtain competitive performance as a baseline and

supports our research in this thesis.

108



Chapter 7

Declaration of Contribution

I hereby declare that for each of the three main papers on which the thesis is build:

� Hongfei Xu, Josef van Genabith, Deyi Xiong, Qiuhui Liu, and Jingyi Zhang.

Learning Source Phrase Representations for Neural Machine Translation. In Pro-

ceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics, pages 386–396, Online, July 2020. Association for Computational Linguistics.:

I am the first author of the paper, I developed the basic idea, I developed the im-

plementation, I carried out the experiments and evaluations reported in the paper,

I wrote each of the main drafts of the paper, I discussed and refined the ideas and

the writeup of the papers with my co-authors.

� Hongfei Xu, Qiuhui Liu, Josef van Genabith, Deyi Xiong, and Jingyi Zhang. Lip-

schitz Constrained Parameter Initialization for Deep Transformers. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, pages

397–402, Online, July 2020. Association for Computational Linguistics.: I am the

first author of the paper, I developed the basic idea, I developed the implementation,

I carried out the experiments and evaluations reported in the paper, I wrote each

of the main drafts of the paper, I discussed and refined the ideas and the writeup

of the papers with my co-authors.

109



Chapter 7. Declaration of Contribution

� Hongfei Xu, Josef van Genabith, Deyi Xiong, and Qiuhui Liu. Dynamically Ad-

justing Transformer Batch Size by Monitoring Gradient Direction Change. In Pro-

ceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics, pages 3519–3524, Online, July 2020. Association for Computational Linguis-

tics.: I am the first author of the paper, I developed the basic idea, I developed

the implementation, I carried out the experiments and evaluations reported in the

paper, I wrote each of the main drafts of the paper, I discussed and refined the ideas

and the writeup of the papers with my co-authors.

110



Chapter 8

Conclusion and Future Work

8.1 Research Contributions and Questions Answered

In this thesis, we have posed seven research questions (RQ1 through RQ7, listed below)

and proposed approaches to address each one of them based on our Neutron implemen-

tation of the Transformer (described in Chapter 6).

RQ1: How to improve the ability of the Transformer in long-distance relation

capturing?

In Chapter 3, we propose to additionally model NMT at phrase level to help the Trans-

former capture long-distance relationships, given that modeling phrases instead of words

has significantly improved the Statistical Machine Translation (SMT) approach through

the use of larger translation blocks (“phrases”) and with this its reordering ability. In our

experiments, we obtain significant improvements on the WMT 14 English-German and

English-French tasks on top of the strong Transformer baseline, which shows the effective-

ness of our approach. Our approach helps Transformer Base models perform at the level

of Transformer Big models on the En-De task, and even significantly better for long sen-

tences, but with substantially fewer parameters and training steps. The fact that phrase

representations help even in the Big setting further supports our conjecture that they

make a valuable contribution to long-distance relations and scales to large data sets. We

also conduct length analysis with our approach, and the results show how our approach
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improves long-distance dependency capturing, which supports our conjecture that phrase

representation sequences can help the model capture long-distance relations better, given

that in translating long sentences, we expect to encounter more long-distance dependen-

cies than translating short sentences. In the linguistically-informed subject-verb agree-

ment analysis on the Lingeval97 dataset (Sennrich, 2017) following Tang et al. (2018),

our approach improves the accuracy of long-distance subject-verb dependencies, especially

for cases where there are more than 10 tokens between the verb and the corresponding

subject.

Contributions for RQ1:

� To help the Transformer translation model better model long-distance dependencies,

we let both encoder layers and decoder layers of the Transformer attend the source

phrase representation sequence which is shorter than the token sequence, in addition

to the original token representation.

� To the best of our knowledge, our work is the first to model source phrase represen-

tations and incorporating them into the Transformer.

� Our approach empirically brings about significant and consistent improvements over

the strong Transformer model (both Base and Big settings) on the WMT 14 English-

German and English-French news translation tasks, and the results on the subject-

verb agreement task show how our approach improves long-distance dependency

capturing.

RQ2: How to avoid the potentially large phrase table while benefiting from phrase

representations?

Since the phrase table is much larger than the word vocabulary, which is not affordable for

NMT, and distribution over phrases is much sparser than that over words, which may lead

to data sparsity and hurt the performance of NMT, we generate phrase representations

based on token representations “on-the-fly” rather than using phrase embeddings directly.

