

Micro-
electronics

Journal Microelectronics Journal 00 (2016) 000–000

www.elsevier.com/journals/microelectronics

Energy-efficient data prefetch buffering for low-end embedded

processors

Muhammad Yasir Qadri1 Nadia N. Qadri2 Martin Fleury1a* Klaus D. McDonald-Maier1

1School of Computer Sci. and Electronic Syst., University of Essex, Colchester Co4 3SQ, U.K.

2Dept. of Electrical Engineering, COMSATS Institute of Information, Technology, Wah Campus, Pakistan

Abstract

An energy-efficient architecture should jointly optimize energy consumption and throughput, as captured

by the Energy-Delay-Square Product (ED2P) metric. This paper introduces a prefetch data buffer micro-

architecture, which achieves that goal with the aid of software-inserted control words to govern the

prefetch process. The proposed architecture is aimed at low-end embedded processors, which, so as to

reduce energy consumption, lack a cache-based memory hierarchy. By identifying after compilation

which data should be prefetched and modifying the object code, the rate of prefetch misses is reduced.

And by pre-computing memory addresses using auxiliary software after compilation and modifying the

object code, address computation by hardware at run time is avoided, reducing pipeline stalls and, thus,

improving throughput. Additionally in the case of branches, by prefetching two data items at any one

time, alternative instruction outcomes are anticipated. The paper contains results from running a range of

well-known and representative benchmarks on the proposed architecture. There was an improvement of

6%−20% compared to an unbuffered architecture in execution times when tested over those seven

benchmarks. Furthermore, the average ED2P for the buffered architecture when normalized against the

same architecture without buffering was found to vary between 54% − 90% according to benchmarking,

though there is a cost in code size increase. That is to say, for the benchmarks tested there was a net

energy efficiency improvement of between 10% and 46% in comparison with the equivalent unbuffered

architecture with a lower area overhead.

* Corresponding author. Tel.: +44 1206 872678; fax: +44 1206 872900.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/78863409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

Keywords: control words; data prefetch; embedded processor; micro-architecture

1. Introduction

The growing proliferation of embedded battery-powered devices, often performing

complicated tasks, leads to the prioritization of energy-efficient design optimizations. Such

design optimizations strive to strike a balance between energy usage and throughput in a system

and do not simply attempt to reduce energy consumption. In some energy-efficient designs, for

some applications, there might even be a negative impact on energy consumption. However, the

throughput can to rise to compensate, as quantified in the Energy Delay Product (EDP) metric

[1].

The proposed architecture gives preference to a data prefetch buffer rather than a data cache.

Though cache-based memory hierarchies are the norm for general-purpose PC architectures, in

the embedded world system, architectures may employ alternatives to caches. The energy usage

and chip area take-up of caches these can both be considerable. In addition, if the cache is not

carefully tuned the cache miss ratio will also increase, leading to processor idling. Thus it is [2]

that caches are a problematic feature in battery-powered embedded systems. Prior research [3]

[4] [5] confirms that caches may be responsible for as much as 50% of a low-end processor’s

energy budget. For the most part, not herein, a cache-like structure underpins software-

prefetching schemes, i.e. software prefetching assists already present hardware cache memories.

However, the proposed scheme does not require a cache-like structure to be present, which is

why it is likely to be more effective. Instead, the proposed architecture with a data prefetch

buffer replaces the typical cache memory, and, hence, the inherent disadvantages of such caches

(i.e. compulsory, conflict, and capacity misses). Comparing to the typical cache, the proposed

prefetch buffer requires: much smaller storage, is more area efficient, and less power

consumption.

Compiler-controlled prefetching of data [6] is one way that a data prefetch buffer can take the

place of a data cache in an energy-efficient manner. However, prefetching typically suffers from

E-mail address: fleum@essex.ac.uk.

