530 research outputs found

    Research Advance on Prediction and Optimization for Fracture Propagation in Stimulated Unconventional Reservoirs

    Get PDF
    AbstractMultistage stimulation horizontal wells are prerequisite technologies for efficient development of unconventional reservoir. However, the induced fracture network morphology from hydraulic fracturing is very complex and affected by many factors, such as the in situ stress, rock mechanical properties, and natural fracture distribution. The large numbers of natural fractures and strong reservoir heterogeneity in unconventional reservoirs result in enhanced complexity of induced fractures from hydraulic fracturing. Accurate description of fracture network morphology and the flow capacity in different fractures form an important basis for production forecasting, evaluation (or optimization) of stimulation design, and development plan optimization. This paper focuses on hydraulic fracturing in unconventional reservoirs and discusses the current research advances from four aspects: (1) the prediction of induced fracture propagation, (2) the simulation of fluid flow in complex fracture networks, (3) the inversion of fracture parameter (fracture porosity, fracture permeability, etc.), and (4) the optimization of hydraulic fracturing in unconventional reservoirs. In addition, this paper provides comparative analysis of the characteristics and shortcomings of the current research by outlining the key technical problems in the study of flow characterization, parameter inversion, and optimization methods for stimulation in unconventional reservoirs. This work can provide a certain guiding role for further research

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Get PDF
    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in underground formations, and the evaluation of the risk of potential CO{sub 2} leakage to the atmosphere and underground aquifers

