7 research outputs found

    A Pricing-Based Cooperative Spectrum Sharing Stackelberg Game

    Full text link
    We consider the problem of cooperative spectrum sharing among a primary user (PU) and multiple secondary users (SUs) under quality of service (QoS) constraints. The SUs network is controlled by the PU through a relay which gets a revenue for amplifying and forwarding the SUs signals to their respective destinations. The relay charges each SU a different price depending on its received signal-to-interference and-noise ratio (SINR). The relay can control the SUs network and maximize any desired PU utility function. The PU utility function represents its rate, which is affected by the SUs access, and its gained revenue to allow the access of the SUs. The SU network can be formulated as a game in which each SU wants to maximize its utility function; the problem is formulated as a Stackelberg game. Finally, the problem of maximizing the primary utility function is solved through three different approaches, namely, the optimal, the heuristic and the suboptimal algorithms.Comment: 7 pages. IEEE, WiOpt 201

    Resource Allocation for Energy-Efficient 3-Way Relay Channels

    Full text link
    Throughput and energy efficiency in 3-way relay channels are studied in this paper. Unlike previous contributions, we consider a circular message exchange. First, an outer bound and achievable sum rate expressions for different relaying protocols are derived for 3-way relay channels. The sum capacity is characterized for certain SNR regimes. Next, leveraging the derived achievable sum rate expressions, cooperative and competitive maximization of the energy efficiency are considered. For the cooperative case, both low-complexity and globally optimal algorithms for joint power allocation at the users and at the relay are designed so as to maximize the system global energy efficiency. For the competitive case, a game theoretic approach is taken, and it is shown that the best response dynamics is guaranteed to converge to a Nash equilibrium. A power consumption model for mmWave board-to-board communications is developed, and numerical results are provided to corroborate and provide insight on the theoretical findings.Comment: Submitted to IEEE Transactions on Wireless Communication

    Joint Relay Selection and Power Control that aims to Maximize Sum-Rate in Multi-Hop Networks

    Full text link
    Focusing on the joint relay selection and power control problem with a view to maximizing the sum-rate, we propose a novel sub-optimal algorithm that iterates between relay selection and power control. The relay selection is performed by maximizing the minimum signal-to-interference-plus-noise-ratio (as opposed to maximizing the sum-rate) and the power control is performed using a successive convex approximation. By comparing the proposed algorithm with existing solutions via extensive simulations, we show that the proposed algorithm results in significant sum-rate gains. Finally, we analyze the two-user multi-hop network and show that optimum transmit power of at least for two transmitting nodes can be found using binary power allocation.Comment: Extended Version, Submitted to IEEE Communications Letter

    Generating demand functions for data plans from mobile network operators based on users’ profiles

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10922-018-9448-1The evaluation of pricing approaches for mobile data services proposed in the literature can rarely be done in practice. Evaluation by simulation is the most common practice. In these proposals demand and utility functions that describe the reaction of users to offered service prices, use traditional and arbitrary functions (linear, exponential, logit, etc.). In this paper, we present a new approach to construct a simulation model whose output can be used as an alternative method to create demand functions avoiding to use arbitrary and predefined demand functions. However, it is out of the scope of this paper to utilize them to propose pricing approaches, since the main objective of this article is to show the difference between the arbitrary demand functions used and our approach that come from users’ data. The starting point in this paper is to consider data offered from Eurostat, although other data sources could be used for the same purposes with the aim to offer more realistic values that could characterize more appropriately, what users are demanding. In this sense, some demographic and psychographic characteristics of the users are included and others such as the utilization of application usage profiles, as parameters that are included in the user`s profiles. These characteristics and usage profiles make up the user profile that will influence users’ behavior in the model. Using the same procedure, Mobile Network Operators could feed their customers’ data into the model and use it to validate their pricing approaches more accurately before their real implementation or simulate future or hypothetical scenarios. It also makes possible to segment users and make insights for decision-making. Results presented in this paper refer to a simple study case, since the purpose of the paper is to show how the proposal model works and to reveal its differences with arbitrary demand functions used. Of course, results depend on the set of parameters assigned to characterize each user’s profile.Peer ReviewedPostprint (published version

    RESOURCE ALLOCATION FOR WIRELESS RELAY NETWORKS

    Get PDF
    In this thesis, we propose several resource allocation strategies for relay networks in the context of joint power and bandwidth allocation and relay selection, and joint power allocation and subchannel assignment for orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA) systems. Sharing the two best ordered relays with equal power between the two users over Rayleigh flat fading channels is proposed to establish full diversity order for both users. Closed form expressions for the outage probability, and bit error probability (BEP) performance measures for both amplify and forward (AF) and decode and forward (DF) cooperative communication schemes are developed for different scenarios. To utilize the full potentials of relay-assisted transmission in multi user systems, we propose a mixed strategy of AF relaying and direct transmission, where the user transmits part of the data using the relay, and the other part is transmitted using the direct link. The resource allocation problem is formulated to maximize the sum rate. A recursive algorithm alternating between power allocation and bandwidth allocation steps is proposed to solve the formulated resource allocation problem. Due to the conflict between limited wireless resources and the fast growing wireless demands, Stackelberg game is proposed to allocate the relay resources (power and bandwidth) between competing users, aiming to maximize the relay benefits from selling its resources. We prove the uniqueness of Stackelberg Nash Equilibrium (SNE) for the proposed game. We develop a distributed algorithm to reach SNE, and investigate the conditions for the stability of the proposed algorithm. We propose low complexity algorithms for AF-OFDMA and DF-OFDMA systems to assign the subcarriers to the users based on high SNR approximation aiming to maximize the weighted sum rate. Auction framework is proposed to devise competition based solutions for the resource allocation of AF-OFDMA aiming tomaximize either vi the sum rate or the fairness index. Two auction algorithms are proposed; sequential and one-shot auctions. In sequential auction, the users evaluate the subcarrier based on the rate marginal contribution. In the one-shot auction, the users evaluate the subcarriers based on an estimate of the Shapley value and bids on all subcarriers at once
    corecore