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Using average vector fieldmethod in time and Fourier pseudospectral method in space, we obtain an energy-preserving scheme for
the nonlinear Schrödinger equation. We prove that the proposed method conserves the discrete global energy exactly. A deduction
argument is used to prove that the numerical solution is convergent to the exact solution in discrete 𝐿

2
norm. Some numerical

results are reported to illustrate the efficiency of the numerical scheme in preserving the energy conservation law.

1. Introduction

The nonlinear Schrödinger (NLS) equation describes a
wide range of physical phenomena, such as hydrodynamics,
plasma physics, nonlinear optics, self-focusing in laser pulses,
propagation of heat pulses in crystals, and description of the
dynamics of Bose-Einstein condensate at extremely low tem-
perature [1, 2]. It plays an essential role in mathematical and
physical context, and more and more focus is concentrated
upon its numerical solvers in recent years [3, 4]. For the NLS
equation, construction and theoretical analysis of numerical
algorithms have achieved fruitful results [5–14].

The general form of the NLS equation with the initial
value and the periodic boundary condition is
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𝜓 (0, 𝑡) = 𝜓 (2𝜋, 𝑡) ,

(1)

where 𝑎 is a real parameter. Now using 𝜓 = 𝑝 + 𝑖𝑞, we can
rewrite (1) as a pair of real-valued equations as follows:
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Equations (2) can be expressed in the Hamiltonian form.
Consider

𝑑𝑧
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𝛿𝑧
, (3)

where 𝑧 = (𝑝, 𝑞)𝑇 ∈ R2 and the Hamiltonian function, which
is system energy, is
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(4)

The NLS equation (1) admits the energy conservation law.
Consider

𝜀 (𝑡) = ∫

2𝜋
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(
𝑎
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󵄨󵄨󵄨󵄨𝜓𝑥
󵄨󵄨󵄨󵄨

2

)𝑑𝑥 = 𝜀 (0) . (5)

Quispel and McLaren [15] proposed the average vec-
tor field (AVF) method, which is a second-order energy-
preserving method, and they also provided the correspond-
ing high-ordermethodwhich is of fourth-order accuracy.The
second-order energy-preserving method has been applied
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to solve the partial differential equation [16]. However, to
our knowledge, the current papers are most concentrated
on construction of energy-preserving scheme, and very
few papers discussed convergent analysis of the energy-
preserving scheme. In this paper, we develop an energy
conservative algorithm for the NLS equation by using AVF
method in time and Fourier pseudospectral method in space
and analyze the proposed method.

The paper is organized as follows. In Section 2, a new
conservative scheme is proposed for the NLS equation. We
prove that the method preserves the energy conservation
law. In Section 3, a deduction argument is used to prove that
the numerical solution is convergent to the exact solution in
discrete 𝐿

2
norm. The solitary wave behaviors for the NLS

equation are simulated by the new scheme in Section 4. In
Section 5, it is devoted to the conclusions.

2. Construction of Conservative Algorithm for
the NLS Equation

In this section, we apply the Fourier pseudospectral method
in space and the AVFmethod in time to construct an energy-
preserving algorithm for the NLS equation.

One usually uses second-order Fourier spectral differ-
entiation matrix 𝐷

2
to approximate the second-order dif-

ferential operator 𝜕
𝑥𝑥
. For the ordinary differential equation

𝑢
𝑥𝑥
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𝑥
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Fourier pseudospectral method to the two equations leads to
𝐷
1
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1
V = 𝑓. Eliminating vector V gives 𝐷2

1
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𝑓. In this work, we use 𝐷2
1
𝑢 to approximate 𝑢

𝑥𝑥
instead of

𝐷
2
𝑢 and obtain the corresponding Fourier pseudospectral

semidiscretization for the NLS equation (1) as follows:

𝑖
𝑑

𝑑𝑡
𝜓
𝑗
+ (𝐷
2

1
Ψ)
𝑗
+ 𝑎
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝜓
𝑗
= 0, 𝑗 = 0, 1, 2, . . . , 𝑁 − 1,

