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ABSTRACT OF THE DISSERTATION 

LIGHTWEIGHT MIDDLEWARE FOR SDR INTER-COMPONENTS COMMUNICATION 

by 

Pasd Putthapipat 

Florida International University, 2013 

Miami, Florida 

Associate Professor Jean H. Andrian, Major Professor 

The ability to use Software Defined Radio (SDR) in the civilian mobile 

applications will make it possible for the next generation of mobile devices to handle 

multi-standard personal wireless devices and ubiquitous wireless devices. The original 

military standard created many beneficial characteristics for SDR, but resulted in a 

number of disadvantages as well. Many challenges in commercializing SDR are still the 

subject of interest in the software radio research community. Four main issues that have 

been already addressed are performance, size, weight, and power. 

This investigation presents an in-depth study of SDR inter-components 

communications in terms of total link delay related to the number of components and 

packet sizes in systems based on Software Communication Architecture (SCA). The 

study is based on the investigation of the controlled environment platform. Results 

suggest that the total link delay does not linearly increase with the number of components 

and the packet sizes. The closed form expression of the delay was modeled using a 

logistic function in terms of the number of components and packet sizes. The model 

performed well when the number of components was large. 
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Based upon the mobility applications, energy consumption has become one of the 

most crucial limitations. SDR will not only provide flexibility of multi-protocol support, 

but this desirable feature will also bring a choice of mobile protocols. Having such a 

variety of choices available creates a problem in the selection of the most appropriate 

protocol to transmit. An investigation in a real-time algorithm to optimize energy 

efficiency was also performed. Communication energy models were used including 

switching estimation to develop a waveform selection algorithm. Simulations were 

performed to validate the concept. 
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CHAPTER 1 

INTRODUCTION 

Cognitive radio (CR) is a smart radio transceiver that can sense its environment 

and adapt itself to available radio parameters, including signal, protocol, operation 

frequency, and networking. It has the capability of being automatically aware of the 

environment and adapting their parameters between communication entities. In perfect 

scenarios, cognitive radio will sense the environment around itself and will seamlessly 

respond to provide the most benefit to user communication. One of the splendid examples 

came from J. Mitola, “Cognitive Radio Architecture Evolution,”[1]. Smartphones, when 

equipped with an ideal cognitive radio, can sense that their owners have introduced 

themselves to business partners and could then automatically negotiate and exchange 

their business cards. The phone does not have to be pre-programmed to specific actions, 

but can adapt itself through case-based reasoning behavior.  

Cognitive radio has not advanced to that ideal level yet. Present versions of 

cognitive radio allow wireless communications to continuously and dynamically operate 

under limited spectrum, interference environment, or poor channel conditions. Even with 

current limited capabilities, it still can be applied in multiple real-life applications. For 

example, an advanced cognitive mobile phone base station can sense and can 

communicate among others to optimize available channels and invoke self-healing in 

case of failure. This characteristic increases the availability of the system and reduces the 

maintenance cost. The IEEE 802.22 [2] standard for Wireless Regional Area Network 

(WRAN) also uses cognitive radio to utilize the television white space spectrum without 
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interference. Cognitive radio can also evolve to a more cooperative system, called 

cognitive network [3]. Cognitive networks use cognitive radio in the physical layer and 

data link layer, plus additional advanced concepts in network management and expert 

systems, to create an adaptive network which can automatically adapt itself to the 

network behavior. This is a similar function shared with cognitive radio but is used in a 

much larger scale. 

To achieve this sophisticated system, a hardware based platform which has the 

capability to dynamically change itself is needed. Software Defined Radio (SDR) can 

play a major role in CR development. On the other hand, cognitive radio is an extended 

version of SDR. SDR is not a novel technology term. It is a radio system implemented by 

a set of software on a computer instead of a regular deployment using specific hardware, 

e.g. modulators, multiplexer, A/D, etc. Within this simple definition, software defined 

radio can be built from many platforms. The first platform might be a personal computer 

that uses the internal microprocessor as the digital signal processor, the sound card as an 

analog-to-digital converter, and a homebrew antenna as the radio frequency front end. An 

alternative possible platform might be a tailor-made design embedded system. Moreover, 

SDR comes with high flexibility. One single SDR device can receive and transmit 

multiple radio protocols by altering its software without the need for redesigning the 

whole platform. A good example of the advantage of SDR might be of a mobile unit 

which can switch between CDMA2000 and UMTS mobile systems by simply upgrading 

its software. The concept of SDR will be thoroughly described in Chapter 2. 
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SDR can create a radio application component known as the “waveform” by 

connecting virtual hardware modules together through a communication bus. Hardware 

modules, called “components”, are built using software which modifies hardware 

virtualizations. The actual hardware that is controlled by a software component is known 

as the “device”. The combination of devices controlling the entire waveform is called the 

“platform”.  Detailed information will be presented later. 

SDR has been introduced with many potential applications in different fields. In 

military application, especially in the United States, the US armed forces were deployed 

with different radio system standards and they had a plan to centralize them. With the 

given number of radio standards used, they were facing a major issue in bridging 

communication among different armed forces. To overcome such differences, SDR was 

picked as a novel system which could support multiple protocols by just changing its 

software. This concept offered a standardized solution for the armed forces to 

communicate among each other. Additionally, backward compatibility also became 

available. Another example of SDR application was its use as a disaster recovery 

communication device. In an example 911 incident, all centralized communication 

systems failed due to many factors. Base stations were torn apart and existing channels 

were insufficient. Communication between rescue divisions was not possible because of 

the lack of a standardized system; therefore, this situation focused great attention to SDR. 

Similar to the application in the military field, SDR could operate over different standards 

and made communications between different rescue forces possible. Ad-hoc 

communications were also made possible because even though existing channels were 
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entirely occupied, white spaces between mobile units could be used. Furthermore, 

Cognitive Radio, a more advanced version of SDR, can offer a great solution for 

spectrum optimization as mentioned above.  

SDR consists of two major components, software and hardware. Hardware must 

be generic and powerful enough to support each radio application. Software has to 

manage and alter hardware functionality to match the specific application without 

causing too much overhead. Research communities and radio industries have proposed 

the concept of unified architecture for both hardware and software and have formed 

standards among their professional groups. The major purpose of these standards is to 

achieve software portability and hardware abstraction between vendors and developers. 

The professional communities have proposed a rough framework to ensure the 

capability to perform the required functions. According to these standards, hardware 

architecture for SDR generally consists of RF front-end, A/D, D/A, digital up-convertor 

(DUC), digital down-convertor (DDC) and a baseband processor. The same approach has 

also been applied to software architecture.    

Many SDR software architectures have been proposed by various communities, 

but one of the most widely used came from the US armed forces. The SDR concept has 

been adopted by the Department of Defense with three main goals: to reduce the 

development cycle-time, reduce cost, and increase flexibility in communications between 

branches of the armed forces.  To achieve these goals, the Department of Defense has set 

up the Joint Tactical Radio System (JTRS) program to integrate the use of SDR in 

military radio systems. JTRS has developed a software architecture framework for SDR 
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called the Software Communications Architecture (SCA) [4]. It is an open framework 

with the main objective to facilitate software reuse without hardware compatibility 

problems. SCA also behaves as a “general manager” in the software level of SDR. SCA 

acts as a facilitator to load, execute, and allocate application waveforms capacities for 

each actual device. SCA also manages the communication among components in 

waveforms and software to hardware through an operating system driver. 

SDR was built on the fundamental concept that it had to operate over multiple 

hardware platforms. Therefore, SCA must also support multiplatform communication. In 

order to do so, SCA needs an interpreter to translate data communication among different 

hardware platforms. Hence, JTRS chose a multi-platform communication broker, called 

the Common Object Request Broker Architecture (CORBA) [5] as a middleware in the 

SCA. However, SCA has to pay the price for CORBA in CPU cycle requirement, 

memory consumption, latency, and implementation complexity. Due to CORBA’s 

limitations, many solutions have been proposed to resolve these problems.  Such 

proposals were lightweight structures that eliminate CORBA [6] or new extensions of 

CORBA [7-9]. However due to many limitations of the multi-hardware standards and 

backward compatibility, elimination of CORBA might not be an option. 

Also in order to recycle software components, developers divided a single 

waveform into as many multiple components as possible. Doing this reduces workload 

and development cycle by reusing components with the new waveform. Many articles, 

which will be discussed later, addressed the fact that creating a number of components 
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also caused similar overhead problems, CPU consumption, memory consumption, and 

latency. 

As for size and weight of SDR, many factors have to be considered to resolve this 

issue.  Many articles have addressed the problem created because developing more power 

requires more space for the battery and adds more weight to the system. [10-12]. As 

mentioned, JTRS has different regulations regarding size, weight, power, and processing 

power; however, limitations on the battery have not been given enough thought. Since the 

adoption of SCA, the use of SDR in civilian, aerospace, robotic, and, spacecraft 

applications, all of which require small-form-factor devices, has become more relevant. 

Because of the power constraint on such applications [13], SCA design should be aimed 

at reducing the system’s power consumption; and as such, many researchers have focused 

on reducing power consumption of SDR systems by optimizing the radio’s channel-

selection algorithms and channel coding. 

1.1. Objective and contribution 

Balister et al. [14-16] have shown in previous studies that SCA’s architecture 

itself consumes too many resources because of the complexity and diversity it has to 

support. The tradeoff between component reuse and latency of inter-component 

communication is one of the primary concerns. Abgrall et al. [17-18] also indicated that 

the latency caused by the number of components and packet size can be modeled with T-

Location distribution, the Generalized Extreme Value distribution, and additional 

mathematical techniques, even though these techniques were not accurate. In this 

dissertation, three different methods for choosing SCA parameters were developed. 
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Specifically, what is presented is a method to choose the optimum number of 

components, a method to choose the optimum packet size between internal 

communication, and an algorithm to choose which protocol to transmit in terms of energy 

consumption. 

