927 research outputs found

    Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization

    Get PDF
    Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes

    A Duality-Based Approach for Distributed Optimization with Coupling Constraints

    Full text link
    In this paper we consider a distributed optimization scenario in which a set of agents has to solve a convex optimization problem with separable cost function, local constraint sets and a coupling inequality constraint. We propose a novel distributed algorithm based on a relaxation of the primal problem and an elegant exploration of duality theory. Despite its complex derivation based on several duality steps, the distributed algorithm has a very simple and intuitive structure. That is, each node solves a local version of the original problem relaxation, and updates suitable dual variables. We prove the algorithm correctness and show its effectiveness via numerical computations

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    A Class of Randomized Primal-Dual Algorithms for Distributed Optimization

    Get PDF
    Based on a preconditioned version of the randomized block-coordinate forward-backward algorithm recently proposed in [Combettes,Pesquet,2014], several variants of block-coordinate primal-dual algorithms are designed in order to solve a wide array of monotone inclusion problems. These methods rely on a sweep of blocks of variables which are activated at each iteration according to a random rule, and they allow stochastic errors in the evaluation of the involved operators. Then, this framework is employed to derive block-coordinate primal-dual proximal algorithms for solving composite convex variational problems. The resulting algorithm implementations may be useful for reducing computational complexity and memory requirements. Furthermore, we show that the proposed approach can be used to develop novel asynchronous distributed primal-dual algorithms in a multi-agent context
    corecore