(6)
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𝑇. Equations (6) can be

rewritten as
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where p = (𝑝
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Since 𝐷2
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is symmetric, (7) is regarded as a Hamiltonian

system with Hamiltonian. Consider
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Now we discretize (6) with respect to time by the AVF
method and obtain
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reformed as a vector form. Consider
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where |Ψ𝑛|2 = |Ψ𝑛| ⋅ |Ψ𝑛| and “⋅” denotes point multiplication
between vectors; that is,
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Equations (9) can also be rewritten as
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Next, we prove that scheme (10) conserves the discrete
total energy. Let 𝑋
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Theorem 1. With periodic boundary condition 𝜓(0, 𝑡) =

𝜓(2𝜋, 𝑡), scheme (10) possesses the discrete global energy
conservation law; namely,
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Therefore, the real part of (15) is
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So (19) gives the energy conservation law (14).

3. Convergence Analysis

Let 𝐼 = [0, 2𝜋], 𝐿2(𝐼) with the inner product (⋅, ⋅) and the
norm ‖ ⋅ ‖. For any positive integer 𝑟, the seminorm and the

norm of𝐻𝑟(𝐼) are denoted by | ⋅ |
𝑟
and ‖ ⋅ ‖

𝑟
, respectively. Let

𝐶
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(𝑝)
(𝐼) be the set of infinitely differentiable functions with
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𝐻
𝑟
(𝐼). In this section, let 𝐶 be a generic positive constant

which may be dependent on the regularity of exact solution
and the initial data but independent of the time step 𝜏 and the
grid size ℎ.
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It is obviously that 𝑉󸀠󸀠
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Lemma 4. Suppose 𝑢∗ = 𝑃
𝑁−2
𝑢, 𝑢 ∈ 𝐻𝑟

(𝑝)
(𝐼), and 𝑟 > 1/2;

then ‖𝑢∗ − 𝑢‖
𝑁
≤ 𝐶𝑁

−𝑟
|𝑢|
𝑟
.

Proof. According to Lemmas 2 and 3, we have
󵄩󵄩󵄩󵄩𝑢
∗
− 𝑢
󵄩󵄩󵄩󵄩𝑁
=
󵄩󵄩󵄩󵄩𝐼𝑁 (𝑢

∗
− 𝑢)

󵄩󵄩󵄩󵄩𝑁

=
󵄩󵄩󵄩󵄩𝑢
∗
− 𝐼
𝑁
𝑢
󵄩󵄩󵄩󵄩𝑁

≤ √2
󵄩󵄩󵄩󵄩𝑢
∗
− 𝐼
𝑁
𝑢
󵄩󵄩󵄩󵄩

≤ √2 (
󵄩󵄩󵄩󵄩𝑢
∗
− 𝑢
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢 − 𝐼𝑁𝑢

󵄩󵄩󵄩󵄩)

≤ 𝐶𝑁
−𝑟
|𝑢|
𝑟
.

(24)
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Lemma 5 (Gronwall’s inequality [18]). Suppose that the dis-
crete function {𝑤𝑛 | 𝑛 = 0, 1, 2, . . . ,𝑀; 𝑀𝜏 = 𝑇} satisfies the
following inequality:

𝑤
𝑛
− 𝑤
𝑛−1
≤ 𝐴𝜏𝑤

𝑛
+ 𝐵𝜏𝑤

𝑛−1
+ 𝐶
𝑛
𝜏, (25)

where 𝐴, 𝐵, and 𝐶
𝑛
(𝑛 = 0, 1, 2, . . . ,𝑀) are nonnegative

constants. Then

max
1≤𝑛≤𝑀

󵄨󵄨󵄨󵄨𝑤
𝑛󵄨󵄨󵄨󵄨 ≤ (𝑤

0
+

𝑀

∑

𝑙=1

𝐶
𝑙
)𝑒
2(𝐴+𝐵)𝑇

, (26)

where 𝜏 is sufficiently small, such that (𝐴 + 𝐵)𝜏 ≤ (𝑀 −

1)/2𝑀, (𝑀 > 1).