In chapter 3, an in-depth study was conducted of how the number of components 

affects latency in the inter-component communications. The results show that the total 

delay of internal waveform communication does not proportionally increase with the 

number of components. This inter-component latency becomes saturated after certain 

number of components has been reached. In these experiments, it became saturated after 

four components were added to the system. Saturation occurred because latency was 

overcomed by the routing setup and communication setup. A mathematical model was 

formed to predict latency by using a logistic function. The model developed in this 

investigation will allow the design of a better component-reuse scheme. Software 

Defined Radio designers can use this model to predict the maximum internal latency in 

terms of number of components, to satisfy communication protocol requirements.   

The throughput of SCA is strongly related to the packet size used for data transfer 

between components. For this reason, there is a need for a method which dynamically 

identifies the most suitable packet size. This method’s requirements should depend on the 

type of components and number of components used in the waveform. Prediction can be 

used to form trade-off metrics between component reuse and performance. The metrics 

will be used to dynamically choose packet size and number of components. In chapter 4, 

a study of the relationship between packet sizes, number of components, and internal 
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latency was performed. It was evident that packet delay was increased due to packet size. 

However, the design objective of this investigation was to observe the relationship 

between information transmitted per packet and packet delay. The requirement was to 

find a method to choose the appropriate packet size for SCA waveform. The results have 

shown that when information per packet increases, the total packet delay also increases 

but not in a linear fashion. The nonlinearity exists because of overhead caused by the 

CORBA header itself. Results showed that packet size progressively affects latency when 

the number of components increases. The outcome of this investigation allows us to 

design a better model for choosing appropriate internal packet size as a function of the 

number of components in a waveform. 

Originally, SCA was designed to support military applications. In that sense, it 

had to be designed to support a variety of standards and platforms. Therefore, processing 

power and battery limitation were not the most important requirements. Subsequently, 

potential commercial use started to receive more attention. The trend in SDR research has 

gone more towards commercial civilian applications which require a device with small 

size, light weight, and low power consumption. Moreover, SDR has a strong functionality 

in flexibility where a single hardware set can support many waveform protocols. 

Simultaneously, i.e. one single SDR device can operate three widely used protocols at the 

same time – WLAN (IEEE 802.11), Bluetooth (IEEE 802.15.1), and ZigBee (IEEE 

802.15.4).  Each protocol has its own advantages and disadvantages in terms of speed, 

throughput, and flexibility, but the most concerning issue in this work is energy 

consumption. SDR possesses the ability to dynamically switch itself between different 
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radio waveforms. To reduce energy consumption, SDR is required to choose a protocol 

which consumes the lowest amount of total transmit energy while still maintaining 

quality of service (QoS). In chapter 5, a comparison of energy consumption between 

three wireless network protocols was investigated. This comparison showed that even 

though the low-power protocol device was used, it did not necessarily consume less 

energy even though, it transmitted the same traffic length. The failure to consume less 

energy was due to transmitting unnecessary header duplicates. This investigation 

proposes an energy aware waveform selection algorithm for SDR. The first version of the 

algorithm developed in this study chooses the lowest energy consumption protocol, 

depending on the information needed to be transmitted and the switching overhead. 

Investigation results show this scheme performed better than the use of single protocols 

specific to each application. The limitation of the investigated scheme was also 

addressed. When used with non-uniform random distributions of traffic lengths, there 

were cases where it performed poorer than a single protocol scheme because of 

consumption of switching overhead. The additional switching condition was resolved by 

creating a threshold for how many times the protocol had to be selected before an actual 

switch occurred. Adding a threshold reduced unnecessary switching due to the fact that 

cases of that information size only appeared once in a while. The average consumption of 

the proposed scheme in this investigation was better overall, even though, it may not 

provide the lowest energy consumption in every case. The evaluation of this proposed 

scheme was conducted through computerized simulations.  
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CHAPTER 2 

SOFTWARE DEFINED RADIO 

2.1. What is “Software Defined Radio” 

Software Defined Radio (SDR), by first definition according to [19], is “A radio 

that is substantially defined in software and whose physical layer can be significantly 

altered through changes to its software”.  

Back in 1984, E-Systems Inc. (now as Raytheon Intelligence and Information 

Systems, a division of Raytheon, a major company in aerospace industry and defense 

industry) demonstrated the software radio concept in their laboratory [20], even though it 

could not fully operate as software altering radio. After that in 1988, the first public 

implementation of software defined radio was proposed by Hoeher and Lang at German 

Aerospace Center for satellite communication [21]. The term SDR had been first used by 

Mitola III, J. in 1991 and was published as a part of his work [22] in 1992. SDR has 

several advantages as mentioned especially in military applications. This was highly 

attractive to the military sector both in United States and Europe so they invested in SDR 

more in the beginning than the private sector. 

 

2.2. Terminology 

In the SDR community, jargons were introduced to define special behaviors and 

characteristics. Most of them are used differently from their original meanings. This 

section gives technical explanations: 
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• Component is a stand-alone entity which performs signal processing or control 

functions. Similar components could be implemented in multiple designs, i.e. two 

software tunable filter components, both of them perform the similar Low-pass 

filter operation. One component is implemented by the “Chebyshev filter” but the 

other one is implemented by the “Butterworth filter”. 

• Waveform is a radio application which is created by just a single component or a 

combination of components. One major advantages of SDR is the fact that 

component can be reused over and over with multiple waveforms. For example, 

an AM radio receiver is a waveform which can be created by combining multiple 

components--decimator, gain controller, amplitude demodulator, and controller. 

As shown in Figure 1 from [23], W1 and W2 are the abstract block diagrams of 

waveforms. W1 consists of four components, C1,1 to C1,4 but W2 is a combination 

of five components, C2,1 to C2,5. The diagrams also show that the same component 

may have different designs, like C1,1 and C2,1 are represented by stacks of blocks. 

• Device is the actual hardware which performs component functions. Single device 

can operate using one or more components at the same time. This can include 

even the whole waveform on a single device.  

•  Platform is a combination of devices which are used to perform the waveform. 

The most common example is the personal computer which is a single-board 

platform. A general purpose processor and its sound card are devices of this 

platform, which is shown as P1, D1,1 to D1,3. Figure 1 [23] also shows another 

platform diagram P2. This P2 platform is a combination of two different boards 
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and could be extended if needed. Examples of the P2 platform are the SDR 

development platform from Lyrtech, and Texas Instruments. 

 

Figure 1: Block diagrams of sample SDR waveforms and platforms [23] © 2009 by IEEE 

 

2.3. SDR Motivation 

2.3.1. Multimode functionality 

Spectrum sharing is one of the major problems in wireless communication. 

Spectrum is a limited resource which is always insufficient to share among everyone who 

needs it. SDR can play a leading role in solving this problem with a practical solution. 

This is due to the highly flexible characteristic of being a progressively tunable radio 
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system. A SDR device can dynamically adjust transmission parameters, such as 

frequency, protocol, range, speed, and transmission power. Example uses of this type of 

multi-mode radios are: 

• Military radios 

• Disaster recovery scenarios, since rescue units have a huge gap of 

communications due to multiple standards. SDR can be a great solution 

for this problem.  

• Smart radio transceiver - Units that can adjust transmission power due to 

dynamic environment are possible. In many cases, full transmission 

power causes problems, such as shorter battery life-time, and near-far 

problems. With SDR, the transmitter can adjust its power depending on 

the distance between transmitter(s) and receiver(s), size of information, 

QoS, etc. to improve the whole system.    

• Multi-frequency and adaptive directional antenna - Antennas that would 

help the wireless device to operate between many frequencies at the same 

time and ignore the interference from unknown sources. This also 

includes the better range capability because of directional antennas. 

2.3.2. High flexibility radio unit 

Old school radio units are very limited because all parts are actual hardware 

implementations. In the past, wireless communication systems and standards were 

developed rapidly around the world without global synchronization. One of the most 

obvious issues right now is the mobile phone standard. Different regions around the 
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world developed their own standards. When people have to travel across regions, it is 

necessary to change the mobile phone to meet with the local standard. SDR can be a great 

solution to create a universal mobile device which is capable of supporting multiple 

standards and having global seamless connectivity [24]. This can also bring the concept 

of ubiquitous computing to reality. 

In the broader range of this issue, Cognitive radio is a novel radio system that can 

adapt each transceiver in the system to its own operation environment. Each transceiver 

will sense the environment among each other and then adopt themselves to the most 

suitable state. This leads to more efficient spectrum utilization [25-27], and advanced 

security transmission mechanisms. 

2.3.3. Reduced cost / Reduced development cycle 

SDR is a concept which fully utilizes hardware virtualization. Instead of creating 

fixed application hardware, SDR uses the concept of hardware virtualization to provide a 

generic standard architecture. Developers can adapt the software development technique 

to develop actual hardware. Hardware designers can use this generic hardware to test 

multiple radio designs by simply upgrading the software without rewiring the hardware. 

On the software side, software developers can develop a component or a waveform and 

reuse it over multiple platforms. Also if there is a bug on any component or waveform on 

a product which is already launched on the market, a vendor can issue software patches 

over the air (OTA). These process features can reduce enormous cost and time in 

development cycle. SDR is also an excellent test bench solution in a radio research 

environment. 
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Also SDR units which can support multiple radio standards can be produced with 

fewer discrete components compared to the original radio units.  

 

2.4. SDR Hardware Architecture 

SDR Hardware Architecture is a layout of hardware components which has no set 

hardware system functionality specification. Its components were derived from digital 

hardwire radio, as shows in Figure 2 [28]. General components consist of: 

 

Figure 2: SDR Hardware architecture [28] 

 

• RF front-end which is connected to the actual antenna providing 

conversion between electric current and electromagnetic waves. SDRs 

have a lot of challenges in this area dealing with creating a configurable 
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antenna which can operate with multiple directions and frequencies, with 

low profile characteristics, and with less complexity.  

