2,129 research outputs found

    A fast algorithm for the computation of 2-D forward and inverse MDCT

    No full text
    International audienceA fast algorithm for computing the two-dimensional (2-D) forward and inverse modified discrete cosine transform (MDCT and IMDCT) is proposed. The algorithm converts the 2-D MDCT and IMDCT with block size M N into four 2-D discrete cosine transforms (DCTs) with block size ðM=4Þ ðN=4Þ. It is based on an algorithm recently presented by Cho et al. [An optimized algorithm for computing the modified discrete cosine transform and its inverse transform, in: Proceedings of the IEEE TENCON, vol. A, 21–24 November 2004, pp. 626–628] for the efficient calculation of onedimensional MDCT and IMDCT. Comparison of the computational complexity with the traditional row–column method shows that the proposed algorithm reduces significantly the number of arithmetic operations

    New Decimation-In-Time Fast Hartley Transform Algorithm

    Get PDF
    This paper presents a new algorithm for fast calculation of the discrete Hartley transform (DHT) based on decimation-in-time (DIT) approach. The proposed radix-2^2 fast Hartley transform (FHT) DIT algorithm has a regular butterfly structure that provides flexibility of different powers-of-two transform lengths, substantially reducing the arithmetic complexity with simple bit reversing for ordering the output sequence. The algorithm is developed through the three-dimensional linear index map and by integrating two stages of the signal flow graph together into a single butterfly. The algorithm is implemented and its computational complexity has been analysed and compared with the existing FHT algorithms, showing that it is significantly reduce the structural complexity with a better indexing scheme that is suitable for efficient implementation

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs

    Full text link
    This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the well-known Cooley-Tukey FFT and make the algorithms' derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast algorithms, many of which have not been found before.Comment: 31 pages, more information at http://www.ece.cmu.edu/~smar

    Image Compression using Discrete Cosine Transform & Discrete Wavelet Transform

    Get PDF
    Image Compression addresses the problem of reducing the amount of data required to represent the digital image. Compression is achieved by the removal of one or more of three basic data redundancies: (1) Coding redundancy, which is present when less than optimal (i.e. the smallest length) code words are used; (2) Interpixel redundancy, which results from correlations between the pixels of an image & (3) psycho visual redundancy which is due to data that is ignored by the human visual system (i.e. visually nonessential information). Huffman codes contain the smallest possible number of code symbols (e.g., bits) per source symbol (e.g., grey level value) subject to the constraint that the source symbols are coded one at a time. So, Huffman coding when combined with technique of reducing the image redundancies using Discrete Cosine Transform (DCT) helps in compressing the image data to a very good extent. The Discrete Cosine Transform (DCT) is an example of transform coding. The current JPEG standard uses the DCT as its basis. The DC relocates the highest energies to the upper left corner of the image. The lesser energy or information is relocated into other areas. The DCT is fast. It can be quickly calculated and is best for images with smooth edges like photos with human subjects. The DCT coefficients are all real numbers unlike the Fourier Transform. The Inverse Discrete Cosine Transform (IDCT) can be used to retrieve the image from its transform representation. The Discrete wavelet transform (DWT) has gained widespread acceptance in signal processing and image compression. Because of their inherent multi-resolution nature, wavelet-coding schemes are especially suitable for applications where scalability and tolerable degradation are important. Recently the JPEG committee has released its new image coding standard, JPEG-2000, which has been based upon DWT

    Number theoretic techniques applied to algorithms and architectures for digital signal processing

    Get PDF
    Many of the techniques for the computation of a two-dimensional convolution of a small fixed window with a picture are reviewed. It is demonstrated that Winograd's cyclic convolution and Fourier Transform Algorithms, together with Nussbaumer's two-dimensional cyclic convolution algorithms, have a common general form. Many of these algorithms use the theoretical minimum number of general multiplications. A novel implementation of these algorithms is proposed which is based upon one-bit systolic arrays. These systolic arrays are networks of identical cells with each cell sharing a common control and timing function. Each cell is only connected to its nearest neighbours. These are all attractive features for implementation using Very Large Scale Integration (VLSI). The throughput rate is only limited by the time to perform a one-bit full addition. In order to assess the usefulness to these systolic arrays a 'cost function' is developed to compare them with more conventional techniques, such as the Cooley-Tukey radix-2 Fast Fourier Transform (FFT). The cost function shows that these systolic arrays offer a good way of implementing the Discrete Fourier Transform for transforms up to about 30 points in length. The cost function is a general tool and allows comparisons to be made between different implementations of the same algorithm and between dissimilar algorithms. Finally a technique is developed for the derivation of Discrete Cosine Transform (DCT) algorithms from the Winograd Fourier Transform Algorithm. These DCT algorithms may be implemented by modified versions of the systolic arrays proposed earlier, but requiring half the number of cells

    On the Schoenberg Transformations in Data Analysis: Theory and Illustrations

    Get PDF
    The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A simple distance-based discriminant algorithm illustrates the theory, intimately connected to the Gaussian kernels of Machine Learning
    corecore