An equivalent form of full-discrete Fourier pseudospec-
tral scheme (12) is to find (𝑝𝑛

𝑐
, 𝑞
𝑛

𝑐
)
𝑇
∈ (𝑉
󸀠󸀠

𝑁
)
2, so that, for any

Φ
𝑛
= (Φ
𝑛

1
, Φ
𝑛

2
)
𝑇
∈ (𝑉
󸀠󸀠

𝑁
)
2, then

(
𝑝
𝑛+1

𝑐
− 𝑝
𝑛

𝑐

𝜏
, Φ
𝑛

1
)

𝑁

− (𝜕
𝑥
𝑞
𝑛+1/2

𝑐
, 𝜕
𝑥
Φ
𝑛

1
)
𝑁

+ (𝑓 (𝑝
𝑛

𝑐
, 𝑝
𝑛+1

𝑐
, 𝑞
𝑛

𝑐
, 𝑞
𝑛+1

𝑐
) , Φ
𝑛

1
)
𝑁
= 0,

(27)

(
𝑞
𝑛+1

𝑐
− 𝑞
𝑛

𝑐

𝜏
, Φ
𝑛

2
)

𝑁

+ (𝜕
𝑥
𝑝
𝑛+1/2

𝑐
, 𝜕
𝑥
Φ
𝑛

2
)
𝑁

− (𝑓 (𝑞
𝑛

𝑐
, 𝑞
𝑛+1

𝑐
, 𝑝
𝑛

𝑐
, 𝑝
𝑛+1

𝑐
) , Φ
𝑛

2
)
𝑁
= 0,

(28)

where
𝑓 (𝑥, 𝑦, 𝑢, V)

= 𝑎 (
1

4
(𝑢 + V) ⋅ (𝑥2 + 𝑦2 + 𝑢2 + V2)

+
1

6
(𝑦 − 𝑥) (V ⋅ 𝑥 − 𝑢 ⋅ 𝑦)) .

(29)

Proposed scheme (10) conserves the energy exactly, which
can be regarded as the energy stable algorithm. So we assume
that the numerical solution is bounded; that is,

max
1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝑝
𝑛

𝑐

󵄩󵄩󵄩󵄩∞
≤ 𝐶, max

1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝑞
𝑛

𝑐

󵄩󵄩󵄩󵄩∞
≤ 𝐶. (30)

Theorem 6. Suppose that the exact solutions 𝑝, 𝑞 ∈

𝐻
1
(0, 𝑇;𝐻

𝑟

𝑝
(𝐼)) ∩ 𝐻

3
(0, 𝑇; 𝐿

2
(𝐼)), 𝑟 > 1/2, and 𝜏 are small

enough; then the solution of full-discrete Fourier pseudospectral
scheme (12) converges to the solution of problems (3) with order
𝑂(𝑁
−𝑟
+ 𝜏
2
) in discrete 𝐿

2
norm.

Proof. Let 𝑝∗ = 𝑃
𝑁−2
𝑝 and 𝑞∗ = 𝑃

𝑁−2
𝑞; we have from (2)

𝑝
∗

𝑡
+ 𝑞
∗

𝑥𝑥
+ 𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑞] = 0,

𝑞
∗

𝑡
− 𝑝
∗

𝑥𝑥
− 𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑝] = 0,

(31)

and then
𝑝
∗𝑛+1

− 𝑝
∗𝑛

𝜏
+ 𝜕
𝑥𝑥
(𝑞
∗
)
𝑛+1/2

+ 𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑞]
𝑛+1/2

=
𝑝
∗𝑛+1

− 𝑝
∗𝑛

𝜏
− (𝑝
∗

𝑡
)
𝑛+1/2

≜ 𝜉
𝑛

1
,

𝑞
∗𝑛+1

− 𝑞
∗𝑛

𝜏
− 𝜕
𝑥𝑥
(𝑝
∗
)
𝑛+1/2

− 𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑝]
𝑛+1/2

=
𝑞
∗𝑛+1

− 𝑞
∗𝑛

𝜏
− (𝑞
∗

𝑡
)
𝑛+1/2

≜ 𝜉
𝑛

2
,

(32)

where (𝑝∗)𝑛+1/2 = (𝑝∗𝑛+𝑝∗𝑛+1)/2 and so forth. Using Taylor’s
expansion, we obtain