• Analog-to-Digital converter (ADC) and Digital-to-Analog converter 

(DAC). These modules convert analog signal from front-end to digital 

signal or vice versa. ADC/DAC are the biggest limitations of SDR 

technology because they have insufficient capability in supporting 

required bandwidth, range, and sampling rate.    

• Digital up and Digital Down converter (DUC and DDC). These 

modules match certain digitized intermediate frequencies to use in follow 

up basebanded processing, or vice versa. 

• Basebanded Processing. The actual module performs protocol functions 

which includes connection setup, equalization, frequency hopping, timing 

recovery, and correlation. This module is the most configurable part in 

SDR. 

 

2.5. SDR Software Architecture 

SDR needs to have a common operation environment for developers and vendors 

to follow for implementation of software layers, components and waveforms. This 

common architecture guarantees that when any waveform is developed, it can be 

deployed on any platform over and over. The platform independence concept was 

inherited from the hardware virtualization in software engineering, similar to JAVA 
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programming on a virtual machine. In order to accommodate this concept, general 

compositions and functionalities were defined [23]: 

• Application factory. This constitutes a waveform launcher. It will take care 

of the initialization process of a waveform on the platform. It is also an 

information gatherer of each component using loading procedures and 

connections between them.  

• Capacity Model. A functionality to profile each platform to determine if they 

have enough capability to serve the waveform or not. 

• File system. Used to manage, store, and organize waveforms and components 

into and from memory. 

• Manager. A module which performs hardware and software resource 

management and human user interface.  

• Middleware and Hardware Proxies. Middleware [29] is a software 

technique that lets multiple platform computer-like-devices to communicate 

with each other. SDR needs to have this functionality to support multi-

platform communications between non-specific hardware standards. 

• Proxies for physical devices.  SDR must have a communication gateway 

which can commute with each device in order to pass through data and control 

information and to configure them. 

Example of software radio architectures are Software Communication 

Architecture (SCA), GNURadio, DttSP, etc. 
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2.5.1. CORBA 

Common Object Request Broker Architecture (CORBA) [30] is an open, non-vendor 

specific middleware architecture that acts as an interpreter between distributed computer systems, 

regardless of different system address. CORBA was designed based on the concept of platform 

independence model (PIM) to ensure that it has multi-platform compatibility. CORBA standard 

was released by an international organization called the Object Management Group (OMG), 

where the first version was released in 1991. The formal latest version is 3.2, released in 

November 2011. Most members of this organization are important companies or consortiums 

playing major roles in the computer industry such as the Microsoft Corporation, Eclipse 

Foundation, and W3 Consortium. 

CORBA has its own language called “interface definition language” (IDL). IDL is a 

structure language that provides a common standard for mapping specific languages which need 

to use CORBA. The examples of languages that can be mapped to CORBA are C, C++, Ruby, 

Smalltalk, JAVA, COBOL. Applications will generate “generated code classes” by translating 

IDL to their own languages. These classes will be used to communicate through their internal 

object adapter. This process is implemented to guarantee that CORBA can communicate among 

different platforms. 

CORBA uses a Client-Server model in communication entities to communicate among 

CORBA entities. In the abstract level, it is based on the General Inter-ORB Protocol (GIOP). In 

real implementation, CORBA uses Internet InterORB Protocol (IIOP), an internet protocol 

version of GIOP. GIOP was mapped to TCP/IP in IIOP so CORBA communications are also 

based on TCP/IP.  
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CORBA is widely used among many applications such as banking systems, large scale 

multiplatform enterprise systems, and embedded computing. This includes a major SDR software 

architecture, Software Communication Architecture (SCA) [31].   

2.5.2. Software Communication Architecture (SCA) 

As mentioned before, JTRS has developed one of the most widely used software 

architecture frameworks for SDR called the SCA. The main purpose of this framework is 

to facilitate recycling of software components and to ensure compatibility across 

platforms. In order to open the whole system to multi-vendor design and cooperation, 

SCA does not have a specific design of hardware and software.  JTRS also needs a multi-

platform broker to serve communications between multiple platforms which matches the 

major advantage of CORBA. So JTRS chose CORBA to act as a middleware layer in 

SCA. SCA was designed mainly to support military applications. As a result, it was 

designed to support a variety of standards and platforms. To achieve that goal, SCA has 

been divided into three major components: Core framework, Middleware, and Radio 

application factory. Core framework takes care of component operations in each device. 

Middleware takes care of the information transfer between each component. The last is 

Radio application factory which takes care of the overall waveform operation among 

many devices. 

Figure 3 shows the SCA abstract level diagram [23]. This diagram shows that 

SCA was designed to work as application manager within the operating system, but in 

order to serve multiplatform communications, CORBA was needed as an interpreter 

between each application module. CORBA was placed to work side-by-side with SCA 
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and provided a communications bus to each application component. The diagram does 

not specifically show it, but the operating system must also have compatibility with 

CORBA interface. This means it has to support TCP/IP and CORBA language mapping. 

An adapter must be built or must be provided for any hardware that does not support 

CORBA. 

 

Figure 3: SCA software structure [23] 

 

SCA also needs to meet the PIM standards. To satisfy this, SCA fits itself into the 

actual hardware communication to the operating system, through the hardware driver. 

Also SCA requires the operating system to work under the Portable Operating System 

Interface (POSIX) standard. SCA must have a real time requirement on POSIX in order 

to provide support for CORBA. 
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Figure 4: SCA Management Hierarchy at Instantiation [31] 

 

Figure 4 [31] shows the hierarchical software component layout of SCA that is 

matched to SDR software architecture explained earlier in this chapter. “Domain 

Manager” is the manager that manages all the hardware devices and software components 

through each device sub-manager. “Device Manager” acts as a hardware proxy and 

capacity modeler. This diagram also shows that “Device Manager” co-operates with “File 

System” to synchronize hardware status to the system. “Application Factory” takes care 

of waveform launching and interfacing. This includes information management regarding 

resource allocation and all of these communicate through CORBA middleware 
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An eXtensible Markup Language (XML) is used in SCA for internal purposes to 

store hardware capability, properties, inter-dependencies, location of devices and 

component. XML also has a cross-platform capability which matches the SCA objective.  

   

2.5.2.1. OSSIE 

OSSIE [32-33] is an open source SDR which has been developed by 

Wireless@VirginiaTech group based on the SCA standard. This project has been 

supported by National Science Foundation (NSF). OSSIE has a main goal to facilitate 

research communities and SDR education development. OSSIE is used as a teaching tool 

among many universities so students can understand a SDR and SCA by practice. These 

teaching materials were co-developed between Wireless@VirginiaTech and Naval 

Postgraduate School.  

OSSIE is operated over a Linux operating system which supports POSIX and 

TCP/IP by itself.  Wireless@VirginiaTech chose to use OmniORB [34] to support 

CORBA on OSSIE software. 

In this dissertation, OSSIE was chosen to use as a based SCA system to 

investigate the behavior when selected parameters were changed and tested.  

2.5.2.2. OmniORB 

OmniORB is a CORBA ORB for C++ and Python. It is on GNU GPL opensource 

License. The original purpose of omniORB was to use on embedded devices at Olivetti 

Research Ltd, now known as AT&T Laboratories Cambridge. In May 1997, it was firstly 

publicly distributed under GNU GPL over CORBA communities. OmniORB was 
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continuously developed in this laboratory until it was closed in 2002. One of the original 

developer, Duncan Grisby, has kept developing it until today. He formed a Apasphere 

Ltd company to provide consulting and advising services for the commercial use of 

OmniORB. 

OmniORB is highly compliant with CORBA 2.6 version with some additional 

functions from the later CORBA version. 

2.5.3. TCP/IP 

Transmission Control Protocol (TCP) is a protocol implementation corresponding to the 

transport layer in open systems interconnection (OSI) model. OSI is an abstract architecture 

standardization of computer device communication systems. Each layer was categorized by its 

logical function. TCP acts as communicator between an application layer and internet protocol 

(IP) layer. [35] 

In transmitting, TCP serves each application program as a communication gateway. TCP 

is managed among many applications by using port(s). Each application will have at least one 

owned specifically owned port. Application(s) communicates through TCP using this port, both 

transmitting and receiving. Then TCP itself takes care of breaking large chunks of data into 

packets, attaching it with header information and then forwarding each piece to IP layer. Each 

piece of information is called “packet”. In receiving, TCP layer receives packets from IP layer, 

arranges them sequentially based on metadata in their header. The TCP layer acknowledges to the 

source that the packets have been received. The layer then passes those arranged packets to the 

proper application by port number referenced in the header. TCP layer also takes care of any error 

that causes packet loss and duplication. If the packet does not arrive in the estimated time, the 



24 
 

TCP layer source will not receive an acknowledgement and will retransmit that packet again. This 

process helps the system recover from transmission errors 

IP layer is a protocol corresponding to the network layer in OSI model. IP has 

responsibility in network establishing with two simple functions, “Addressing” and “Routing”. 

“Addressing” means IP layer is taking care of virtual identity and address of network entity so the 

other entity can forward the information to the exact entity. The identity is called “IP address”. 

“Routing” is the function to let each entity to forward the packet to the next entity which is closer 

to the destination. “Routing” tries to forward the packet with the shortest resource possible to 

reduce the congestion. Many algorithms have been used in this process such as the “Dijkstra's 

algorithm” and the “Bellman–Ford algorithm”. 

 

2.6. SCA and Middleware problem 

2.6.1. Latency, CPU, and Memory overheads 

The evaluation of how CORBA affects SCA was first studied by Balister et al. [14].  

