1,842 research outputs found

    Wavelet Trees Meet Suffix Trees

    Full text link
    We present an improved wavelet tree construction algorithm and discuss its applications to a number of rank/select problems for integer keys and strings. Given a string of length n over an alphabet of size σn\sigma\leq n, our method builds the wavelet tree in O(nlogσ/logn)O(n \log \sigma/ \sqrt{\log{n}}) time, improving upon the state-of-the-art algorithm by a factor of logn\sqrt{\log n}. As a consequence, given an array of n integers we can construct in O(nlogn)O(n \sqrt{\log n}) time a data structure consisting of O(n)O(n) machine words and capable of answering rank/select queries for the subranges of the array in O(logn/loglogn)O(\log n / \log \log n) time. This is a loglogn\log \log n-factor improvement in query time compared to Chan and P\u{a}tra\c{s}cu and a logn\sqrt{\log n}-factor improvement in construction time compared to Brodal et al. Next, we switch to stringological context and propose a novel notion of wavelet suffix trees. For a string w of length n, this data structure occupies O(n)O(n) words, takes O(nlogn)O(n \sqrt{\log n}) time to construct, and simultaneously captures the combinatorial structure of substrings of w while enabling efficient top-down traversal and binary search. In particular, with a wavelet suffix tree we are able to answer in O(logx)O(\log |x|) time the following two natural analogues of rank/select queries for suffixes of substrings: for substrings x and y of w count the number of suffixes of x that are lexicographically smaller than y, and for a substring x of w and an integer k, find the k-th lexicographically smallest suffix of x. We further show that wavelet suffix trees allow to compute a run-length-encoded Burrows-Wheeler transform of a substring x of w in O(slogx)O(s \log |x|) time, where s denotes the length of the resulting run-length encoding. This answers a question by Cormode and Muthukrishnan, who considered an analogous problem for Lempel-Ziv compression.Comment: 33 pages, 5 figures; preliminary version published at SODA 201

    RLZAP: Relative Lempel-Ziv with Adaptive Pointers

    Full text link
    Relative Lempel-Ziv (RLZ) is a popular algorithm for compressing databases of genomes from individuals of the same species when fast random access is desired. With Kuruppu et al.'s (SPIRE 2010) original implementation, a reference genome is selected and then the other genomes are greedily parsed into phrases exactly matching substrings of the reference. Deorowicz and Grabowski (Bioinformatics, 2011) pointed out that letting each phrase end with a mismatch character usually gives better compression because many of the differences between individuals' genomes are single-nucleotide substitutions. Ferrada et al. (SPIRE 2014) then pointed out that also using relative pointers and run-length compressing them usually gives even better compression. In this paper we generalize Ferrada et al.'s idea to handle well also short insertions, deletions and multi-character substitutions. We show experimentally that our generalization achieves better compression than Ferrada et al.'s implementation with comparable random-access times

    A simple online competitive adaptation of Lempel-Ziv compression with efficient random access support

    Get PDF
    We present a simple adaptation of the Lempel Ziv 78' (LZ78) compression scheme ({\em IEEE Transactions on Information Theory, 1978}) that supports efficient random access to the input string. Namely, given query access to the compressed string, it is possible to efficiently recover any symbol of the input string. The compression algorithm is given as input a parameter \eps >0, and with very high probability increases the length of the compressed string by at most a factor of (1+\eps). The access time is O(\log n + 1/\eps^2) in expectation, and O(\log n/\eps^2) with high probability. The scheme relies on sparse transitive-closure spanners. Any (consecutive) substring of the input string can be retrieved at an additional additive cost in the running time of the length of the substring. We also formally establish the necessity of modifying LZ78 so as to allow efficient random access. Specifically, we construct a family of strings for which Ω(n/logn)\Omega(n/\log n) queries to the LZ78-compressed string are required in order to recover a single symbol in the input string. The main benefit of the proposed scheme is that it preserves the online nature and simplicity of LZ78, and that for {\em every} input string, the length of the compressed string is only a small factor larger than that obtained by running LZ78

    Complexity of Networks

    Full text link
    Network or graph structures are ubiquitous in the study of complex systems. Often, we are interested in complexity trends of these system as it evolves under some dynamic. An example might be looking at the complexity of a food web as species enter an ecosystem via migration or speciation, and leave via extinction. In this paper, a complexity measure of networks is proposed based on the {\em complexity is information content} paradigm. To apply this paradigm to any object, one must fix two things: a representation language, in which strings of symbols from some alphabet describe, or stand for the objects being considered; and a means of determining when two such descriptions refer to the same object. With these two things set, the information content of an object can be computed in principle from the number of equivalent descriptions describing a particular object. I propose a simple representation language for undirected graphs that can be encoded as a bitstring, and equivalence is a topological equivalence. I also present an algorithm for computing the complexity of an arbitrary undirected network.Comment: Accepted for Australian Conference on Artificial Life (ACAL05). To appear in Advances in Natural Computation (World Scientific

    c-trie++: A Dynamic Trie Tailored for Fast Prefix Searches

    Full text link
    Given a dynamic set KK of kk strings of total length nn whose characters are drawn from an alphabet of size σ\sigma, a keyword dictionary is a data structure built on KK that provides locate, prefix search, and update operations on KK. Under the assumption that α=w/lgσ\alpha = w / \lg \sigma characters fit into a single machine word ww, we propose a keyword dictionary that represents KK in nlgσ+Θ(klgn)n \lg \sigma + \Theta(k \lg n) bits of space, supporting all operations in O(m/α+lgα)O(m / \alpha + \lg \alpha) expected time on an input string of length mm in the word RAM model. This data structure is underlined with an exhaustive practical evaluation, highlighting the practical usefulness of the proposed data structure, especially for prefix searches - one of the most elementary keyword dictionary operations

    Universal Compressed Text Indexing

    Get PDF
    The rise of repetitive datasets has lately generated a lot of interest in compressed self-indexes based on dictionary compression, a rich and heterogeneous family that exploits text repetitions in different ways. For each such compression scheme, several different indexing solutions have been proposed in the last two decades. To date, the fastest indexes for repetitive texts are based on the run-length compressed Burrows-Wheeler transform and on the Compact Directed Acyclic Word Graph. The most space-efficient indexes, on the other hand, are based on the Lempel-Ziv parsing and on grammar compression. Indexes for more universal schemes such as collage systems and macro schemes have not yet been proposed. Very recently, Kempa and Prezza [STOC 2018] showed that all dictionary compressors can be interpreted as approximation algorithms for the smallest string attractor, that is, a set of text positions capturing all distinct substrings. Starting from this observation, in this paper we develop the first universal compressed self-index, that is, the first indexing data structure based on string attractors, which can therefore be built on top of any dictionary-compressed text representation. Let γ\gamma be the size of a string attractor for a text of length nn. Our index takes O(γlog(n/γ))O(\gamma\log(n/\gamma)) words of space and supports locating the occocc occurrences of any pattern of length mm in O(mlogn+occlogϵn)O(m\log n + occ\log^{\epsilon}n) time, for any constant ϵ>0\epsilon>0. This is, in particular, the first index for general macro schemes and collage systems. Our result shows that the relation between indexing and compression is much deeper than what was previously thought: the simple property standing at the core of all dictionary compressors is sufficient to support fast indexed queries.Comment: Fixed with reviewer's comment
    corecore