󵄩󵄩󵄩󵄩𝜉
𝑛

1

󵄩󵄩󵄩󵄩𝑁
≤ 𝐶𝜏
2
,

󵄩󵄩󵄩󵄩𝜉
𝑛

2

󵄩󵄩󵄩󵄩𝑁
≤ 𝐶𝜏
2
. (33)

For any Φ𝑛 = (Φ𝑛
1
, Φ
𝑛

2
)
𝑇
∈ (𝑉
󸀠󸀠

𝑁
)
2, (32) are equivalent to

the following equations:

(
𝑝
∗𝑛+1

− 𝑝
∗𝑛

𝜏
, Φ
𝑛

1
)

𝑁

+ (𝜕
𝑥𝑥
(𝑞
∗
)
𝑛+1/2

, Φ
𝑛

1
)
𝑁

+ (𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑞]
𝑛+1/2

, Φ
𝑛

1
)
𝑁

= (𝜉
𝑛

1
, Φ
𝑛

1
)
𝑁
,

(
𝑞
∗𝑛+1

− 𝑞
∗𝑛

𝜏
, Φ
𝑛

2
)

𝑁

− (𝜕
𝑥𝑥
(𝑝
∗
)
𝑛+1/2

, Φ
𝑛

2
)
𝑁

− (𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑝]
𝑛+1/2

, Φ
𝑛

2
)
𝑁

= (𝜉
𝑛

2
, Φ
𝑛

2
)
𝑁
.

(34)

According to (𝑃
𝑁−2
𝑢, V)
𝑁
= (𝑃
𝑁−2
𝑢, V),∀V ∈ 𝑉

𝑁
and𝑃
𝑁
𝜕
𝑥
𝑢 =

𝜕
𝑥
𝑃
𝑁
𝑢, we can deduce

(
𝑝
∗𝑛+1

− 𝑝
∗𝑛

𝜏
, Φ
𝑛

1
)

𝑁

− (𝜕
𝑥
(𝑞
∗
)
𝑛+1/2

, 𝜕
𝑥
Φ
𝑛

1
)
𝑁

+ (𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑞]
𝑛+1/2

, Φ
𝑛

1
)
𝑁

= (𝜉
𝑛

1
, Φ
𝑛

1
)
𝑁
,

(35)

(
𝑞
∗𝑛+1

− 𝑞
∗𝑛

𝜏
, Φ
𝑛

2
)

𝑁

+ (𝜕
𝑥
(𝑝
∗
)
𝑛+1/2

, 𝜕
𝑥
Φ
𝑛

2
)
𝑁

− (𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑝]
𝑛+1/2

, Φ
𝑛

2
)
𝑁

= (𝜉
𝑛

2
, Φ
𝑛

2
)
𝑁
.

(36)

Let 𝜀𝑛 = 𝑝∗𝑛 −𝑝𝑛
𝑐
and 𝜂𝑛 = 𝑞∗𝑛 −𝑞𝑛

𝑐
. Subtracting (27)-(28)

from (35)-(36), respectively, we obtain the error equations:

(
𝜀
𝑛+1
− 𝜀
𝑛

𝜏
, Φ
𝑛

1
)

𝑁

− (𝜕
𝑥
𝜂
𝑛+1/2

, 𝜕
𝑥
Φ
𝑛

1
)
𝑁

+ (𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑞]
𝑛+1/2

− 𝑓 (𝑝
𝑛

𝑐
, 𝑝
𝑛+1

𝑐
, 𝑞
𝑛

𝑐
, 𝑞
𝑛+1

𝑐
) , Φ
𝑛

1
)
𝑁

= (𝜉
𝑛

1
, Φ
𝑛

1
)
𝑁
,

(
𝜂
𝑛+1
− 𝜂
𝑛

𝜏
, Φ
𝑛

2
)

𝑁

+ (𝜕
𝑥
𝜀
𝑛+1/2

, 𝜕
𝑥
Φ
𝑛

2
)
𝑁

− (𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑝]
𝑛+1/2

− 𝑓 (𝑞
𝑛

𝑐
, 𝑞
𝑛+1

𝑐
, 𝑝
𝑛

𝑐
, 𝑝
𝑛+1

𝑐
) , Φ
𝑛

2
)
𝑁

= (𝜉
𝑛

2
, Φ
𝑛

2
)
𝑁
.