In their work, it was claimed that CORBA was the most suitable architecture for SCA 

based SDR. However, the overhead of CORBA to the SCA was addressed only in terms 

of processing power. Results showed that CORBA introduces very small processing 

overhead compared to the baseband processing itself. Murtada et al. [36] also extended 

the investigation in term of processing power to a specific platform for a better accuracy. 

 Tsou et al. [15] addressed the CORBA latency issue for SDR even though the 

CORBA’s latency issue had been addressed earlier but not specifically to SDR. Due to 

the different characteristics of communication on SDR, latency must be measured using a 

different method. Tsou’s work compared two SDR systems that have different internal 
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protocols namely TCP Sockets and Unix Domain Sockets. He showed that the Unix 

Domain Sockets performed much better in terms of latency. It also addressed the real-

time issue of the operating system implemented with FIFO scheduling. In the same year, 

Balister et al. [16] introduced a method to measure memory consumption of CORBA and 

SCA. This work showed that CORBA was not the major component that consumed 

memory compared to the SCA itself. 

Abgrall et al. [17],  Navarro et al. [37], and Muck et al. [38] compared two different 

systems, the mono thread non-CORBA SDR (GNU Radio) and the multithread CORBA 

(OSSIE). It was demonstrated that for both systems, the amount of memory consumption 

was proportional to the number of components. It was also shown that CPU consumption 

increased with the number of components; however, this relationship was not linear. 

Even though Navarro claimed that both systems loaded the CPU and memory equally, 

Abgrall presented strong evidences that with CORBA, the system consumed much more 

CPU resources and memory than the non-CORBA system. They showed that only 30% 

of CPU utilization was used for signal processing. The latency of the system was 

addressed in terms of packet size. It is obvious that latency will increase with packet size, 

but it is significant that the system equipped with CORBA introduced much more latency 

than the non-CORBA equipped one because of the General Inter-ORB Protocol (GIOP) 

overhead of CORBA. 

Abgrall et al. [18] also extended the study of the disadvantages of CORBA related 

to the performance of SCA in terms of latency. The most important issue was 

communication between components of the same waveform; CORBA and SCA were 



26 
 

compared and the result showed that CORBA introduced more latency to the system 

compared to SCA. This latency also varied with the number of components of the 

waveform. The work introduced and addressed a mathematical technique which can 

predict latency due to packet size using the statistical model of the T-Location 

distribution and the Generalized Extreme Value distribution even though they are not 

absolutely identical. 

Although, there are some implementations of real-time CORBA with the SCA 

standard, all of them are proprietary from the private sector and are custom-tailored 

designs specific to their own hardware (e.g., PrismTech’s e*ORB or Objective Interface’s 

ORBexpress). Even though the real-time CORBA concept has been proposed and 

implemented from the Object Management Group (OMG) for many other purposes and 

for a long time, there was no public domain document evaluating the performance and 

effect of real-time CORBA related to the SCA. 

The high potential of civilian applications arose a couple years later and has 

driven the research community to focus on making SDR more accessible for civilian use. 

Military designs created many beneficial characteristics with SDR but a number of 

disadvantages were also included as well. Many challenges in commercializing SDR are 

still the subject of interest in the software radio research community. Four main issues 

that have been addressed: performance, size, weight, and power. 
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2.6.2. Energy Issue with SCA 

In terms of power consumption, Dunst et al. [39] introduced a power management 

solution to a proprietary extended version of SCA. The extension contained a general 

power-aware computing technique to reduce power consumption plus a new technique 

for the real-time CORBA implemented by adjusting the GIOP. The work only showed 

positive experiment results in term of power, but not performance. 
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CHAPTER 3 

STUDIES OF NUMBER OF COMPONENTS VS. LATENCY IN SDR 

A part of this chapter was accepted to publish by Inderscience in International 

Journal of Computational Science and Engineering (IJCSE) [57]. 

From the discussion in previous chapter, prior studies have showed that the 

number of components caused a related overhead issue with SDR systems. In compliance 

with SCA; however, the actual relationship has never been demonstrated. This 

investigation shows an in-depth study of how the number of components affects internal 

latency. The objective of this investigation is to indicate the characteristics of internal 

delay caused by the number of components. These results will lead to better design 

methods in SDR [40].  

This chapter is organized as follows. In section 3.1, experiment methodology is 

described. In section 3.2, experiment system and environment assumptions are discussed 

and given. Results and analysis with mathematical modeling are presented and discussed 

in Section 3.3 and 3.4. In section 3.5, the conclusion is given. 

3.1. Experiment Methodology  

In this experiment, we observed the relationship between the packet delay and the 

number of components. In order to do that, we set up a basic waveform consisting of two 

components, a transmitter and a receiver, as the fundamental system. We varied the 

number of components between these two entities. Packets were flushed from the 

transmitter to the receiver through each component. During this process, time delays were 

measured to observe their behavior. 
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These experimental waveforms had to be guaranteed that they performed the 

same application even when the number of component was increased. The component 

inserted between two basic entities performed nothing except receiving a packet from the 

previous component then forwarding it to the next component. It also had to introduce 

overhead as little overhead as possible. To satisfy these criteria, an ideal component 

called “dummyblock” was created. This approach was also used in prior studies [38, 42] 

to isolate the overhead. We inserted these “dummyblocks” between the transmitter and 

the receiver one by one at each round of the experiment. We chose this method because it 

would not introduce an unexpected delay that does happen with other methods, e.g., split 

a single component to multiple components. 

A time stamp function was added to every component to facilitate measuring time 

delay between components. As shown in Figure 5, this function stamped a time value 

when those components completely received a whole packet and completely pushed out a 

whole packet. The delay between components of each packet could be calculated as a 

subtraction of timestamp at component N with timestamp at component N-1. The total 

link delay of each waveform was the summation of these delays. 
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Figure 5: Diagram shows where the timestamps are kept 

After calculating the delay between each component, the average delay between 

each block and average total delay was also calculated for further analysis. 

3.2. Experimental system setup and Assumption environment 

We performed these experiments on identical custom virtual system. The virtual 

machine was built on the VMWare Workstation [43] with a single core virtual general 

purpose 1.7 GHz processor and 1GB delicate RAM. OSSIE 0.8.1 with OmniORB 4.1.4 

was running on Linux Ubuntu 10.04LTS. With this system, OSSIE and OmniORB were 

at the latest version at that time, even though they were updated later. 

For each observation, one thousand and twenty four (1024) packets were 

transmitted from the transmitter to the receiver with five seconds delay between each 

packet to prevent congestion. Each packet contains one thousand twenty four (1024) bits 

of information plus the header which was excluded. The experiments were running with 

nine different waveforms whose number of components varied from two to ten. There 

was only a single running waveform in each observation. All virtual resources were 

available as needed.  
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3.3. Results 

Table 1 shows the average time delay of each link between components and the 

total average delay of each waveform in seconds. The average total delays in each 

component are between 0.18 msec to 0.6 msec. 

 

 

 
Average time delay between block (Second) Average 

total delay 
between 

component 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 
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 2 0.0018971 

    
0.0018971 

3 0.0008492 0.0027311 
   

0.0035803 

4 0.0008126 0.0044703 0.0001891 
  

0.0054720 

5 0.0011327 0.0039407 0.0002485 0.0002528 
  

0.0055747 

6 0.0009602 0.0041932 0.0002099 0.0002100 0.0002246 
  

0.0057979 

7 0.0009407 0.0038400 0.0001976 0.0002018 0.0002063 0.0003140 
  

0.0057005 

8 0.0008442 0.0036638 0.0002124 0.0002182 0.0002288 0.0002240 0.0002124 
  

0.0056038 

9 0.0008853 0.0035944 0.0002000 0.0001991 0.0002135 0.0002378 0.0002429 0.0002187 
 

0.0057917 

10 0.0008928 0.0031795 0.0002331 0.0002232 0.0002298 0.0002445 0.0002594 0.0002150 0.0001987 0.0056761 

 

Table 1: Table of average time delay vs. number of component 

 

3.4. Analysis and Modeling 
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Figure 6: Graph of Average total link delay vs. Number of components 
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The results show that the total delay did not increase proportionally with the 

number of components. The total delay saturated after a certain number of components is 

reached.  As shown in Table 1, the total delays increased due to the increasing number of 

components in the beginning. However after we inserted the 4th dummyblock component, 

the total delays started to saturate. The result is plotted in Figure 6 as a graph of the total 

delay versus the number of components. This plot clearly showed the saturation. 

 

Figure 7: Graph of Average link delay vs. Number of components 

0.0000000

0.0005000

0.0010000

0.0015000

0.0020000

0.0025000

0.0030000

0.0035000

0.0040000

0.0045000

0.0050000

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

A
ve

rg
ae

 d
el

ay
 b

et
w

ee
n

 li
n

k

Link between components a-b

Graph of Average link delay vs. Number of components

2 3 4 5 6 7 8 9 10Number of components in waveform



34 
 

 

Also, it was observed that the average transmission time delays between 

dummyblock component 1-2 and component 2-3 were dramatically high compared to the 

others. This occurred because the majority of time delays came from communication 

setup. Figure 7 clearly illustrated this observation. The majority of time delays of each 

waveform were due mainly to the delays between the 2nd dummyblock and the 3rd 

dummyblock. It also significantly indicated that time delays between the 4th dummyblock 

to the 10th dummyblock were equally distributed. Only time delays occurring between the 

2nd dummyblock and the 3rd dummyblock increased when the number of components was 

increased.  

CORBA was taking care of the communication between each node in the SCA 

network. CORBA was based on a GIOP client-server model which caused CORBA to 

initialize communication as an IP based system. The setup process is composed of: 

• Setting up routing table.  

• 3-way handshake setup. 