    Comportement hydraulique des milieux faillés

    Get PDF
    Les milieux discontinus se caractĂ©risent par une substitution totale ou partielle de la porositĂ© primaire par une porositĂ© secondaire portĂ©e par les fractures et failles. Les Ă©coulements y sont souvent marquĂ©s par une forte sĂ©grĂ©gation due aux contrastes de conductivitĂ© avec la matrice environnante, ainsi qu'entre les discontinuitĂ©s. L'apprĂ©hension de leur gĂ©omĂ©trie constitue un enjeu majeur en hydrogĂ©ologie des milieux discontinus. La distinction entre milieux fracturĂ©s et milieux faillĂ©s est cruciale en modĂ©lisation hydraulique du fait que ceux-ci s'abordent de maniĂšres diamĂ©tralement opposĂ©es: les milieux fracturĂ©s forment des rĂ©seaux dont les propriĂ©tĂ©s hydrauliques macroscopiques sont envisagĂ©es Ă  travers un schĂ©ma d'homogĂ©nĂ©itĂ© statistique (fractal ou euclidien), privilĂ©giant typiquement une reprĂ©sentation stochastique dans un continuum Ă©quivalent. Inversement, les failles sont des structures hydrauliques de grande dimension Ă  l'Ă©chelle du rĂ©servoir et en nombre restreint. Elles doivent ĂȘtre considĂ©rĂ©es intrinsĂšquement dans les modĂšles d'Ă©coulement comme des unitĂ©s hydrauliques majeures bi-ou tridimensionnelles discrĂštes en interaction continue avec la matrice environnante, au sein desquelles les Ă©coulements sont explicitement reprĂ©sentĂ©s de maniĂšre dĂ©terministe. C'est l'approche privilĂ©giĂ©e dans cette thĂšse. L'incapacitĂ© des modĂšles hydrauliques conventionnels Ă  reproduire les comportements transmis par les milieux discontinus est reconnue depuis plusieurs dĂ©cennies. Les auteurs ont recherchĂ© des extensions de ces modĂšles, dont la plus notable est le modĂšle Generalized Radial Flow (Barker, 1988) qui introduit le paramĂštre dimension d'Ă©coulement n et le concept de comportement non-radial (i.e., n ≠ 2). Ce modĂšle reproduit efficacement les signaux transmis par les milieux discontinus, toutefois sa signification physique est incertaine et les conditions hydrodynamiques associĂ©es au dĂ©veloppement de dimensions non-radiales demeurent Ă©nigmatiques. Il en rĂ©sulte une trĂšs faible applicabilitĂ© du modĂšle GRF malgrĂ© le trĂšs fort potentiel diagnostique renfermĂ© par le paramĂštre n. On montre que ce paramĂštre dĂ©crit l'Ă©volution gĂ©omĂ©trique de l'Ă©quipotentielle frontale au cours du test hydraulique transitoire. Le comportement non-radial serait donc produit par tout systĂšme dont la gĂ©omĂ©trie -ou les propriĂ©tĂ©s hydrauliques -produisent une Ă©volution transitoire de cette surface admettant des modifications de forme progressives et rĂ©guliĂšres. On peut s'attendre Ă  ce que ce phĂ©nomĂšne soit engendrĂ© par les interactions transitoires entre une faille et sa matrice. Le premier volet de cette thĂšse se consacre Ă  la vĂ©rification de cette hypothĂšse. La production de comportements non-radiaux n = 1,5 par le discontinuum faille verticale-matrice est dĂ©montrĂ©e par la modĂ©lisation numĂ©rique tridimensionnelle aux Ă©lĂ©ments finis. L'outil numĂ©rique a permis de contraindre quantitativement les conditions hydrodynamiques associĂ©es Ă  ce comportement. Celui-ci dĂ©coule du ralentissement du regime de diffusion au sein de la faille, engendrĂ© par l'approvisionnement matriciel. Par ailleurs, l'observation des modalitĂ©s d'apparition des dimensions d'Ă©coulement dans les milieux discontinus naturels (base de donnĂ©es de quarante-et-un essais de pompages) a fait ressortir des signatures complexes presque systĂ©matiquement composĂ©es de plusieurs pĂ©riodes radiales et non-radiales, dont aucun modĂšle hydraulique existant ne peut rendre compte. Ces signatures multiphasĂ©es montrent une excellente homogĂ©nĂ©itĂ© spatiale attestĂ©e par les tests d'interfĂ©rences (six sites considĂ©rĂ©s). Un autre volet de cette thĂšse s'attache Ă  explorer les moyens diagnostiques renfermĂ©s par une telle complexitĂ© et variabilitĂ© des comportements naturels Ă  travers une approche numĂ©rique expĂ©rimentale recherchant des extensions du modĂšle Ă  faille verticale analysĂ© prĂ©cĂ©demment vers des configurations gĂ©omĂ©triques et hydrauliques moins idĂ©alisĂ©es: faille inclinĂ©e jusqu'au stade horizontal, milieu composite (faille Ă  l'interface), anisotropie. Plusieurs comportements Ă©lĂ©mentaires ont Ă©tĂ© Ă©laborĂ©s, trĂšs bien corroborĂ©s par les signatures naturelles dont une interprĂ©tation avancĂ©e en termes de conditions d'Ă©coulement discontinu est rendue possible. Ces rĂ©sultats constituent une amĂ©lioration significative des modĂšles hydrauliques en milieux faillĂ©s, toutefois on montre que le potentiel diagnostique du paramĂštre dimension d'Ă©coulement demeure trĂšs faiblement exploitĂ©. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : AquifĂšres, Failles, Essais de pompages, ModĂ©lisation numĂ©rique

    INTEGRATED ANALYSIS AND INTERPRETATION OF MICROSEISMIC MONITORING OF HYDRAULIC FRACTURING IN THE MARCELLUS SHALE

    Get PDF
    In 2012 and 2013, hydraulic fracturing was performed at two Marcellus Shale well pads, under the supervision of the Energy Corporation of America. Six lateral wells were hydraulically fractured in Greene County in southwestern Pennsylvania and one lateral well was fractured in Clearfield County in north-central Pennsylvania. During hydraulic fracturing operations, microseismic monitoring by strings of downhole geophones detected a combination of >16,000 microseismic events at the two sites. High quality traditional and geomechanical well logs were acquired at Clearfield County, as well as tomographic velocity profiles before and after stimulation. In partnership with the US Department of Energy’s National Energy Technology Laboratory, I completed detailed analysis of these geophysical datasets to maximize the understanding of the engineering and geological conditions in the reservoir, the connection between hydraulic input and microseismic expression, and the geomechanical factors that control microseismic properties. Additionally, one broad-band surface seismometer was deployed at Greene County and left to passively monitor site acoustics for the duration of hydraulic fracturing. Data from this instrument shows the presence of slow-slip or long period/long duration (LPLD) seismicity. In years prior to our investigation, lab-scale fracturing studies and broadband seismic monitoring of hydraulic fracturing had been completed by other researchers in unconventional shale and tight sand in Texas and Canada. This is the first study of LPLD seismicity in the Marcellus Shale and reveals aseismic deformation during hydraulic fracturing that could account for a large portion of “lost” hydraulic energy input. Key accomplishments of the studies contained in this dissertation include interpreting microseismic data in terms of hydraulic pumping data and vice versa, verifying the presence of LPLD seismicity during fracturing, establishing important geomechanical controls on the character of induced microseismicity, and extensive data integration toward locating a previously unmapped fault that appears to have exhibited significant control over well stimulation efforts at Clearfield