Considering that merging several token vectors into one is very likely to incur information

loss, we suggest that introducing an importance evaluation mechanism is better than

treating tokens equally. Our research reported in Chapter 3 proposes an attentive feature

112



Chapter 8. Conclusion and Future Work

extraction model and generates phrase representation based on token representations.

Specifically, our model first summarizes the representation of a given token sequence with

mean or max-over-time pooling, then uses a 2-layer neural network to compute scores of

token representations by comparing the extracted feature representation with each token

representation, and generates the phrase representation by a weighted combination of

token representations with normalized scores.

Contributions for RQ2:

� To address the large phrase table issue, we introduce an attentive phrase represen-

tation generation model to value tokens differently according to their importance in

the phrase, which is able to highlight the important features in a phrase.

RQ3: How to learn and utilize phrase representation in the Transformer translation

model?

In Chapter 3, we propose an attentive combination network to incorporate the source

phrase representation for each layer into the Transformer translation model to aid it

modeling long-distance dependencies. Specifically, we insert the attentive combination

layer into each encoder and decoder layer to attend to the source phrase representation

sequence before attending to the token-level source representations. We do this under

the expectation that attending at phrase level might be easier than at token level, and

attention results at phrase level may aid the attention computation at the token level.

The phrase representation sequence of each encoder layer is generated by the attentive

phrase representation algorithm with the input representation sequence to this layer.

For the source phrase representation used by decoder layers, we weighted combine phrase

representations generated by all encoder layers for each decoder layer with the transparent

attention mechanism.

Contributions for RQ3:

� We integrate the learning of phrase representations into the Transformer in an end-

to-end manner with an attentive combination network to let the model additionally

condition on the source phrase level, which is differentiable and can be efficiently

trained through backpropagation.
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RQ4: Why do Transformers, specifically deep Transformers, have difficulty in

converging even with layer normalization and residual connections?

Chapter 4 first presents both empirical convergence experiments (Table 4.1) comparing

the computation order of the official implementation (Vaswani et al., 2018) and that of

the published version (Vaswani et al., 2017). Then we perform a theoretical analysis

(Table 4.2) of the effect of the interaction between layer normalization and residual con-

nection. Our analysis shows that the convergence issue of deep Transformers is likely due

to the fact that layer normalization over residual connections may effectively reduce the

impact of residual connections due to subsequent layer normalization, in case the stan-

dard deviation of the input to the layer normalization is larger than 1, in order to avoid a

potential explosion of combined layer outputs (Chen et al., 2018b), which will shrink the

corresponding gradients in backpropagation.

Contributions for RQ4:

� We provide empirical results of two different computation orders of deep Trans-

formers which show the different convergence patterns for the different computation

orders between layer normalization and residual connection.

� We theoretically analyze the impact of layer normalization over the residual con-

nection on convergence.

RQ5: How to prevent layer normalization from shrinking residual connections?

In Chapter 4, we demonstrate that the goal to constrain the standard deviation of the

input to layer normalization can be achieved through proper parameter initialization.

Specifically, we propose to initialize the sub-model of deep Transformers before layer nor-

malization under the k-Lipschitz constraint (where k ≤ 1), which can simply and effec-

tively ensure convergence. Our empirical results with the Lipschitz constrained parameter

initialization show that deep Transformers with the original computation order (Vaswani

et al., 2017) can converge with significant improvements as long as they are initialized

with our parameter initialization approach. It is also worth noting that our parameter

initialization approach does not degrade the performance of the 6-layer Transformer, in

contrast to previous work (Zhang et al., 2019a).
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Contributions for RQ5:

� We propose to initialize deep Transformers under the Lipschitz constraint, and em-

pirically show that the convergence of deep Transformers can be ensured with proper

parameter initialization.

� Our parameter initialization approach brings about significant BLEU improvements

with up to 24 layers. While ensuring the convergence of deep Transformers, our ap-

proach does not degrade the translation quality of the 6-layer Transformer, and the

12-layer Transformer with our approach already achieves performance comparable

to the 20-layer Transformer in the previous work (Zhang et al., 2019a) using merged

attention decoder layers with a 50k batch size.

RQ6: How to dynamically and automatically find proper and efficient batch sizes during

training?