• CORBA Communication setup 
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Figure 8: Generic representation of abstract level waveform communication [31] 

Also, another delay issue that should be addressed is from the SCA structure. In 

the abstract level, components are virtualized so that they can communicate among each 

other directly without any limitation, like in Figure 8 from SCA specification [31]. In 

practice, component communication performs quite differently from the abstract level 

illustration. Components cannot directly commute among each other. Signals, or data, 

must be forwarded through a centralized bus system. Various SDR architectures handle 

this bus with middleware, especially in SCA. Middleware supports each component by 

acting as an interpreter. Middleware is absolutely necessary due to incompatibility among 

hardware I/O and multi standard communication protocols. Figure 9 illustrates a better 

representation of how components communicate among themselves. These components 

have to share a single centralized bus communication among them. 
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Figure 9: Generic representation of actual internal waveform communication 

  

This technique, obviously, causes problems in term of performance to those SDR 

architectures as shown by the experiment.  If the actual physical bus has not been well 

designed, this will increase the time delay, especially when components share the 

communication bus. 

The prior studies [17, 38] showed the link with delay overhead related to SDR 

systems. Results in this investigation support the prior studies. The results show similar 

trend and values with delays even though experimental environments were not the same. 

Prior studies gave more attention to the CPU and memory consumption overheads than to 

the delays in term of the number of components. The prior studies showed only delay of 

single link between components which was not the representative of the overall system. 

The delay was between 120-400 microseconds which were similar to that of this 

investigation. The similar approach [38] in isolating the processing delay and overhead 

from the measurement was used. This current investigation measured delay more in detail 

to focus especially in term of the number of components. This investigation also showed 
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similar saturation of the delay when the number of components reached some certain 

number. Even though SCA-CORBA was not used, the investigative environment of this 

study was based on a centralized manager. Additionally, prior studies had never proposed 

any mathematical model relating the delay behavior in term of the number of 

components. 

In order to analyze the behavior of the delay due to the number of components, 

the CSMA/CD mathematical model was adopted.  CSMA/CD model [44-45] was picked 

initially because both of these models shared a similar topology; multiple entities are 

sharing the same communication bus. 

Giving the assumption, N components contend to transmit through the 

middleware bus, which is similar to the share channel in CSMA/CD. The probability that 

some component would successfully transmit is: 

Psuccess=n·p·(1-p)
n-1

       (3.1) 

This can be maximized by choosing: 

Poptimal=
1

n
→max⁡(Psuccess)Poptimal and n→∞=

1

e
    (3.2) 

So the average number of time slots until some component successfully allocates 

the bus will be: 

Eሾxሿ= 1

Psuccess
=e=2.718       (3.3) 

Therefore the average contention interval is given by 
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Average contention interval=e·2tprop     (3.4) 

And the average time delay is: 

D=X+e·2tprop≈x+5tprop      (3.5) 

where 

 X = Packet transmission time 

 

This is an attractive model to describe the behavior of the delay due to the number 

of components, however CSMA/CD communication is just similar to but not the same as 

the inter-component communication topology. In CSMA/CD, all  entities will compete 

with each other to use the channel, however, as shown in Figure 9, in SDR inter-

component communication is a cascade system where the packet will be transmitted  

from entity 1 to entity 2, entity 2 to entity 3, entity 3 to entity 4, etc.  The CSMA/CD 

adopted model may not perfectly reflects the behavior of the inter-component 

communication. 

The trend line in Figure 6 clearly shows the saturation of this delay. The behavior 

of these delays is similar to the famous S-shaped function, “Logistic function” [46-47]. 

The logistic function is characterized by an approximately exponential growth rate in the 

beginning followed by saturation. The logistic function is used for modeling in many 

fields such as demography (the population growth model), medical (the growth of 
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tumors), and physics (the Fermi distribution). The simple logistic function can be 

described as 

fሺxሻ= 
1

1+e	-x       (3.6) 

 

which can be generalized as 

Yሺtሻ=A+ 
K-A

1+Qe	-r൫t	-	t0൯       (3.7) 

where 

  

Y is a function of t 
A : the lower asymptote; 
K : the upper asymptote.  

  If A=0 then K is called the carrying capacity; 
r : the growth rate; 
Q : depends on the value Y(0) ݐ଴ : the time of maximum growth 

 

To find a closed form model of this delay, the values of parameters listed above 

need to be adjusted. This method is known as parameter extraction. In the beginning the 

actual data between total delay and number of components was plotted into the x-y plane, 

as in Figure 10, to estimate the growth rate and time of maximum growth. The lowest 

possible delay is 0 therefore the lower asymptote is 0, which leads to the value of one for 

Q. 
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Figure 10: Graph of Actual average total link delay vs. Number of components 

 

The estimation range of possible growth rate (r) was between 0.01 and 4 and the 

possible time of maximum growth (ݐ଴ሻ was between 0.1 and 5. These estimation ranges 

were used to solve for the upper bound (K). To solve for K, the least square method was 

used to find the best fit spots of r and	ݐ଴. The objective of this method is to minimize the 

distance between the function and actual delays. 

minr, t0ฮh-Mฮ2
      (3.8) 

where 

 h	=	 1

(1	+	e	-r൫t	-	t0൯)       (3.9) 

M = actual data 
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Figure 11: Contour plot of least square method 

 

In Figure 11, the best fitting point was marked as “*” in a contour plot of least 

square method. The best fitting values were r = 1.4987 and ݐ଴ = 2.5403 which gave value 

of K = 0.005746. The closed form expression that approximated best the data point is 

given by the following expression. 

Dሺtሻ= 0.005746

(1	+	e	-1.4987൫t	 -	 2.5403൯)      (3.10) 

 

where 

 
K : the upper bound of the delay.  
r : the growth rate of delay, in exponential region. 
t0 : the number of components which gave the maximum growth. 
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The closed form expression in e.q. 3.10 was plotted with the actual data in Figure 

12. 

 

Figure 12: Graph of average total link delay vs. Number of components 

 

In Figure 13, the absolute errors between actual delays and the closed form 

expression were plotted. Figure 14 showed the relative error between them. The plot 

presented the goodness of fit of this model which performed very well when the number 

of components was large. The goodness of fit also addressed higher error when the 

number of components was small. A maximum percentage error was 6.73%. 
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Figure 13: Graph of Absolute error vs. Number of components 
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Figure 14: Graph of relative error in percentage (%) vs. Number of components 

 

The experiment was conducted again with the five new waveforms to test the 

validity of this model. One dummyblock was added incrementally from eleven to fifteen 

dummyblocks with each waveform. The closed form expression in e.q. 3.10 was plotted 

with the actual data in Figure 15. In Figure 16, the absolute errors between actual delays 

and the closed form expression were calculated and plotted. Figure 17  showed the 

relative error between them. The model performed very well compared with independent 

observed data. A maximum percentage error was 0.2-1.4% when the number of 

dummyblocks was increased to eleven to fifteen incrementally.  
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Figure 15: Graph of average total link delay vs. Number of components 

 

Figure 16: Graph of Absolute error vs. Number of components 
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Figure 17: Graph of relative error in percentage (%) vs. Number of components 

 

This closed form expression of the delay versus number of components can be 

used for designing better SDR waveforms. The closed form expression can be used in 

predicting the link delay related to number of components in the SCA-SDR system. The 

model can help the software designer to match the number of components planned to be 

included in the waveform design to satisfy the protocol limitation. The model can also 

give a more realistic delay in the simulation which leads to more practical results. 

     

3.5. Conclusion 

In this chapter, a study of the internal inter-component communication delay due to 

number of components was presented. Through controlled environment experiments, it 

was demonstrated that the total link delay will increase due to the number of components 
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in the beginning. The delay will saturate after a certain number of components in the 

waveform is reached. A closed form expression is obtained by using a logistic function to 

model the behavior of the delay as a function of the number of components. The accuracy 

of this model was presented by comparing it with actual data. The model had less 

accuracy when the number of components was small, however it was better when the 

number of components was large.  
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CHAPTER 4 

STUDIES ON INTER COMPONENT COMMUNICATION LATENCY BASED 
ON VARIATION OF NUMBER OF COMPONENTS AND PACKET SIZE IN SDR 

A part of this chapter was accepted to publish by Inderscience in International 

Journal of Computational Science and Engineering (IJCSE) [57]. 

In the previous chapter, experiments were done by varying the number of 

components to observe its effect on delay. However Abgrall et al. [17-18] also indicated 

through some evidence that internal packet size did affect the average internal delay. In 

this current investigation, we extend the experiment to identify the effect of packet size 

on the delay. This investigation also considered a relationship between the number of 

components and packet size. The result of this experiment will lead to a better approach 

in designing communication criteria.  

This chapter is organized as follows: In section 4.1, experiment methodology is 

described. In section 4.2, experiment system and environment assumptions are reviewed 

and given. Results and analysis with mathematical modeling are presented and discussed 

in Section 4.3 and 4.4. In section 4.5, the conclusion is given. 

4.1. Experiment Methodology 

It is clear that delay increases with packet size. However the objective of this 

investigation is to observe the relation between information transmitted for each packet 

and the resulting packet delay. The main goal is to find a better approach for choosing 

packet size utilized in internal SCA communication. 

In this investigation, the average delay was measured. The delay was one which 

occurred between internal waveform communications resulting from different packet 



49 
 

sizes. Multiple packet sizes were tested with 9 different waveforms used in the previous 

chapter investigation (Section 3.2). The difference between each waveform was the 

number of components. The number of components varied from two to ten. The 

fundamental waveform and dummyblock from previous chapter were used to prevent the 

unexpected delay. 

The packet size was changed by adjusting transmission parameter in a CORBA 

manager.  

4.2. Experimental setup and Environment assumption 

We still performed these experiments on the same custom virtual system as the 

previous work. The virtual machine was built using VMWare Workstation featuring 

single core general purpose virtual 1.7 GHz processors with 1GB delicate RAM. OSSIE 

0.8.1 with OmniORB 4.1.4 was run on Linux Ubuntu 10.04LTS in this system. 