    MULTISCALE GEOLOGICAL MODELLING FOR FLUID FLOW EVALUATION ON DEFORMED CARBONATES

    Get PDF
    In this Ph.D. thesis, the effect of both lithological and structural heterogeneities on fluid flow was investigated, in both porous and tight carbonates, by means of multiscale geological models and fluid flow simulations. The petrophysical properties (i.e., porosity, permeability) of the analyzed multiscale fault zones have been investigated by the implementation of 3D models based on different stochastic and deterministic approaches such as the Discrete Fracture Network modelling (DFN), Structure from Motion photogrammetry (SfM), X-ray computed microtomography (micro-CT) and Lattice-Boltzmann Method (LBM). Furthermore, a 2D elastic-petrophysical model of a seismic scale fault zone in tight carbonates was investigated through the seismic modelling pre-stack depth migration (PSDM) technique, performing a sensitivity analysis of different geophysical and geological conditions to test the seismic signature of a seismic scale fault zone internal architecture.The bulk of this doctoral thesis consists of four scientific papers: Chapter 1. From fracture analysis to flow simulations in fractured carbonates: the case study of the Roman Valley quarry (Majella Mountain, Italy), published in Marine and Petroleum Geology 100 (2019) 95–110. Chapter 2. Analysis of fracture roughness control on permeability using SfM and fluid flow simulations: implications for carbonate reservoir characterization, published in Geofluids, Volume 2019, Article ID 4132386. Chapter 3. Pore-scale dual-porosity and dual-permeability modeling in an exposed multi-facies porous carbonate reservoir, published in Marine and Petroleum Geology 128 (2021) 105004. Chapter 4. Outcrop-scale fracture analysis and seismic modelling of a basin-bounding normal fault in platform carbonates, central Italy, submitted in Journal of Structural Geology. The studies related to the first three papers have been carried out within the same study area, the inactive Roman Valley quarry (Majella Mountain, central Italy), well-known for its historical bitumen extraction. This site facilitates the study of a well-exposed analogue of a porous deformed carbonate reservoir and allows gaining information about matrix, fracture and fault characteristics that influenced hydrocarbon migration. Furthermore, the bitumen shows distribution within the quarry helps to further discuss and validate the obtained results. In the first chapter, the main objective was to assess the impact of both stratigraphic and structural heterogeneities on fluid flow at the outcrop scale. This was possible by creating a large-scale DP/P model of the study area, which includes the petrophysical properties (i.e., porosity and permeability) of the matrix and fracture pore systems associated with the different studied lithofacies and fault zones. The studied rocks consist of ramp carbonates belonging to the lower member of the Bolognano Formation (Oligocene-Miocene in age) composed of grainstones, packstones and wackestones. These rocks are crosscut by two high-angle oblique-slip faults WNW- ESE oriented with up to 40 m of throw. The petrophysical properties of matrix and fractures were derived from laboratory measurements and field-based Discrete Fracture Network (DFN) modelling, respectively. Finally, the DP/P model was used to run fluid flow simulation, testing different scenarios of well locations. The fluid distribution in the matrix, resulting from these flow simulations, is consistent with field observations wherebitumen localizes within the most pervious lithofacies (grainstones). In the fault zones, the fracture network gains a relevant fluid flow anisotropy, enhancing the fluid flow along the faults, whereas the across fault fluid flow is controlled by type and lateral continuity of fault rocks, where fault breccias represent conduits and cataclasites localized barriers. Although the use of DFN models is an acceptable representation of the macroscopy heterogeneities associated with sub-seismic resolution faults in a reservoir characterization, at the pore-scale the fluid flow is controlled by the matrix and fracture pore morphology. Therefore, the scale of investigation was changed in the second and third chapters focusing on the effect of pore scale heterogeneities on permeability. Specifically, the second chapter focuses on the analysis of the so-called fracture hydraulic aperture, which differs from the mechanical aperture due to a friction factor related to the roughness of the fracture walls. Samples of fracture surface have been collected from the different lithofacies outcropping within the Roman Valley quarry and digitalized using SfM photogrammetry in a highly controlled laboratory setting, applying a fracture surface micro-topography. This study incorporates fluid flow simulations, using the Lattice-Boltzmann method, and the use of synthetic computer- generated fractures for estimation of the fracture roughness. The quantitative analysis of fault surface roughness was achieved by implementing the power spectral density (PSD), which provides an objective description of the roughness, based on the frequency distribution of the surface asperities in the Fourier domain. This work evaluates the respective controls on permeability exerted by the fracture displacement (perpendicular and parallel to the fracture walls), surface roughness, and surface pair mismatch. The results may contribute to defining a more accurate equation of hydraulic aperture and permeability of single fractures. The third chapter aims to investigate the interaction between the fracture and matrix pore systems at the microscale. To do so, microscale DP/P models were generated by incorporating two different methods of 3D imaging such as, high resolution synchrotron X-ray microtomography (micro-CT) and SfM photogrammetry. Quantitative analyses of pristine rock and DP/P models were performed to evaluate the contribution of macrofracture segments to the porosity and connectivity of the pore network. These results were integrated with fluid flow simulations by applying a sensitivity analysis to evaluate the control exerted by fracture roughness parameters (i.e., asperity height distribution and fractal dimension) on porosity and permeability in various lithofacies. The results of this study demonstrate the utility of obtainingmicroscale DP/P models as complementary approach to explain the geofluids distribution in fractured multi-facies porous carbonates. Finally, the fourth chapter focuses on an integrated outcrop-based characterization and seismic modelling of the internal architecture of a seismic scale fault zone hosted in tight carbonates. This was possible in a key outcrop represented by an active quarry, located at the southeastern boundary of the Fucino Basin (Abruzzo region, central Italy). Here, the footwall damage zone of a seismic scale fault (throw ≈ 300 m), known as Venere Fault (VF), is well-exposed in a 3D view and crosscut by many subsidiary structures. This study presents a workflow to investigate the across strike distribution of petrophysical properties within the VF damage zone, through quantitative fracture analysis and in-situ permeability measurements. A large-scale 2D petrophysical-elastic base model of the VF zone was constrained incorporating results from field analyses and digital outcrop models (DOM) from SfM photogrammetry technique. This base model was tested in ray-based seismic modelling (PSDM; Lecomte et al., 2008), performing a sensitivity analysis of geological and geophysical parameters to investigate the seismic signature of the VF zone. The present contribution hence highlights the great importance of high- resolution structural analysis of fault damage zones for seismic modelling, and subsurface fault characterization

