495 research outputs found

    Combinatorial Auction-Based Virtual Machine Provisioning And Allocation In Clouds

    Get PDF
    Current cloud providers use fixed-price based mechanisms to allocate Virtual Machine (VM) instances to their users. But economic theory states that when there are large amount of resources to be allocated to large number of users, auctions are the most efficient allocation mechanisms. Auctions achieve efficiency of allocation and also maximize the providers\u27 revenue, which a fixed-price based mechanism is unable to do. We argue that combinatorial auctions are best suited for the problem of VM provisioning and allocation in clouds, since they provide the users with the most flexible way to express their requirements. In combinatorial auctions, users bid for bundles of items rather than individual ones, therefore they are able to express whether the items they require are complementary to each other. The objective of this Ph.D. dissertation is to design, study, and implement combinatorial auction-based mechanisms for efficient provisioning and allocation of VM instances in clouds. The central hypothesis is that allocation efficiency and revenue maximization can be obtained by inducing users to fully express and truthfully report their preferences to the system. The rationale for our research is that, once efficient resource provisioning and allocation mechanisms that take into account the incentives of the users and cloud providers are developed and implemented, it will become more efficient to utilize cloud computing environments for solving challenging problems in business, science and engineering. In this dissertation, we present three combinatorial auction-based offline mechanisms to provision and allocation VM instances in clouds. We also present an online mechanism for dynamic provisioning of virtual machine instances in clouds. Finally, we designed an efficient bidding algorithm to assist users submitting bids to combinatorial auction-based mechanisms to execute parallel jobs the cloud. We outline our contribution and possible direction for future research in this field

    Communications Regulation in the Age of Digital Convergence : Legal and Economic Perspectives

    Get PDF
    This book brings together contributions of a distinguished panel of regulators as well as lawyers and economists from both academia and industry to present their insights on the digital convergence phenomenon in the telecommunications industry. The contributions cover a great deal of the relevant topics in communications regulation, such as technological and network neutrality, distribution of the digital dividend, and incentives for investment and innovation

    Large-scale Multi-item Auctions : Evidence from Multimedia-supported Experiments

    Get PDF
    This book presents two experimental studies that deal with the comparison of multi-item auction designs for two specific applications: the sale of 2.6 GHz radio spectrum rights in Europe, and the sale of emissions permits in Australia. In order to tackle the complexity of these experiments, a cognitively based toolkit is proposed, including modularized video instructions, comprehension tests, a learning platform, a graphical one-screen user interface, and comprehension-based group matching

    Combinatorial exchange models for a user-driven air traffic flow management in Europe

    Get PDF
    2008/2009Air Traffic Flow Management (ATFM) is the service responsible to guarantee that the available capacity of the air transportation system is efficiently used and never exceeded. It guarantees safety of air transportation by adopting a series of measures which range from strategic long-term ones to the imposition of ground delays to flights at a tactical level. These ATFM delays are imposed to individual flights at the departure airport prior to their take-off, since it is safer and less costly to anticipate on the ground any delay predicted somewhere in the system. They are assigned by a central authority according to a First-Planned-First-Served principle, without taking into account individual Airlines' preferences. This criteria of assignment can cause an aggregated cost of delay experienced by users, higher than the minimal one, due to the fact that the cost of delay is a non-linear function of the duration and it depends on many variables such as the type of aircraft, the specific origin-destination pair, ecc. This thesis tackles the issue of formalizing and analyzing alternative models for the assignment of ATFM resources which take into account individual airlines preferences. In particular mathematical programming models are analyzed, that extend the concept of ATFM slot currently adopted to the one of Target Window, as proposed in the CATS European project. Such a concept is in line with the SESAR program, recently adopted in Europe to develop the new generation system of Air Traffic Management, which imposes a direct involvement of Airspace users whenever external constraints need to be enforced that modify their original requests. The first Chapter provides a general introduction to the context of Air Traffic Management and Air Traffic Control. In the second Chapter the principles, methods and performances of the ATFM system are described according to the current situation as well as to the SESAR target concept. The problem of optimally assign ATFM resources is then described mathematically and then analyzed to uncover two fundamental structures that determine its tractability: one corresponds to the case in which there is a unique capacity constrained resource while in the second there is an unrestricted number of constrained resources. In Chapter three a number of properties are proved that give insight into the applicability of different mechanisms for a central calculation of the optimal solution by the ATFM authority. Since such mechanisms involve cost minimization for several agents they are formulated as exchanges, i.e. particular types of auctions in which each participant may buy and/or sell several indivisible goods. The last part of the thesis included in Chapter four deals with the design of iterative exchange mechanisms, whose application in real world presents several advantages with respect to centralized models, from the distribution of computational complexity among participants to the preservation of disclosure of private information by Aircraft Operators. In this case an optimal model based on the Lagrangian relaxation of the separable central problem is first formulated and analyzed. To overcome practical issues possibly deriving from its application in real operations, an heuristic iterative Market-based mechanism is finally formalized. This algorithm exploits some of the underlying characteristics specific to the problem to derive near-optimal solutions in an acceptable time. Computational results are obtained by simulating its implementation on real traffic data and they show that considerable cost savings are possible with respect to a First-Planned-First-Served central allocation. The contribute of this thesis is twofold. The first is to provide a mathematical description, modeling and analysis of the ATFM resource exchange problem faced by Airspace users when network capacity needs to be rationed among them. The second consists in the methodological innovation represented by the formulation of the Market Mechanism which is compliant with several requirements represented by legislative and practical constraints and whose simulation provided encouraging results.XXII Cicl