Packet sizes were varied in each experiment but the total transmission information 

was kept constant at 1 Megabits. The packet sizes were 256, 512, 1024, and 2048 bits, so 

the total number of packets were inversely related with 4096, 2048, 1024, and 512 

packets respectively. Each experiment was run with nine different waveforms with the 

number of components varied from two to ten, similar to the experiment in previous 

chapter. Packets were transmitted from the transmitter to the receiver with five seconds 

delay between each packet to prevent congestion. There was only a single version of 

waveform running in each observation. All virtual resources were available as needed. 
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4.3. Result 

In Figure 18 to Figure 26, the results for each number of components are plotted as 

the average of total link delay versus packet size. The results clearly show a result as 

expected that the average total link delay also increased when the packet sizes increased. 

Results also showed that when the number of components was small, the delay did not 

increase as expected. 

 

Figure 18: Graph of Average total delay vs. Packet size. The waveform has 2 dummyblock components. 

 

 

Figure 19: Graph of Average total delay vs. Packet size. The waveform has 3 dummyblock components. 
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Figure 20: Graph of Average total delay vs. Packet size. The waveform has 4 dummyblock components. 

 

 

Figure 21: Graph of Average total delay vs. Packet size. The waveform has 5 dummyblock components. 
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Figure 22: Graph of Average total delay vs. Packet size. The waveform has 6 dummyblock components. 

 

 

Figure 23: Graph of Average total delay vs. Packet size. The waveform has 7 dummyblock components. 
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Figure 24: Graph of Average total delay vs. Packet size. The waveform has 8 dummyblock components. 

 

 

 

Figure 25: Graph of Average total delay vs. Packet size. The waveform has 9 dummyblock components. 
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Figure 26: Graph of Average total delay vs. Packet size. The waveform has 10 dummyblock components. 

 

4.4. Analysis and Modeling 

 

Figure 27: Graph of Average total link delay vs. Number of components for four different packet sizes 
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Figure 27 shows the combined results of average total link delay versus number 

of components on four different packet sizes. Even though the delay increased with 

packet sizes, it was not linear. The growth rate of delay was in logarithmic function due 

to the packet size. It was observed that the packet size has less effect to the delay when 

the number of components is small. This effect is explained by the fact that the actual 

transition delay was much less than the delay from the packet processing overhead 

generated from CORBA manager itself [14-16, 36-37]. The CORBA manager overcomes 

the total link delay.  

In previous studies, Tsou el al. [15] had a different experimental environment 

from our investigation. They compared two different SDR system, CORBA and non-

CORBA. Their results showed similar delay at some packet sizes. Their results also 

showed the delay in term of packet size in CORBA system was a step function. Their 

experiment did not isolate processing delay from the components. Abgrall et al. [17] 

measured the delay in term of packet size only at single link between components even 

though their waveforms consisted of multiple links between components. Their packet 

sizes concerned only actual information, but did not include header and encoding 

overhead, as this investigation did. The current investigation results support their findings 

where trends and latency values with similar data sizes were used provided the packets 

did not have communication set up delay. This investigation was more extensive by 

measuring the delay more in detail. These details showed that the delay was overcome by 

communication setup.    
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Abgrall et al. [18] extended their study again later with by measure parallel links 

and purposed a statistic model using a T-location Scale distribution and a Generalized 

Extreme Value distribution to fit the delay. Prior studies had never proposed any 

mathematical model to explain the delay behavior in terms of the number of components 

and packet size or any consideration of the relationship between them. 

 

Figure 28: Graph of Average total link delay vs. Number of components for four different packet sizes 

 

In Figure 28, the delay of each packet size is shown in a similar trend. After a 

certain number of components had been reached, the delay became saturated. From the 

previous chapter, this was modeled with the logistic function. 
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Yሺtሻ=A+ 
K-A

1+Qe-r൫t - t0൯      (4.1) 

The parameter extraction method was used again, similar to the previous chapter 

with the four different packet sizes creating each individual model. Table 2 presents those 

parameters. It is observed that upper bound of the delay (K) and maximum growth rate 

(t0) increased as a logarithmic function of packet size.  

 Packet sizes 
Parameters 256 512 1024 2048 

K 0.004001 0.004527 0.005746 0.006279 
r 2.689487 2.112879 1.498743 2.505025 
t0 2.354282 2.336269 2.540356 2.985071 

 

Table 2: Logistic function parameters for each packet size 

 

It was observed that the parameter K and to in these closed form expressions 

linearly increase when the packet size exponentially rises as a function of the power two. 

The transformed packet size results in a linear function as 

linear value = log2
packetsize    (4.2) 

Evaluating values produces the results shown in Table 3 

 

 Linear value transformation of packet sizes 
Parameters 8 9 10 11 

K 0.004001 0.004527 0.005746 0.006279 
r 2.689487 2.112879 1.498743 2.505025 
t0 2.354282 2.336269 2.540356 2.985071 

 

Table 3: Logistic function parameters for each linear value of packet size 
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It is observed that parameter K and to could be presented as a polynomial function 

of linear value of packet sizes. The basic fit tool box in the Matlab simulator [48] was 

used to develop a best fit model for the values. Figure 29 shows the three different 

models of K, i.e. linear function, quadratic function, and cubic function, plus their 

residuals. Even though the cubic function gave smaller residuals, the closed from 

expressions given were negative functions. The quadratic function also gave too high rate 

of change for K.  

 

Figure 29: Graph of K vs. Linear value of packet size 

 

A linear function gave the best fit K values, the result of which was  

y	=	0.00081x	-	0.0025      (5.3) 
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which presents K as a function of packet size as 

K	=	0.00081൫log2
packetsize൯	-	0.0025    (5.4) 

 

Figure 30: Graph of to vs. Linear value of packet size 

 

A similar method was performed with the ݐ଴ parameter. The result is shown in 

Figure 30. A linear function gave the best fit for ݐ଴ values as 

y	=	0.21x	+	0.56      (4.3) 

which forms a function of ݐ଴	resulting from packet size as 

t0	=	0.21൫log2
packetsize൯	+	0.56     (4.4) 
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The value r could not be represented by any polynomial. The best possible 

parameter for solution in this case was a mean value of them, which gave a value equal to 

2.2015. With e.q. 4.1 to e.q 4.4, the closed form expression which best approximated the 

delay in terms of number of components and packet size was given by the following 

expression. 

Dሺnumber of component,	packet	sizeሻ = 
K

1+e-r(number of component-t0)
  (4.5) 

where 	
K = 0.00081൫log2

packetsize൯	- 0.0025 

r  = 2.2015 

t0 = 0.21൫log2
packetsize൯ + 0.56 

K : the upper bound of the delay.  
r : the growth rate of delay, in exponential region. ݐ଴ : where the maximum growth appear.	

 

Figure 31: Graph of average total link delay vs. Number of components of 4 different packet sizes 
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The closed form expression in e.q. 4.5 was plotted with the actual data in Figure 

31. In Figure 32, the absolute errors between actual delays and closed form expression 

were plotted. Figure 33 was a plot of the relative error of them in percentage. Even 

though this model addressed a very high error when number of components is small, the 

maximum error was as high as 44%, the model performed very well when the number of 

components is large, 0-10%.  

The closed form expression of the delay, in terms of number of components and 

packet size, can be used for designing a better SCA-SDR waveform. It can be used in 

predicting the link delay related from number of components and packet size in the SCA-

SDR system. The model also gives more realistic delay in simulation which leads to more 

practical results. 

 

Figure 32: Graph of Absolute error vs. Number of components of four different packet sizes 
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Figure 33: Graph of relative error in percentage (%) vs. Number of components of four different packet 
sizes 

 

The experiment was re-run with additional packet size, 4096 bits, to test the 

validity of this model. The closed form expression in e.q. 4.5 was plotted with the actual 

data in Figure 34. In Figure 35, the absolute errors between actual delays and the closed 

form expression were plotted. Figure 36 showed the relative error between them. The 

model still performed very well even though the number of components was increased.  

Based from these figures, the model still holds true even when the packet was raised to 

4096 bits. 

The closed form expression can also be used with other CPU and memory 

consumption models to choose the number of components and the packet size in the 

waveform to satisfy protocol limitation and to optimize the throughput. 
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Figure 34: Graph of average total link delay vs. Number of components of 4096 bits packet sizes 

 

 

Figure 35: Graph of Absolute error vs. Number of components of 4096 bits packet size 
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Figure 36: Graph of relative error in percentage (%) vs. Number of components of 4096 bits packet size 

 

4.5. Conclusion 

In this chapter, a study of the internal inter-component communication delay due 

to number of components and packet size was presented. Through controlled 

environment investigation, it was demonstrated that the increase of total link delay was 

not linear with packet size. A closed form expression is proposed using the logistic 

function to model the behavior of the delay as a function of number of components and 

packet size. The accuracy of this model is presented by comparing it with actual data. . 

The model had less accuracy when the number of components was small, however it was 

better when the number of components was large. 
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CHAPTER 5 

ENERGY AWARE WAVEFORM SELECTION ALGORITHM FOR SDR 

The goal of this work is to develop a new approach for a SDR transmission 

protocol that optimizes energy efficiency. In order to choose among multiple protocols, a 

requirement metric for algorithm selection was formed. The elements of this metric are 

availability, quality of service, security, and user personal requirement. To design the 

next generation SDR, one parameter to be included in this metric is energy consumption. 

To achieve that result, the level of energy consumption of each protocol must be 

predicted in real-time in order to identify the best possible protocol solution. 

This chapter is organized as follows: In section 5.1, an energy model and 

selection algorithm is discussed. In section 5.2, simulation setup, environment 

assumption, and performance index are discussed and given. Results and analysis with 

mathematical modeling are presented and discussed in Section 5.3. In section 5.4, the 

conclusion is given. 