    A semianalytical model of fractured horizontal well with hydraulic fracture network in shale gas reservoir for pressure transient analysis

    Get PDF
    Accurate construction of a seepage model for a multifractured horizontal well in a shale gas reservoir is essential to realizing the forecast of gas well production, the pressure transient analysis, and the inversion of the postfracturing parameters. This study introduces a method for determining the fracture control region to characterize the flow area of the matrix within the hydraulic fracture network, distinguishing the differences in the flow range of the matrix system between the internal and external regions caused by the hydraulic fracture network structure. The corresponding derivation and solution methods of the semi-analytical seepage model for fractured shale gas well are provided, followed by the application of case studies, model validation, and sensitivity analysis of parameters. The results indicate that the proposed model yields computational results that closely align with numerical simulations. It is observed that disregarding the differentiation of matrix flow area between the internal and external regions of the fracture network led to an overestimation of the estimated ultimate recovery, and the boundary-controlled flow period in typical well testing curves will appear earlier. Because hydraulic fracture conductivity can be influenced by multiple factors simultaneously, conducting a sensitivity analysis using combined parameters could lead to inaccurate results in the inversion of fracture parameters.Document Type: Original articleCited as: Cui, Q., Zhao, Y., Zhang, L., Chen, M., Gao, S., Chen, Z. A semianalytical model of fractured horizontal well with hydraulic fracture network in shale gas reservoir for pressure transient analysis. Advances in Geo-Energy Research, 2023, 8(3): 193-205. https://doi.org/10.46690/ager.2023.06.0