Gradient accumulation accumulates gradients of small mini-batches as the gradient of a

large batch consisting of these small batches. Chapter 5 analyzes how increasing batch

size affects gradient direction during gradient accumulation, and proposes to evaluate the

stability of gradients with their angle change. We observe that:

1. The gradient direction change is big at the beginning.

2. With gradient accumulation of more and more batches, gradient direction change

reduces with increasing batch size.

3. Eventually, gradient direction change will start fluctuating.

We propose to automatically and dynamically determine batch sizes by accumulating

gradients of mini-batches, while evaluating the gradient direction change with each new

mini-batch, and stop accumulating more mini-batches at just the time when the direction

of gradients starts to fluctuate.

In our experiments on the WMT 14 English-German and English-French news transla-

tion tasks, our approach significantly outperforms the baseline with a fixed 25 thousand
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batch size by +0.73 and +0.82 BLEU respectively while being more efficient than the 50

thousand batch size setting.

Contributions for RQ6:

� We observe the effects on gradients with increasing batch size, and find that a large

batch size stabilizes the direction of gradients.

� We propose to automatically determine dynamic batch sizes in training by moni-

toring the gradient direction change while accumulating gradients of small batches.

� In machine translation experiments, our approach improves the training efficiency

and the performance of the Transformer model.

RQ7: How to efficiently monitor gradient direction change?

The Transformer contains a large number of parameters, and the costs for computing

the cosine similarity of corresponding gradients in each accumulation step are relatively

high. In Chapter 5, we propose to divide model parameters into groups, and monitor

gradient direction change only on a selected group in each optimization step rather than

estimating the gradient direction change of all parameters. To select the parameter group

sensitive to the batch size frequently, we record the minimum and maximum angle change

during gradient accumulation, and normalize the angle reductions of parameter groups

after adding Gumble noise as their sample probabilities.

Contributions for RQ7:

� We propose to dynamically select those gradients of parameters/layers which are

sensitive to the batch size.

� The sampling approach ensures the efficiency of our approach for monitoring gradi-

ent direction change, especially for large models.

8.2 Future Work

Based on the work presented in the thesis, below we outline several research directions

which can be explored in the future.
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NMT Modeling with Phrase Representations. Using phrases in NMT models

involves 3 parts: phrase segmentation, phrase representation learning and integrating

phrase representations into NMT models. Future studies may research approaches for each

part. For example, we could try to find more efficient approaches to learn and to integrate

phrase representations in NMT models, as the cost of additionally introducing phrase

representations to the Transformer of our current approach (described in Chapter 3)

which focuses on verifying the impacts of phrase representations on long-distance relation

capturing is relatively high. Performing phrase-level attention with some redundant heads

(Voita et al., 2019d) in the multi-head attention network seems to be a good choice (Hao

et al., 2019a), but how to determine the number of heads kept for token representations

remains an unsolved problem. Is there any way to let the model learn the number of

heads for phrase-level or even multi-level attention?

Thus, in terms of phrase representations for NMT research, there are several options to

be explored, such as:

1. To explore better segmentation approaches of phrases for NMT. We examine both

n-gram phrases and linguistically motivated phrases from a parser in Chapter 3,

with our attentive phrase representation generation approach. The performance

gap between these two kinds of phrase segmentation approaches in terms of BLEU

scores in our experiments is small. However, is it possible to design an efficient phrase

segmentation approach (without involving a parser) which produces linguistically

reasonable phrases that lead to comparable performance with only a simple phrase

representation learning approach (without the use of attention or gate mechanisms)?

For example, segmenting phrases based on bi-gram or n-gram co-occurrences or

using function words to chunk sentences into more linguistically motivated phrases.

2. To design more powerful and efficient algorithms for the generation of phrase rep-

resentations based on token representations. Our attentive phrase representation

generation approach in Chapter 3 contains 3 steps: 1) summarizing all token rep-

resentations into a vector. 2) comparing each token representation with the sum-

marized representation with a 2-layer neural network. 3) weighted combined token

representations with normalized scores. Future work may study efficient approaches
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for phrase representation learning to simplify the procedure. Is it possible to gen-

erate the phrase representation of corresponding token representations in only one

step?

3. To find a better way for integrating phrase representation learning into NMT. Our

approach (in Chapter 3) inserts the attentive combination network into each en-

coder layer and decoder layer to attend the source phrase representation sequence

before attending the source token representation sequence. Is it necessary to per-

form phrase-level attention in all layers, especially for deep Transformers which

have more layers? Are there any more efficient approaches to integrate the phrase

representation learning into NMT models?