(37)
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We take Φ𝑛
1
= 𝜀
𝑛+1/2 and Φ𝑛

2
= 𝜂
𝑛+1/2, and then

(
𝜀
𝑛+1
− 𝜀
𝑛

𝜏
,
𝜀
𝑛+1
+ 𝜀
𝑛

2
)

𝑁

− (𝜕
𝑥
𝜂
𝑛+1/2

, 𝜕
𝑥
𝜀
𝑛+1/2

)
𝑁

+ (𝐺
1
, 𝜀
𝑛+1/2

)
𝑁
= (𝜉
𝑛

1
, 𝜀
𝑛+1/2

)
𝑁
,

(38)

(
𝜂
𝑛+1
− 𝜂
𝑛

𝜏
,
𝜂
𝑛+1
+ 𝜂
𝑛

2
)

𝑁

+ (𝜕
𝑥
𝜀
𝑛+1/2

, 𝜕
𝑥
𝜂
𝑛+1/2

)
𝑁

− (𝐺
2
, 𝜂
𝑛+1/2

)
𝑁
= (𝜉
𝑛

2
, 𝜂
𝑛+1/2

)
𝑁
,

(39)

where

𝐺
1
= 𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑞]
𝑛+1/2

− 𝑓 (𝑝
𝑛

𝑐
, 𝑝
𝑛+1

𝑐
, 𝑞
𝑛

𝑐
, 𝑞
𝑛+1

𝑐
) ,

𝐺
2
= 𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑝]
𝑛+1/2

− 𝑓 (𝑞
𝑛

𝑐
, 𝑞
𝑛+1

𝑐
, 𝑝
𝑛

𝑐
, 𝑝
𝑛+1

𝑐
) .

(40)

Adding (38) and (39), we obtain

1

2𝜏
(
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
−
󵄩󵄩󵄩󵄩𝜀
𝑛󵄩󵄩󵄩󵄩

2

𝑁
−
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

𝑁
)

= (𝜉
𝑛

1
, 𝜀
𝑛+1/2

)
𝑁
+ (𝜉
𝑛

2
, 𝜂
𝑛+1/2

)
𝑁

− (𝐺
1
, 𝜀
𝑛+1/2

)
𝑁
+ (𝐺
2
, 𝜂
𝑛+1/2

)
𝑁
.

(41)

Using Cauchy-Schwarz inequality, we have

󵄨󵄨󵄨󵄨󵄨
(𝜉
𝑛

1
, 𝜀
𝑛+1/2

)
𝑁

󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩𝜉
𝑛

1

󵄩󵄩󵄩󵄩𝑁
⋅
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑛+1/2󵄩󵄩󵄩󵄩󵄩𝑁

≤
1

2

󵄩󵄩󵄩󵄩𝜉
𝑛

1

󵄩󵄩󵄩󵄩

2

𝑁
+
1

8

󵄩󵄩󵄩󵄩󵄩
𝜀
𝑛
+ 𝜀
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁

≤ 𝐶𝜏
4
+
1

4
(
󵄩󵄩󵄩󵄩𝜀
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
) .

(42)

Similarly, we have

󵄨󵄨󵄨󵄨󵄨
(𝜉
𝑛

2
, 𝜂
𝑛+1/2

)
𝑁

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝜏
4
+
1

4
(
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
) ,

󵄨󵄨󵄨󵄨󵄨
(𝐺
1
, 𝜀
𝑛+1/2

)
𝑁

󵄨󵄨󵄨󵄨󵄨
≤
1

2

󵄩󵄩󵄩󵄩𝐺1
󵄩󵄩󵄩󵄩

2

𝑁
+
1

4
(
󵄩󵄩󵄩󵄩𝜀
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
) ,

󵄨󵄨󵄨󵄨󵄨
(𝐺
2
, 𝜂
𝑛+1/2

)
𝑁

󵄨󵄨󵄨󵄨󵄨
≤
1

2

󵄩󵄩󵄩󵄩𝐺2
󵄩󵄩󵄩󵄩

2

𝑁
+
1

4
(
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
) .