    Analyse des dimensions d'écoulement et caractérisation hydrodynamique des aquifÚres complexes : du pompage à l'interprétation diagnostique

    Get PDF
    La discordance entre la complexitĂ© des Ă©coulements au sein des aquifĂšres et la simplicitĂ© des modĂšles analytiques rend l’interprĂ©tation des essais de pompage ambiguĂ« et approximative. Actuellement, les praticiens hydrogĂ©ologues interprĂštent la plupart des essais de pompage Ă  partir de modĂšles de type Theis. Ces modĂšles sont basĂ©s sur l’hypothĂšse d’un Ă©coulement radial-cylindrique. La limite de cette approche est que lorsque le rĂ©gime d’écoulement de l’aquifĂšre pompĂ© est non radial-cylindrique, l’application des modĂšles de type Theis mĂšne Ă  des estimations imprĂ©cises voir erronĂ©es des propriĂ©tĂ©s hydrodynamiques. Bourdet et al. (1989) intĂ©grĂšrent le signal de la dĂ©rivĂ©e logarithmique du rabattement (ds/dlogt) dans la littĂ©rature pĂ©troliĂšre afin de dĂ©terminer les rĂ©gimes d’écoulement d’un pompage. AffichĂ©es sur un diagramme log-log, les sĂ©ries temporelles de la dĂ©rivĂ©e-log de s rĂ©vĂšlent des pentes caractĂ©ristiques qui expriment les rĂ©gimes d’écoulement induits par le pompage. Pour certains rĂ©gimes d’écoulement, il existe des modĂšles conceptuels qui permettent de conceptualiser la gĂ©omĂ©trie des Ă©coulements, la configuration des propriĂ©tĂ©s hydrauliques et la nature des frontiĂšres hydrauliques. L’utilisation de solutions analytiques qui sont adaptĂ©es aux rĂ©gimes d’écoulement rĂ©ellement observĂ©s lors d’un pompage, permet ainsi d’estimer des propriĂ©tĂ©s hydrauliques qui sont plus fidĂšles Ă  la rĂ©alitĂ©. Le signal de la dĂ©rivĂ©e log de s permet donc d’aborder l’interprĂ©tation des essais de pompage avec une nouvelle approche diagnostique puisque les rĂ©gimes d’écoulement sont observĂ©s plutĂŽt que d’ĂȘtre supposĂ©s Ă  l’aveugle. Cette approche a l’avantage d’apporter beaucoup plus d’informations qu’une simple analyse conventionnelle de s, sans nĂ©cessiter pour autant plus de mesures sur le terrain. Face Ă  ce potentiel diagnostique, une multitude de modĂšles analytiques ont Ă©tĂ© mis Ă  jour afin d’intĂ©grer le signal ds/dlogt dans les Ă©tudes et de nouveaux modĂšles conceptuels ont Ă©tĂ© dĂ©veloppĂ©s. Alors que la recherche en lien avec l’industrie pĂ©troliĂšre est florissante dans le domaine et que l’analyse de la dĂ©rivĂ©e-log de s est couramment appliquĂ©e dans les Ă©tudes, ce type d’analyses est encore peu utilisĂ© par les praticiens de l’hydrogĂ©ologie. Barker (1988), proposa le paramĂštre de la dimension d’écoulement n afin d’interprĂ©ter le comportement hydrodynamique de l’aquifĂšre pour n’importe quelle pente de la dĂ©rivĂ©e-log de s. Ce paramĂštre reflĂšte l’évolution transitoire et spatio-temporelle de la surface de l’onde de pression (surface Ă©quipotentielle traversĂ©e par les Ă©coulements A(r)) au fur et Ă  mesure qu’elle se diffuse Ă  travers l’aquifĂšre (A(r) = rn-1). Ainsi, en se propageant, l’onde de pression va se dĂ©former selon l’hĂ©tĂ©rogĂ©nĂ©itĂ© du milieu. Lorsque celle-ci atteint un comportement stable, il est possible de dĂ©terminer n Ă  partir des pentes du signal ds/dlogt. L’analyse des sĂ©quences de n est donc un outil pertinent pour analyser les aquifĂšres complexes (non-theissiens) car elle permet d’investiguer les diffĂ©rents comportements hydrauliques de l’aquifĂšre qui sont ressentis par l’onde de pression en se propageant. Les