4 research outputs found

    TEAPOT: a toolset for evaluating performance, power and image quality on mobile graphics systems

    Get PDF
    In this paper we present TEAPOT, a full system GPU simulator, whose goal is to allow the evaluation of the GPUs that reside in mobile phones and tablets. To this extent, it has a cycle accurate GPU model for evaluating performance, power models for the GPU, the memory subsystem and for OLED screens, and image quality metrics. Unlike prior GPU simulators, TEAPOT supports the OpenGL ES 1.1/2.0 API, so that it can simulate all commercial graphical applications available for Android systems. To illustrate potential uses of this simulating infrastructure, we perform two case studies. We first turn our attention to evaluating the impact of the OS when simulating graphical applications. We show that the overall GPU power/performance is greatly aff ected by common OS tasks, such as image composition, and argue that application level simulation is not sufficient to understand the overall GPU behavior. We then utilize the capabilities of TEAPOT to perform studies that trade image quality for energy. We demonstrate that by allowing for small distortions in the overall image quality, a signifi cant amount of energy can be saved.Postprint (author’s final draft

    Energy-efficient data prefetch buffering for low-end embedded processors

    Get PDF
    An energy-efficient architecture should jointly optimize energy consumption and throughput, as captured by the Energy-Delay-Square Product (ED2P) metric. This paper introduces a prefetch data buffer micro-architecture, which achieves that goal with the aid of software-inserted control words to govern the prefetch process. The proposed architecture is aimed at low-end embedded processors, which, so as to reduce energy consumption, lack a cache-based memory hierarchy. By identifying after compilation which data should be prefetched and modifying the object code, the rate of prefetch misses is reduced. And by pre-computing memory addresses using auxiliary software after compilation and modifying the object code, address computation by hardware at run time is avoided, reducing pipeline stalls and, thus, improving throughput. Additionally in the case of branches, by prefetching two data items at any one time, alternative instruction outcomes are anticipated. The paper contains results from running a range of well-known and representative benchmarks on the proposed architecture. There was an improvement of 6−20% compared to an unbuffered architecture in execution times when tested over those seven benchmarks. Furthermore, the average ED2P for the buffered architecture when normalized against the same architecture without buffering was found to vary between 54% and 90% according to benchmarking, though there is a cost in code size increase. That is to say, for the benchmarks tested there was a net energy efficiency improvement of between 10% and 46% in comparison with the equivalent unbuffered architecture with a lower area overhead

    WCET-aware prefetching of unlocked instruction caches: a technique for reconciling real-time guarantees and energy efficiency