5.1. Energy Model and Selection Algorithm 

Three energy models were derived by Kim et al. [49]. These models represent 

energy consumption of three different whole traffic wireless network protocols – WLAN 

[50], Bluetooth [51], and ZigBee [52]. 

Wireless Local Area Network (WLAN) or WLAN is one of the most well-known 

and widely used wireless technologies in the past decades. WLAN is the technology 

based on traditional LAN but instead of using wire, the architecture shifted to wireless. 
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WLAN itself has many different standards i.e. 802.11b and 802.11g use the 2.4 GHz 

band, 802.11a uses 5 GHz band, 802.11n uses both 2.4 GHz and 5 GHz band depends on 

the speed and range, and 802.11ac uses the 5 GHz band. The transmission rate of WLAN 

also depends on the standards, the range is 11 Mbit/s up to 6.93 Gbit/s, in idle. WLAN 

uses an ad-hoc model so any device can transmit at any time. Due to this reason 

whenever the WLAN device needs to transmit a data, the channel has to be free for a long 

enough period before the transmission starts. If a collision occurs, all the devices 

involved in the collision will wait for a random time before retransmitting. This process 

is called “back-off". The energy model of WLAN [49] is, Ltraffic which is a length of total 

transmitted traffic. 

EWLAN= ൤Ptx
WLAN·

LMTU
WLAN

RWLAN +Prx
WLAN·

LACK
WLAN

RWLAN +Pidle
WLAN·(TDIFS

WLAN+TBO
WLAN+TSIFS

WLAN)൨ ·
Ltraffic

Lpayload
WLAN    (5.1) 

with 

EWLAN= energy consumption of WLAN 

Ptx
WLAN= transmission power of WLAN 

Prx
WLAN= receiving power of WLAN 

Pidle
WLAN= power consumption of WLAN in idle state 

LMTU
WLAN= Maximum Transmission unit of WLAN 

LACK
WLAN= Length of WLAN acknowledgement 

Lpayload
WLAN = Length of actual payload per MTU 

RWLAN= Rate of transmission of WLAN 

TDIFS
WLAN= The channel-free guarantee time, the minimum time that channel has to 

be continuously free before start transmission to prevent collision. 
WLAN uses Distributed coordination function (DCF) Interframe space 
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(DIFS) as the channel-free guarantee, which is Shot Interframe Space 
(SIFS) plus two time slots. 

TBO
WLAN= The additional waiting time adds in WLAN when it detects the collision. 

TSIFS
WLAN= The maximum period that WLAN would wait for the acknowledgment, 

which comes from Shot Interframe Space (SIFS). 

  

Bluetooth is a wireless network standard based on IEEE 802.15.1 (Wireless 

Personal Area Network – WPAN). The main purpose of this standard is used for 

exchanging data over short distances, 1-100 meters. The transmission rate of Bluetooth is 

around 1 – 24 Mbits/s, depending on the version. Bluetooth also uses the 2.4 GHz band 

but it is set up as a master-slave model. So the devices in same network don’t need to 

sense or be aware of collisions. All devices will be given a specific transmit time-slot 

from the Master device to transmit. The energy model of Bluetooth [49] is 

EBT= ൤Ptx
BT·

LMTU
BT

RBT +Prx
BT·

LACK
BT

RBT +Pidle
BT ·(Tslot

BT -(
LMTU

BT

RBT +
LACK

BT

RACK
BT ))൨ ·

Ltraffic

Lpayload
BT    (5.2) 

with 

EBT= energy consumption of Bluetooth 

Ptx
BT= transmission power of Bluetooth 

Prx
BT= receiving power of Bluetooth 

Pidle
BT = power consumption of Bluetooth in idle state 

LMTU
BT = Maximum Transmission unit of Bluetooth 

LACK
BT = Length of Bluetooth acknowledgement 

Lpayload
BT = Length of actual payload per MTU of Bluetooth 

RBT= Rate of transmission of Bluetooth 
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Tslot
BT = Time of Bluetooth time slot, 625 microseconds. 

Zigbee is another wireless network standard based on IEEE 802.15.4 for Low-

Rate Wireless Personal Area Networks (LR-WPANs). The purpose of this standard is to 

be simpler, less expensive, and lower-power. Zigbee has been designated as a low-rate 

application device such as in-home sensor or wireless home appliance. Zigbee therefore 

transmits with 250 kbit/s which is a lower rate than the other protocols listed above. 

Zigbee can also operate in an unlicensed 2.4 Ghz band, along with other unlicensed bands 

depending on the country it is used in. The significance of ZigBee is that it can operate as 

mesh network so each ZigBee device can act as a router that route the packet to other 

devices. ZigBee also uses an ad-hoc model so any device can transmit at any time but 

using different methods to solve the collision problem than WLAN. Instead of using a 

statistical channel free model, a ZigBee device will allocate the free channel by 

broadcasting the allocating signal to all others. The energy model of ZigBee [49] is 

EZB= ൤Ptx
ZB·

LMTU
ZB

RZB +Prx
ZB·

LACK
ZB

RZB +Pidle
ZB ·(TBO

ZB +TCCA
ZB +TACK

ZB )൨ ·
Ltraffic

Lpayload
ZB    (5.3) 

with 

EZB= energy consumption of ZigBee 

Ptx
ZB= transmission power of ZigBee 

Prx
ZB= receiving power of ZigBee 

Pidle
ZB = power consumption of ZigBee in idle state 

LMTU
ZB = Maximum Transmission unit of ZigBee 

LACK
ZB = Length of ZigBee acknowledgement 

Lpayload
ZB = Length of actual payload per MTU of ZigBee 
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RZB= Rate of transmission of ZigBee 

TBO
ZB = The additional waiting time adds in ZigBee when it detects the collision. 

TCCA
ZB = The clear channel assessment (CCA) time, the minimum time that channel 

has to be continuously free before start transmission to prevent collision. 

The additional waiting time adds to the protocol when WLAN detects the 
collision. 

TACK
ZB = The maximum period that WLAN would wait for the acknowledgment. 

Kim et al. and Seigneur. J et al. [53] obtained the states of power consumption for 

each protocol. In Table 1, the power consumption of the three protocols are shown 

normalized that of to the WLAN inactive state. 

 WLAN Bluetooth ZigBee 

Inactive 1x 0.30x 0.03x 

Idle 2.14x 0.32x 0.21x 

Tx 3x 0.57x 0.21x 

Rx 2.71x 0.57x 0.21x 

 

Table 4: Normalized Power Consumption between WLAN, BLUETOOTH, and ZIGBEE 

 

As shown in Figure 37, the power aware module must work side-by-side with the 

SCA core framework. By working together, the system should make a decision in 

advance in the terms of power consumption, i.e. predetermine which waveform saves 

more power when many waveforms are available. The parameters which have to be 

considered are required rate, actual rate, data availability, maximum transmission unit 

(MTU) of protocol, header length, and swapping cost. 
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Figure 37: Energy Aware Module for SCA 

 

Figure 38 shows the algorithm flowchart for this module. When the application 

requests to transmit, it will check whether a specific waveform is required for its 

transmission or not. If the application requires a specific choice, it will select the 

waveform immediately. Otherwise, it will compare the required data rate of the 

application with every waveform. Any waveform which can support the application will 

be added to the candidate list, Wcandidate. This specific step has been performed to check 

the quality of service needs for each application. Then, the application will be checked 

again if it is a real-time application or not. If it is, the candidate with the lowest rate will 

be used to transmit. This is because the real-time application has a different characteristic 

compared to the normal application. Real-time data have to be received in sequence and 

the data will not be available ahead of time. If the application does not need real-time 
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capability, energy consumption of each of them will be calculated using e.q. 5.1 - 5.3. 

The energy cost that occurs when changing waveforms is also taken into consideration 

here. The waveform with the lowest energy consumption will be chosen to transmit, and 

the process will continue through the next application request. 

 

Figure 38: Energy Aware Waveform Selection Scheme 
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This algorithm was evaluated through simulation. The simulation was performed 

in one-hundred steps. In each step, one thousand uniformly distributed random 

application traffic length values were used. The average value for the first step was five 

hundreds bytes. Afterwards, the average traffic length value for each step was increased 

by one thousand bytes. 

 

5.2. Simulation Setup, Environment, and Performance Index 

The simulation environment was the direct peer-to-peer communication between 

two network entities. The distance between the two entities was within the range of all 

waveforms. Each single network entity was equipped with three different waveforms – 

WLAN, Bluetooth, and ZigBee. Also, the channel was assumed to be only available to 

these two entities. WLAN was specific to IEEE 802.11g standard. Bluetooth was specific 

to Data High rate (DH) 1-28 bytes per time slot, symmetric link-single time slot. ZigBee 

was a Non-Beacon enable mode with symmetric uplink and downlink. The performance 

index of this scheme is energy consumption. The energy consumption of the proposed 

system was compared to that of each standalone communication device.  

 

5.3. Results and Analysis 

As shown in Figure 39, the energy consumption of each protocol is proportional 

to the traffic length. Obviously, more energy is required for more data transmission. The 

graph also shows that energy increases as a step function. 
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Figure 39: Energy Consumption vs. Traffic Length 

  

 

Figure 40: Energy Consumption vs. Traffic Length zoomed on the first five hundred bytes. 
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The step functions occur because each packet transmission has to transmit the 

whole packet regardless of the completeness of the packet. This leads to a better selection 

of application data size which is based on energy consumption. The application needs to 

limit or compress transmissions data close to the packet size to fully utilize the energy 

consumption per packet. Besides, this comparison study shows one significant concern. 

Even though the low power protocol devices, like Bluetooth and ZigBee, consume less 

power to operate, energy consumption due to traffic length grows much faster than that of 

WLAN. As show in Figure 40, for the first 500 bytes, Bluetooth is the most energy 

efficient when the traffic length is between 1 – 200 bytes. If the traffic length is between 

200 – 300 bytes, ZigBee becomes the most energy efficient. 