sĂ©quences de n permettent ainsi de « scanner » autour du puits, les changements hydrodynamiques, ce qui permet ensuite d’en dĂ©duire des hypothĂšses sur la gĂ©omĂ©trie des Ă©coulements et/ou la configuration des propriĂ©tĂ©s hydrauliques. MalgrĂ© son potentiel diagnostique, l’analyse sĂ©quentielle de la dimension d’écoulement est encore peu abordĂ©e dans la littĂ©rature, Ă  la fois pĂ©troliĂšre et hydrogĂ©ologique. Le prĂ©sent travail vise Ă  participer Ă  l’émancipation des outils diagnostiques basĂ©s sur l’analyse sĂ©quentielle de n par une approche intĂ©grĂ©e qui combine une revue de littĂ©rature, des donnĂ©es de terrain et une analyse numĂ©rique. En effet, afin de contribuer Ă  rĂ©duire le « fossĂ© » entre la littĂ©rature pĂ©troliĂšre et la littĂ©rature en hydrogĂ©ologie, une revue de littĂ©rature exhaustive des sĂ©quences de n et des modĂšles conceptuels associĂ©s a Ă©tĂ© Ă©laborĂ©e afin de proposer un catalogue des rĂ©gimes d’écoulement (premier article de cette thĂšse). L’objectif de ce travail est Ă©galement de promouvoir l’utilisation combinĂ©e du signal de la dĂ©rivĂ©e log de s et de la dimension d’écoulement. L’analyse sĂ©quentielle de la dimension d’écoulement est un outil trĂšs pertinent pour investiguer le comportement hydrodynamique des aquifĂšres complexes. De plus, afin d’approfondir la comprĂ©hension physique de la dimension d’écoulement, une base de donnĂ©es de n a Ă©tĂ© construite Ă  partir d’essais de pompage issus d’environnements gĂ©ologiques diffĂ©rents tels que des socles rocheux granitiques, des milieux carbonatĂ©s (peu ou trĂšs fracturĂ©s), des arĂšnes granitiques et des dĂ©pĂŽts fluvio-glaciaires. Cette analyse de donnĂ©es de terrain a permis i) d’apprĂ©cier l’occurrence de n dans la nature, ii) de constater la diversitĂ© et la complexitĂ© des comportements hydrodynamiques des aquifĂšres (et donc le manque d’applicabilitĂ© du modĂšle de Theis) et iii) d’établir des relations statistiques entre des contextes gĂ©ologiques et les valeurs de n. Enfin, cette base de donnĂ©es a permis de cibler un comportement hydrodynamique qui soit rĂ©ellement observĂ© dans la nature mais encore peu analysĂ© dans la littĂ©rature. Une analyse numĂ©rique a ainsi permis d’investiguer le comportement hydrodynamique d’un aquifĂšre Ă  substratum inclinĂ© en suivant l’évolution du front de pression Ă  travers le milieu. Cette Ă©tude permet de contribuer au catalogue des rĂ©gimes d’écoulement en proposant une nouvelle sĂ©quences de n (n = 2 – 2 – 3) afin de dĂ©tecter et d’analyser les aquifĂšres Ă  substratum inclinĂ©. Une Ă©tude de sensibilitĂ© a Ă©galement permis de proposer des Ă©quations afin d’estimer plus prĂ©cisĂ©ment les propriĂ©tĂ©s hydrauliques de ce type d’aquifĂšre

    Tracing back the source of contamination

    Get PDF
    From the time a contaminant is detected in an observation well, the question of where and when the contaminant was introduced in the aquifer needs an answer. Many techniques have been proposed to answer this question, but virtually all of them assume that the aquifer and its dynamics are perfectly known. This work discusses a new approach for the simultaneous identification of the contaminant source location and the spatial variability of hydraulic conductivity in an aquifer which has been validated on synthetic and laboratory experiments and which is in the process of being validated on a real aquifer
    • 

    corecore