(43)

Using the triangle inequality, we obtain

󵄩󵄩󵄩󵄩𝐺1
󵄩󵄩󵄩󵄩𝑁

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑞]
𝑛+1/2

− 𝑓 (𝑝
𝑛

𝑐
, 𝑝
𝑛+1

𝑐
, 𝑞
𝑛

𝑐
, 𝑞
𝑛+1

𝑐
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑁

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
𝑁−2
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑞]
𝑛+1/2

− [𝑎 (𝑝
2
+ 𝑞
2
) 𝑞]
𝑛+1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑁

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[𝑎 (𝑝
2
+ 𝑞
2
) 𝑞]
𝑛+1/2

− 𝑓 (𝑝
𝑛
, 𝑝
𝑛+1
, 𝑞
𝑛
, 𝑞
𝑛+1
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑁

+
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑝
𝑛
, 𝑝
𝑛+1
, 𝑞
𝑛
, 𝑞
𝑛+1
) − 𝑓 (𝑝

∗𝑛
, 𝑝
∗𝑛+1
, 𝑞
∗𝑛
, 𝑞
∗𝑛+1
)
󵄩󵄩󵄩󵄩󵄩𝑁

+
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑝
∗𝑛
, 𝑝
∗𝑛+1
, 𝑞
∗𝑛
, 𝑞
∗𝑛+1
) − 𝑓 (𝑝

𝑛

𝑐
, 𝑝
𝑛+1

𝑐
, 𝑞
𝑛

𝑐
, 𝑞
𝑛+1

𝑐
)
󵄩󵄩󵄩󵄩󵄩𝑁

≜ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉.

(44)

According to Lemma 4, 𝐼 ≤ 𝐶𝑁−𝑟. Using Taylor’s expansion,
𝐼𝐼 ≤ 𝐶𝜏

2. Using the inequality

|𝑢 ⋅ V − 𝑢̃ ⋅ Ṽ| ≤ |𝑢 − 𝑢̃| ⋅ |V| + |𝑢̃| ⋅ |V − Ṽ| (45)

and Lemma 4, 𝐼𝐼𝐼 ≤ 𝐶𝑁−𝑟. According to inequality (45) and
the boundedness of numerical solution (30), 𝐼𝑉 ≤ 𝐶(‖𝜀𝑛‖

𝑁
+

‖𝜀
𝑛+1
‖
𝑁
+ ‖𝜂
𝑛
‖
𝑁
+ ‖𝜂
𝑛+1
‖
𝑁
).

Therefore, we can deduce

󵄩󵄩󵄩󵄩𝐺1
󵄩󵄩󵄩󵄩

2

𝑁
≤ 𝐶 (𝑁

−2𝑟
+ 𝜏
4
)

+ 𝐶 (
󵄩󵄩󵄩󵄩𝜀
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
) .

(46)

Similarly, we have

󵄩󵄩󵄩󵄩𝐺2
󵄩󵄩󵄩󵄩

2

𝑁
≤ 𝐶 (𝑁

−2𝑟
+ 𝜏
4
)

+ 𝐶 (
󵄩󵄩󵄩󵄩𝜀
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
) .

(47)

Thus, we obtain

1

2𝜏
(
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
−
󵄩󵄩󵄩󵄩𝜀
𝑛󵄩󵄩󵄩󵄩

2

𝑁
−
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

𝑁
)

≤ 𝐶 (𝑁
−2𝑟
+ 𝜏
4
)

+ 𝐶 (
󵄩󵄩󵄩󵄩𝜀
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

𝑁
) .