    Automated Markets and Trading Agents

    Full text link
    Computer automation has the potential, just starting to be realized, of transforming the design and operation of markets, and the behaviors of agents trading in them. We discuss the possibilities for automating markets, presenting a broad conceptual framework covering resource allocation as well as enabling marketplace services such as search and transaction execution. One of the most intriguing opportunities is provided by markets implementing computationally sophisticated negotiation mechanisms, for example combinatorial auctions. An important theme that emerges from the literature is the centrality of design decisions about matching the domain of goods over which a mechanism operates to the domain over which agents have preferences. When the match is imperfect (as is almost inevitable), the market game induced by the mechanism is analytically intractable, and the literature provides an incomplete characterization of rational bidding policies. A review of the literature suggests that much of our existing knowledge comes from computational simulations, including controlled studies of abstract market designs (e.g., simultaneous ascending auctions), and research tournaments comparing agent strategies in a variety of market scenarios. An empirical game-theoretic methodology combines the advantages of simulation, agent-based modeling, and statistical and game-theoretic analysis.http://deepblue.lib.umich.edu/bitstream/2027.42/49510/1/ace_galleys.pd

    meet2trade: An Electronic Market Platform and Experiment System

    Get PDF
    The development of new electronic markets is challenging, since many factors influence the market outcomes and hence the markets’ success. Even worse, a fundamental lesson learned from economics is that details matter: small changes in market design can have a significant impact on the market participant’s behaviors and thus on the achieved outcomes. Consequently a well structured process for design, implementation, testing and maintenance of markets is required. meet2trade is a software tool suite designed to systematically support each step of such a Market Engineering (ME) process. This paper presents the generic trading platform meet2trade that enables users to individually configure their own electronic markets, to run them on the integrated auction server, and to evaluate them using the built-in full-featured lab experiment system

    Radiocommunications

    Get PDF
    On 16 July 2001 the Assistant Treasurer referred a range of legislation and associated regulations relating to spectrum management processes which are provided for under radiocommunications and other legislation, for inquiry and report.The Commission made a series of recommendations designed to expand the reach of market forces in the management, allocation and pricing of spectrum, while preserving the general community’s ability to access spectrum for social and research purposes.Australia; Public inquiry; Report; Communications; Radio; Radiocommunications; spectrum;

    The New Spectrum Auction Law

    Get PDF

    DRIVE: A Distributed Economic Meta-Scheduler for the Federation of Grid and Cloud Systems

    No full text
    The computational landscape is littered with islands of disjoint resource providers including commercial Clouds, private Clouds, national Grids, institutional Grids, clusters, and data centers. These providers are independent and isolated due to a lack of communication and coordination, they are also often proprietary without standardised interfaces, protocols, or execution environments. The lack of standardisation and global transparency has the effect of binding consumers to individual providers. With the increasing ubiquity of computation providers there is an opportunity to create federated architectures that span both Grid and Cloud computing providers effectively creating a global computing infrastructure. In order to realise this vision, secure and scalable mechanisms to coordinate resource access are required. This thesis proposes a generic meta-scheduling architecture to facilitate federated resource allocation in which users can provision resources from a range of heterogeneous (service) providers. Efficient resource allocation is difficult in large scale distributed environments due to the inherent lack of centralised control. In a Grid model, local resource managers govern access to a pool of resources within a single administrative domain but have only a local view of the Grid and are unable to collaborate when allocating jobs. Meta-schedulers act at a higher level able to submit jobs to multiple resource managers, however they are most often deployed on a per-client basis and are therefore concerned with only their allocations, essentially competing against one another. In a federated environment the widespread adoption of utility computing models seen in commercial Cloud providers has re-motivated the need for economically aware meta-schedulers. Economies provide a way to represent the different goals and strategies that exist in a competitive distributed environment. The use of economic allocation principles effectively creates an open service market that provides efficient allocation and incentives for participation. The major contributions of this thesis are the architecture and prototype implementation of the DRIVE meta-scheduler. DRIVE is a Virtual Organisation (VO) based distributed economic metascheduler in which members of the VO collaboratively allocate services or resources. Providers joining the VO contribute obligation services to the VO. These contributed services are in effect membership “dues” and are used in the running of the VOs operations – for example allocation, advertising, and general management. DRIVE is independent from a particular class of provider (Service, Grid, or Cloud) or specific economic protocol. This independence enables allocation in federated environments composed of heterogeneous providers in vastly different scenarios. Protocol independence facilitates the use of arbitrary protocols based on specific requirements and infrastructural availability. For instance, within a single organisation where internal trust exists, users can achieve maximum allocation performance by choosing a simple economic protocol. In a global utility Grid no such trust exists. The same meta-scheduler architecture can be used with a secure protocol which ensures the allocation is carried out fairly in the absence of trust. DRIVE establishes contracts between participants as the result of allocation. A contract describes individual requirements and obligations of each party. A unique two stage contract negotiation protocol is used to minimise the effect of allocation latency. In addition due to the co-op nature of the architecture and the use of secure privacy preserving protocols, DRIVE can be deployed in a distributed environment without requiring large scale dedicated resources. This thesis presents several other contributions related to meta-scheduling and open service markets. To overcome the perceived performance limitations of economic systems four high utilisation strategies have been developed and evaluated. Each strategy is shown to improve occupancy, utilisation and profit using synthetic workloads based on a production Grid trace. The gRAVI service wrapping toolkit is presented to address the difficulty web enabling existing applications. The gRAVI toolkit has been extended for this thesis such that it creates economically aware (DRIVE-enabled) services that can be transparently traded in a DRIVE market without requiring developer input. The final contribution of this thesis is the definition and architecture of a Social Cloud – a dynamic Cloud computing infrastructure composed of virtualised resources contributed by members of a Social network. The Social Cloud prototype is based on DRIVE and highlights the ease in which dynamic DRIVE markets can be created and used in different domains
    corecore