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2015.A computação embarcada requer crescente vazão sob baixa potência. Ela requer um aumento de eficiência energética quando se executam programas de crescente complexidade. Muitos sistemas embarcados são também sistemas de tempo real, cuja correção temporal precisa ser garantida através de análise de escalonabilidade, a qual costuma assumir que o WCET de uma tarefa é conhecido em tempo de projeto. Como resultado da crescente complexidade do software, uma quantidade significativa de energia é gasta ao se prover instruções através da hierarquia de memória. Como a cache de instruções consome cerca de 40% da energia gasta em um processador embarcado e afeta a energia consumida em memória principal, ela se torna um relevante alvo para otimização. Entretanto, como ela afeta substancialmente o WCET, o comportamento da cache precisa ser restrito via  cache locking ou previsto via análise de WCET. Para obter eficiência energética sob restrições de tempo real, é preciso estender a consciência que o compilador tem da plataforma de hardware. Entretanto, compiladores para tempo real ignoram a energia, embora determinem rapidamente limites superiores para o WCET, enquanto compiladores para sistemas embarcados estimem com precisão a energia, mas gastem muito tempo em  profiling . Por isso, esta tese propõe um método unificado para estimar a energia gasta em memória, o qual é baseado em Interpretação Abstrata, exatamente o mesmo substrato matemático usado para a análise de WCET em caches. As estimativas mostram derivadas que são tão precisas quanto as obtidas via  profiling , mas são computadas 1000 vezes mais rápido, sendo apropriadas para induzir otimização de código através de melhoria iterativa. Como  cache locking troca eficiência energética por previsibilidade, esta tese propõe uma nova otimização de código, baseada em pré-carga por software, a qual reduz a taxa de faltas de caches de instruções e, provadamente, não aumenta o WCET. A otimização proposta é comparada com o estado-da-arte em  cache locking parcial para 37 programas do  Malardalen WCET benchmark para 36 configurações de cache e duas tecnologias distintas (2664 casos de uso). Em média, para obter uma melhoria de 68% no WCET,  cache locking parcial requer 8% mais energia. Por outro lado, a pré-carga por software diminui o consumo de energia em 11% enquanto melhora em 15% o WCET, reconciliando assim eficiência energética e garantias de tempo real.Abstract : Embedded computing requires increasing throughput at low power budgets. It asks for growing energy efficiency when executing programs of rising complexity. Many embedded systems are also real-time systems, whose temporal correctness is asserted through schedulability analysis, which often assumes that the WCET of each task is known at design-time. As a result of the growing software complexity, a significant amount of energy is spent in supplying instructions through the memory hierarchy. Since an instruction cache consumes around 40% of an embedded processor s energy and affects the energy spent in main memory, it becomes a relevant optimization target. However, since it largely impacts the WCET, cache behavior must be either constrained via cache locking or predicted by WCET analysis. To achieve energy efficiency under real-time constraints, a compiler must have extended awareness of the hardware platform. However, real-time compilers ignore energy, although they quickly determine bounds for WCET, whereas embedded compilers accurately estimate energy but require time-consuming profiling. That is why this thesis proposes a unifying method to estimate memory energy consumption that is based on Abstract Interpretation, the very same mathematical framework employed for the WCET analysis of caches. The estimates exhibit derivatives that are as accurate as those obtained by profiling, but are computed 1000 times faster, being suitable for driving code optimization through iterative improvement. Since cache locking gives up energy efficiency for predictability, this thesis proposes a novel code optimization, based on software prefetching, which reduces miss rate of unlocked instruction caches and, provenly, does not increase the WCET. The proposed optimization is compared with a state-of-the-art partial cache locking technique for the 37 programs of the Malardalen WCET benchmarks under 36 cache configurations and two distinct target technologies (2664 use cases). On average, to achieve an improvement of 68% in the WCET, partial cache locking required 8% more energy. On the other hand, software prefetching decreased the energy consumption by 11% while leading to an improvement of 15% in the WCET, thereby reconciling energy efficiency and real-time guarantees

    Lightweight Middleware for Software Defined Radio (SDR) Inter-Components Communication

    Get PDF
    The ability to use Software Defined Radio (SDR) in the civilian mobile applications will make it possible for the next generation of mobile devices to handle multi-standard personal wireless devices and ubiquitous wireless devices. The original military standard created many beneficial characteristics for SDR, but resulted in a number of disadvantages as well. Many challenges in commercializing SDR are still the subject of interest in the software radio research community. Four main issues that have been already addressed are performance, size, weight, and power. This investigation presents an in-depth study of SDR inter-components communications in terms of total link delay related to the number of components and packet sizes in systems based on Software Communication Architecture (SCA). The study is based on the investigation of the controlled environment platform. Results suggest that the total link delay does not linearly increase with the number of components and the packet sizes. The closed form expression of the delay was modeled using a logistic function in terms of the number of components and packet sizes. The model performed well when the number of components was large. Based upon the mobility applications, energy consumption has become one of the most crucial limitations. SDR will not only provide flexibility of multi-protocol support, but this desirable feature will also bring a choice of mobile protocols. Having such a variety of choices available creates a problem in the selection of the most appropriate protocol to transmit. An investigation in a real-time algorithm to optimize energy efficiency was also performed. Communication energy models were used including switching estimation to develop a waveform selection algorithm. Simulations were performed to validate the concept
    corecore