(48)

Let 𝜔𝑛 = ‖𝜀𝑛‖2
𝑁
+ ‖𝜂
𝑛
‖
2

𝑁
, and (48) can be rewritten as

𝜔
𝑛+1
− 𝜔
𝑛
≤ 𝐶𝜏 (𝜔

𝑛+1
+ 𝜔
𝑛
) + 𝐶𝜏 (𝑁

−2𝑟
+ 𝜏
4
) . (49)

According to Lemma 5, we have

𝜔
𝑛
≤ (𝜔
0
+ 𝜏

𝑀

∑

𝑙=1

𝐶 (𝑁
−2𝑟
+ 𝜏
4
)) 𝑒
4𝐶𝑇
. (50)

According to Lemma 4 and noticing 𝑝0
𝑐
= 𝑝
0 and 𝑞0

𝑐
= 𝑞
0, we

have

𝜔
0
=
󵄩󵄩󵄩󵄩󵄩
𝜀
0󵄩󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝜂
0󵄩󵄩󵄩󵄩󵄩

2

𝑁
=
󵄩󵄩󵄩󵄩󵄩
𝑝
∗0
− 𝑝
0󵄩󵄩󵄩󵄩󵄩

2

𝑁
+
󵄩󵄩󵄩󵄩󵄩
𝑞
∗0
− 𝑞
0󵄩󵄩󵄩󵄩󵄩

2

𝑁
≤ 𝐶𝑁

−2𝑟
.

(51)

Therefore, we get

𝜔
𝑛
≤ 𝐶 (𝑁

−2𝑟
+ 𝜏
4
) . (52)
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Moreover, we have

󵄩󵄩󵄩󵄩𝑝
∗𝑛
− 𝑝
𝑛

𝑐

󵄩󵄩󵄩󵄩𝑁
≤ 𝐶 (𝑁

−𝑟
+ 𝜏
2
) ,

󵄩󵄩󵄩󵄩𝑞
∗𝑛
− 𝑞
𝑛

𝑐

󵄩󵄩󵄩󵄩𝑁
≤ 𝐶 (𝑁

−𝑟
+ 𝜏
2
) .

(53)

Using the triangle inequality and Lemma 4, we obtain

󵄩󵄩󵄩󵄩𝑝
𝑛
− 𝑝
𝑛

𝑐

󵄩󵄩󵄩󵄩𝑁
≤
󵄩󵄩󵄩󵄩𝑝
𝑛
− 𝑝
∗𝑛󵄩󵄩󵄩󵄩𝑁

+
󵄩󵄩󵄩󵄩𝑝
∗𝑛
− 𝑝
𝑛

𝑐

󵄩󵄩󵄩󵄩𝑁
≤ 𝐶 (𝑁

−𝑟
+ 𝜏
2
) ,

󵄩󵄩󵄩󵄩𝑞
𝑛
− 𝑞
𝑛

𝑐

󵄩󵄩󵄩󵄩𝑁
≤
󵄩󵄩󵄩󵄩𝑞
𝑛
− 𝑞
∗𝑛󵄩󵄩󵄩󵄩𝑁

+
󵄩󵄩󵄩󵄩𝑞
∗𝑛
− 𝑞
𝑛

𝑐

󵄩󵄩󵄩󵄩𝑁
≤ 𝐶 (𝑁

−𝑟
+ 𝜏
2
) .

(54)

This completes the proof.

4. Numerical Experiments

In this section, we conduct some tentative numerical exper-
iments for this new scheme (10) to verify the theoretical
conclusions, including the accuracy, the ability to preserve
the first integrals of the nonlinear Schrödinger equation for
long-time integration.