4. To explore the use of phrases on the target side in addition to the source. We

only investigate the effects of source phrase representations in Chapter 3. How-

ever, long-distance dependency learning ability is likely to be also important for the

target language model, and future work may research the effects of target phrase

representations in addition to source phrase representations.

5. To integrate our approach into the other models for tasks in which the capability of

capturing long-distance relations is crucial, e.g., document-level MT.

Future work in this direction will result in more efficient architectures with improved

performance in both translation and long-distance dependency learning.

Efficient Deep Transformers. In Chapter 4, we analyze and study the convergence

issue of deep Transformers. However, to the best of our knowledge, almost all related

research (Bapna et al., 2018; Wang et al., 2019c; Wu et al., 2019c; Zhang et al., 2019a)

including ours is following the motivation of residual connections to highlight outputs of

shallow layers in the forward propagation to ease the flow of gradients during backprop-

agation and further ensure convergence of the models.

However, the motivation of using deep neural networks is to increase the complexity of

the model function. But the residual connection, which adds the input to the output of

the layer, somehow hampers the non-linearity, i.e., the complexity of the model function.

As a result, the improvements in performances are smaller and smaller with increasing
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depth, and deep models seem to have difficulty in using parameters as efficiently as their

shallow counterparts. Future research may study:

1. Training deep models without residual connection. Is it possible to ensure the con-

vergence of deep models after residual connections are removed? E.g., via parameter

initialization, using some other non-linear activation functions, non-linear cross-layer

connection, etc.

2. Why do deep models without residual connection suffer from the convergence issue?

He et al. (2016) suggest that the non-linear activation function makes the layer

without the residual connection have difficulty in learning the identity function,

and thus the model without residual connections suffers from a severer convergence

problem than the model with residual connections. However, we suggest that the

identity function is not what we want the layer to learn, and what is the real problem

behind the training issue of non-linear layers is worth exploring.

Parameter Initialization. Chapter 4 studies the impact of parameter initialization

under the Lipschitz constraint on the convergence of deep Transformers. However, con-

vergence is not the only thing that parameter initialization affects. It can also affect the

after-training performance of models.

For example, the Lottery Ticket (LT) hypothesis (Frankle and Carbin, 2019; Frankle et al.,

2019; Zhou et al., 2019; Dettmers and Zettlemoyer, 2019) suggests that there is a sparse

sub-network in a dense network that outperforms the fully connected original network

with a significant reduction in parameters and corresponding computation in Computer

Vision (CV) tasks, and its connections have initial weights that make training particularly

effective.

Future work may carry out research on improved parameter initialization of the Trans-

former which can accelerate its convergence, and result in better performance after train-

ing, or reduce the number of parameters required. More specifically:

1. To validate the LT hypothesis in the MT task with NMT models. Specifically with

the Transformer translation model, which parameters can be heavily pruned and

why?
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2. To analyze the reason w.r.t. parameter initialization behind the LT hypothesis.

Why can the random parameter initialization of the sub-network take the job of the

whole model with comparative performance? Why is the initialization good?

3. To design improved parameter initialization approaches that can lead to improved

after-training performance of the full model based on findings from the LT hypoth-

esis analysis.

Hyperparameter Selection/Neural Architecture Search of Translation Models.

The dynamic batch size in Chapter 4 studies how to select the proper batch size during

training based on tracking gradient direction change. However, the selection of the other

hyperparameters, such as hidden units, encoder/decoder depth, or even more aggressively,

the architecture of neural machine translation models has not been studied. Future work

may include:

1. Exploration of pruning-based (Gomez et al., 2019) or searching-based approaches

(Radosavovic et al., 2020) to find proper hidden dimensions and the corresponding

depth for MT models.

2. Exploration of Neural Architecture Search (NAS) approaches (So et al., 2019; Gaier

and Ha, 2019; Luo et al., 2018; Wong et al., 2018), especially Efficient Neural Archi-

tecture Search (ENAS) approaches (Pham et al., 2018; Liu et al., 2019b; Xie et al.,

2019; Cai et al., 2019; Bender et al., 2018; Pasunuru and Bansal, 2019; Dong and

Yang, 2019b; Wu et al., 2019a; Fedorov et al., 2019; Nayman et al., 2019; Dong and

Yang, 2019a; Peng et al., 2019; Hu et al., 2019; Chen et al., 2019c; Geifman and

El-Yaniv, 2019) for NMT.
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