 

Figure 41: Example of Real Life Application Traffic length: Energy Consumption vs. Traffic Length 

 

Above that range, WLAN performs the best. The reason behind this is that the 

MTU of each protocol is different. Bluetooth has the smallest MTU size compared to 
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ZigBee and WLAN. When more packets are transmitted, more energy is wasted on 

overhead. To utilize energy more efficiently, we must select waveforms based on the 

MTU size, header size, transmission power, and transmission rate as well as the 

availability of data. For a real-time application which does not have the whole 

information on the traffic length, the required rate can be considered as traffic length 

instead. Figure 41 shows the energy consumption of each protocol in terms of real-life 

application traffic lengths. It can be concluded that if the application needs to transmit a 

huge file, like audio or video, WLAN is more desirable. 

5.3.1. Performance of the proposed Scheme 

  

Figure 42: Normalized Energy Consumption of short traffic length Comparison between (1) WLAN Only 
(2) Bluetooth Only (3) ZigBee only (4) Proposed Scheme 
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Figure 43: Normalized Energy Consumption of short traffic length. Comparison between (1) WLAN Only 
(2) Bluetooth Only (3) ZigBee only (4) Proposed Selection Scheme 

 

To evaluate the performance, random traffic lengths were used as mentioned 

previous. The proposed scheme performance was evaluated and compared to each 

traditional protocol. The graph figures in this section use color codes to represent the 

different waveforms: dark blue for WLAN, light blue for Bluetooth, yellow for ZigBee, 

and Red for the proposed scheme. 

Figure 42 shows a trend that the proposed algorithm will transmit by using a 

waveform that causes minimum energy. The average energy savings were 30%, 81%, and 

50% compared to WLAN, Bluetooth, ZigBee, respectively. Figure 43 shows the energy 

consumption for the first one thousand bytes. For WLAN, the energy consumption is 

much higher than the other waveforms because the average transmission length is short. 

A single traffic can be transmitted by only a single packet of Bluetooth or ZigBee 

because ZigBee has the smallest header and the packet size matches transmission lengths, 
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therefore it consumes least energy. On the other hand, WLAN will perform better if the 

traffic length is long. 

5.3.2. Limitation of the proposed Scheme 

Although the proposed scheme provides a good solution in selecting a waveform 

to transmit data in terms of energy efficiency, an assumption that input stream has 

uniform random distribution lengths was not realistic. In real world application, mobile 

entities do not have a uniform random distribution of traffic length. Every entity has its 

own specific purpose and often transmits application data with similar length. For 

example in mobile sensor networks [54-56], the sink frequently transmits and receives 

short-length sensor data but rarely uploads data to the backup server. The shortcoming of 

the proposed scheme was observed using a non-uniform random distribution of traffic 

lengths. Two extreme cases were shown. In the first case, the distribution was skewed 

towards a long traffic length while in the second case short traffic lengths were given 

more weight. 

The result of the first case is shown in Figure 44. The total energy consumption of 

the proposed scheme is much higher when compared with the traditional WLAN. When 

the short traffic length occurs, and the waveform is switched to the low-power protocol in 

order to match the MTU size, the cost of switching back to WLAN protocol is 

excessively high and the real-time decision does not take into account the future traffic 

lengths. In this situation, the used of WLAN would result in better energy efficiency in 

the long term. 
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Figure 44: Normalized Energy Consumption with high probability ( > 0.75) of long traffic length (> 2000 
bytes). Comparison between (1) WLAN Only (2) Bluetooth Only (3) ZigBee only (4) Energy Aware 

Selection Scheme 

      
 

Figure 45: Normalized Energy Consumption with high probability ( > 0.75) of short traffic length (< 200 
bytes). Comparison between (1) WLAN Only (2) Bluetooth Only (3) ZigBee only (4) Energy Aware 

Selection Scheme 
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Figure 45 also shows the other extreme case. The balance was flipped to the short 

traffic length and, as a result, the proposed scheme consumed more energy than 

Bluetooth. The reason behind it is also similar to the previous case. The cost of switching 

the protocol is too high, therefore, this resulted in the system continuing to transmit with 

WLAN. Recognizing these two extreme cases could lead to a better algorithm design. 

5.3.3. Threshold value  

To overcome a limitation in the scheme, the additional procedures were added to 

the selection algorithm. As shown in Figure 46, a counter had been added to a scheme. 

Instead of immediately changing protocol, the counter kept counting every time a 

decision was made to change the protocol, until it reached the threshold, so it would 

change the protocol and reset the counter.  

A question is what should be the value of this threshold should be. A simulation 

was performed again with an extended version of the scheme over the same performance 

index. The threshold value was varied from one to a maximum set of information 

transmitted minus one (n-1). The simulation was performed with two additional extreme 

cases as discussed before. Figure 47 shows the result of the first simulation where the 

majority of traffic sizes were large. Figure 48 showed the result of the second simulation 

where the majority of traffic sizes was small. These results show a conclusion that if there 

was no threshold at all, in extreme cases the selection algorithm performed worse than 

without. The scheme would starts to perform better after setting the threshold value equal 

two in those two extreme cases. 
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Figure 46: Smart Energy Aware Waveform Selection Scheme  
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Figure 47: Graph of Normalized energy consumption vs. Size of threshold value for high probability ( > 
0.75) of long traffic length (> 2000 bytes).  

 

Figure 48: Graph of Normalized energy consumption vs. Size of threshold value for high probability ( > 
0.75) of short traffic length (< 200 bytes). 
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Figure 49 showed the performance in terms of the energy consumption of the 

scheme using threshold value in three different scenarios, compared with three traditional 

transmissions.  The first scheme, a normal distribution of traffic sizes, was presented with 

the blue bar graph. The second and third schemes, represented by green and red bar 

graphs, were comprised of the case where the majority of traffic sizes were small and 

large, respectively. Even though the scheme did not give the lowest energy consumption 

in all cases, the performance was 10-15% better than without a threshold. 

 

Figure 49: Normalized Energy Consumption of “normal distribution traffic length (blue)” ,“high 
probability ( > 0.75) of short traffic length (< 200 bytes) (green)”, and “Graph of Normalized energy 

consumption vs. Size of threshold value for high probability ( > 0.75) of long traffic length (> 2000 bytes) 
(red)”. Comparison between (1) WLAN Only (2) Bluetooth Only (3) ZigBee only (4) Energy Aware 

Selection Scheme with threshold changing 
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5.4. Conclusion 

A comparison study of energy consumption between three wireless network 

protocols is presented. This comparison illustrates that even though a low-power protocol 

device was used, it did not necessarily consume less energy transmitting the same traffic 

length. This is because energy was consumed transmitting unnecessary duplicate headers. 

An energy aware waveform selection algorithm for SDR is proposed here. Evaluation of 

the proposed scheme was conducted through simulations. Investigation results show that 

the proposed scheme performed better than using any single protocol specific to an 

application. Limitation of the scheme was also addressed when used with non-uniform 

random distributions of traffic lengths. An additional procedure was added to the scheme 

to improve the limitation. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

In this dissertation, the relationship between total link delay versus the number of 

components and packet sizes in a controlled environment were demonstrated. The results 

show that the delay will not linearly increase with increasing numbers of components. 

Instead, the delay will saturate after a certain number of components in the waveform is 

reached. This response occurs because the delay is overcome by the communication 

setup, especially related to the CORBA itself. The delay also does not proportionally 

increase with the packet size. The results demonstrate that the delay will logarithmically 

increase due to packet size.  This response results because the majority of the delay 

comes from the CORBA processing overhead which does not increase due to packet size. 

The relationship between packet size and number of components was also observed. 

Packet size has less effect on the delay when the number of components is small. A 

closed form expression was selected to model the total link delay in terms of the number 

of components and the packet size as e.q. 4.5. The accuracy of the expression was 

investigated. The model performed well when the number of components was large but 

not as well when the number of components was small. The closed form expression is 

useful to predict delay in terms of those two parameters which creates a better design 

methodology SDR-SCA based waveform. 

Possible future work can investigate an extended experiment using advanced 

controlled environments. This will allow evaluating another effect due to the number of 

components, especially with regards to multi-core or special designed core systems. Also 
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the same investigation methods can be used to test goodness of fit of the designed 

platform in term of the number of components and the packet size.  This investigative 

approach can also be extended to other resource consumption, CPU, memory, power 

models.  This will help to determine a better model relating the number of components 

and waveform packet size versus protocol limitation and throughput optimization. 

Lastly, the energy waveform selection algorithm was proposed in order to 

optimize the energy consumption for SDR transmission. A flexible SDR system can 

support multiple transmission protocols at the same time. It needed to be seamless from 

the user to choose which protocol to be transmitted. The goal of the scheme was to 

guarantee the availability of the service and to keep the battery lasting longer. The 

scheme used the three widely used protocol energy models [49] to predict the energy 

consumption of the system plus the switching consumption. The simulation compared the 

goodness of the scheme over those three traditional non switching transmissions. The 

scheme limitation was also addressed when the probability of traffic length was 

distributed unfairly. The additional switching threshold was also proposed to increase the 

performance of the scheme.  

A possible future research direction is to extend the energy analysis model to 

other wireless protocols. Currently the scheme only focused on WLAN, Bluetooth, and 

ZigBee but the concept itself was general enough to be extended to other waveforms such 

as GPRS, EDGE. Moreover, this scheme can be more adaptive. The energy selection 

algorithm could be improved by adding the adaptive prediction concept. Using 

“Knowledge” based ideas, even perfect knowledge or heuristic knowledge, the scheme 
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could perform better in extreme cases. The threshold can be dynamically changed 

depending on the ratio of traffic size that needs to be transmitted. Also the additional 

statistical model could be considered on user’s behavior for application specific 

equipment. This can lead to a better decision metric for waveform selection scheme. 
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