83 research outputs found

    Energy preserving model order reduction of the nonlinear Schr\"odinger equation

    Get PDF
    An energy preserving reduced order model is developed for two dimensional nonlinear Schr\"odinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orthogonal decomposition (POD) Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD). Preservation of the semi-discrete energy and mass are shown for the full order model (FOM) and for the ROM which ensures the long term stability of the solutions. Numerical simulations illustrate the preservation of the energy and mass in the reduced order model for the two dimensional NLSE with and without the external potential. The POD-DMD makes a remarkable improvement in computational speed-up over the POD-DEIM. Both methods approximate accurately the FOM, whereas POD-DEIM is more accurate than the POD-DMD

    Convergent Analysis of Energy Conservative Algorithm for the Nonlinear Schrödinger Equation

    Get PDF
    Using average vector field method in time and Fourier pseudospectral method in space, we obtain an energy-preserving scheme for the nonlinear Schrödinger equation. We prove that the proposed method conserves the discrete global energy exactly. A deduction argument is used to prove that the numerical solution is convergent to the exact solution in discrete L2 norm. Some numerical results are reported to illustrate the efficiency of the numerical scheme in preserving the energy conservation law

    Structure preserving reduced order modeling for gradient systems

    Full text link
    Minimization of energy in gradient systems leads to formation of oscillatory and Turing patterns in reaction-diffusion systems. These patterns should be accurately computed using fine space and time meshes over long time horizons to reach the spatially inhomogeneous steady state. In this paper, a reduced order model (ROM) is developed which preserves the gradient dissipative structure. The coupled system of reaction-diffusion equations are discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of ordinary differential equations (ODEs) are integrated in time by the average vector field (AVF) method, which preserves the energy dissipation of the gradient systems. The ROMs are constructed by the proper orthogonal decomposition (POD) with Galerkin projection. The nonlinear reaction terms are computed efficiently by discrete empirical interpolation method (DEIM). Preservation of the discrete energy of the FOMs and ROMs with POD-DEIM ensures the long term stability of the steady state solutions. Numerical simulations are performed for the gradient dissipative systems with two specific equations; real Ginzburg-Landau equation and Swift-Hohenberg equation. Numerical results demonstrate that the POD-DEIM reduced order solutions preserve well the energy dissipation over time and at the steady state

    Adaptive Energy Preserving Methods for Partial Differential Equations

    Full text link
    A method for constructing first integral preserving numerical schemes for time-dependent partial differential equations on non-uniform grids is presented. The method can be used with both finite difference and partition of unity approaches, thereby also including finite element approaches. The schemes are then extended to accommodate rr-, hh- and pp-adaptivity. The method is applied to the Korteweg-de Vries equation and the Sine-Gordon equation and results from numerical experiments are presented.Comment: 27 pages; some changes to notation and figure

    Linearly implicit exponential integrators for damped Hamiltonian PDEs

    Full text link
    Structure-preserving linearly implicit exponential integrators are constructed for Hamiltonian partial differential equations with linear constant damping. Linearly implicit integrators are derived by polarizing the polynomial terms of the Hamiltonian function and portioning out the nonlinearly of consecutive time steps. They require only a solution of one linear system at each time step. Therefore they are computationally more advantageous than implicit integrators. We also construct an exponential version of the well-known one-step Kahan's method by polarizing the quadratic vector field. These integrators are applied to one-dimensional damped Burger's, Korteweg-de-Vries, and nonlinear Schr\"odinger equations. Preservation of the dissipation rate of linear and quadratic conformal invariants and the Hamiltonian is illustrated by numerical experiments

    Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn-Hilliard Equation

    Get PDF
    An energy stable conservative method is developed for the Cahn-Hilliard (CH) equation with the degenerate mobility. The CH equation is discretized in space with the mass conserving symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting semi-discrete nonlinear system of ordinary differential equations are solved in time by the unconditionally energy stable average vector field (AVF) method. We prove that the AVF method preserves the energy decreasing property of the fully discretized CH equation. Numerical results for the quartic double-well and the logarithmic potential functions with constant and degenerate mobility confirm the theoretical convergence rates, accuracy and the performance of the proposed approach
    corecore