First we take the parameter 𝑎 = 2. Then, we get the
following:

𝑖𝜓
𝑡
+ 𝜓
𝑥𝑥
+ 2
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

𝜓 = 0. (55)

We consider nonlinear Schrödinger equation (55) with
the one-soliton solution as follows:

𝜓 (𝑥, 𝑡) = sech (𝑥 − 4𝑡) exp(2𝑖 (𝑥 − 3
2
𝑡)) . (56)

In order to analyze new scheme (10), the problem is solved
in [−15, 15] with the initial condition

𝑢 (𝑥, 0) = sech (𝑥) exp (2𝑥𝑖) . (57)

We take 𝑁 = 200 and the time step 𝜏 = 10
−3 for

the new scheme (10). We check the ability of this new
scheme preserving the first integral which is one of the
important criteria to judge numerical schemes.Thenonlinear
Schrödinger equation with periodic boundary condition has
the energy conservation law:

𝐹 (𝜓) = ∫

𝐿

0

[
𝑎

4

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

4

−
1

2

󵄨󵄨󵄨󵄨𝜓𝑥
󵄨󵄨󵄨󵄨

2

] 𝑑𝑥. (58)

If the approximate solution of 𝜓(𝑥, 𝑡 = 𝑗𝜏) is 𝜓𝑗 =
(𝜓
0
, 𝜓
1
, . . . , 𝜓

𝑁
)
𝑇, then the discrete conservation law 𝐹 is

𝐹
ℎ
(𝜓) =

𝑁

∑

𝑗=1

1

2
(
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑗

󵄨󵄨󵄨󵄨󵄨

4

−
󵄨󵄨󵄨󵄨𝐷1Ψ

󵄨󵄨󵄨󵄨

2

𝑗
) ℎ. (59)

We define the errors of the discrete conservation law on
the 𝑗th time level as

Err
𝐹
(𝑗𝜏) = 𝐹

ℎ
(𝜓
𝑗
) − 𝐹
ℎ
(𝜓
0
) , (60)

Table 1: Time accuracy of new scheme (10) with initial condition
(57) (𝑁 = 100).

𝜏 𝐿
2
error Order

0.004 1.1351𝑒 − 004 —
0.002 2.8338𝑒 − 005 2.0020
0.001 7.0510𝑒 − 006 2.0068
0.0005 1.7305𝑒 − 006 2.0266
0.00025 4.0445𝑒 − 007 2.0972
0.000125 9.4398𝑒 − 008 2.0991

where 𝜓𝑗 is the numerical solution on the 𝑗th time level and
𝜓
0 is the discrete initial value. Numerical solutions and exact

solutions at different time levels and the changes of the errors
between the exact solutions and the numerical solutions and
Err
𝐹
with time are shown in Figure 1.

The discrete 𝐿2 norm of complex-valued function 𝜓 is
defined as

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩2
= (

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑗

󵄨󵄨󵄨󵄨󵄨

2

ℎ)

1/2

. (61)

We consider that the problem is solved in [−15, 15] till
time 𝑡 = 1 for accuracy test. Note that in Table 1 the spatial
error (𝑁 = 100) is negligible and the error is dominated by
the time discretization error. It shows that accuracy of space
is very large. Table 1 clearly indicates that new scheme (10) is
of second order in time.

We also test our new scheme on the following initial
condition 𝜓(𝑥, 0) = 0.5 + 0.025 cos(𝜇𝑥) with the periodic
boundary condition𝜓(0, 𝑡) = 𝜓(4√2𝜋, 𝑡).We take𝐿 = 4√2𝜋,
𝜇 = 2𝜋/𝐿. The initial condition is in the vicinity of the
homoclinic orbit in [19].

In this case, we also take 𝑁 = 200 and the time step
𝜏 = 10

−3 for new scheme (10). The corresponding waveforms
at different time levels and the changes of errors of discrete
conservation law 𝐹with time are showed in Figure 2.We find
that the numerical results we presented in the paper show
that the new scheme is very robust and stable. Thus, our
new scheme provides a new choice for solving the nonlinear
Schrödinger equation.

5. Conclusions

In this paper, we derive a new method for the nonlinear
Schrödinger system. We prove the proposed method pre-
serves the energy conservation law exactly. A deduction
argument is used to prove that the numerical solution is
second-order convergent to the exact solutions in ‖ ⋅ ‖

2

norm. Some numerical results are reported to illustrate the
efficiency of the numerical scheme in preserving the energy
conservation laws. Therefore, it will be a good choice for
solving the nonlinear Schrödinger equation computation.
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Figure 1: Continued.
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