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

an increased memory bandwidth. This increase is caused by unnecessary prefetches, owing to

false predictions by the particular algorithm employed. (For previous research on prefetch

buffering refer to Section 2.) This paper proposes a software-controlled prefetch buffering

architecture that, through the mechanism of control-word insertion, removes such false

predictions. The proposal also has a number of additional advantages, including a reduction in

pipeline stalls arising from memory address calculations. We believe that the introduction of a

varying instruction size, when control words are introduced is justified by the gains made. The

Acorn RISC Machine (ARM) in its Thumb variant also includes 16-bit and 32-bit instructions.

Low-end embedded microprocessors and microcontrollers typically have on-chip memory.

This is a way to reduce the number of additional components needed in an embedded

application. Such an arrangement also results in single-cycle access to the memory, which this

paper’s proposal takes advantage of. In a further simplification, the instruction pipeline changes

from the basic five-stages of a Reduced Instruction Set Processor (RISC) to just two stages. Both

the 8-bit Atmel AVR [7] and the Peripheral Interface Controller (PIC) microcontroller families

[8] support on-chip memory and two-stage pipelines, which the proposed software-based

prefetching technique exploits. Both families also have a Harvard architecture, which allows

instructions and data to be accessed simultaneously. As these microcontroller families are

extensively deployed, the proposal in this paper is of wide generality and applicability to

embedded applications. For example, by 2013 an AVR was present on every one of 700,000

official Arduino boardsb and Microchip, PIC’s manufacturer, output a 2013 press releasec

stating that it supplies one billion processors per year. According to an SAE article of 2014

entitled “Market for 8-bit chips remains strong”, T. Costlow points out that such processors

account for 24% of the automotive microcontroller market, which figure is expected only to

decline to 22% by 2018. As the vast majority of applications for low-end processors are in

embedded computing, not in general-purpose computing, our proposal is geared towards

embedded computing applications. Though, as Section 2 describes, pioneering work has gone on

in the past within the general field of pre-fetching, we believe there is still scope for

improvements, even though these improvements will now be focussed on specific domains.

b According to Cuartielles in 2013 on the Arduino FAQ at http:// http://www.arduino.cc/en/Main/FAQ

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

Immediately after the compilation of application code, our software inserts control words,

which cause a processor to prefetch data required by the next instruction in the two-stage

instruction pipeline. In this way, the method avoids static pointer-based data references and

associated address computations. More generally, the prefetch technique is implementable either

by an additional software tool operating at compile time, the choice herein, or by an enhanced

compiler directly, not used by us. Specifically, during the software creation phase or after

program compilation, control words are placed at a location at least one instruction ahead. As a

result, during execution the data required can be fetched without pipeline stalls. Therefore, this

architecture provides greater energy efficiency when compared to an unbuffered architecture

with lower area overhead. As with other software prefetching schemes, our proposal leads to

what could be for some applications a significant increase in code size owing to the need to store

some 32-bit rather than 16-bit instructions to accommodate control words. The significance will

depend on the size of the application code, which might anyway fit within the existing on-chip

memory.

Although the previously-mentioned EDP [1] is a widely adapted metric to evaluate energy and

delay effects, Martin et al. [9] recommends a weighted approach, using another metric i.e.

energy-delay-square-product (ED2P), which in [9] is alternatively called energy-time-square

(ET2), as T is delay. This metric is very useful in evaluating trade-offs between the circuit-level

power consumption and the overall energy efficiency of the system [10]. The ET2 (or

alternatively ED2P) metric was first introduced by Martin et al. in [9] in order to evaluate the

asynchronous MIPS3000 processor. The validity of the metric was later analysed by Martin in

[11] [12]. In [13], ED2P is defined as ED2P = EPI·CPI2 = EPC·CPI3, where EPI is the energy per

committed instruction, EPC is energy per cycle, and CPI is cycles per instruction. For a complete

execution of benchmark i, ED2P can be calculated as: ED2Pηi=ηi.EPC.CPI3, where ηi is the

number of instructions executed. However, herein we use the notation ED2P instead of ED2Pηi as

a simplification.

In evaluating a design [13], ED2P highlights performance more than EDP does. To first order,

ED2P is also independent of variations in voltage and frequency. A mathematical analysis of the

advantages of using ET2 over ET can be found in [11], where it is said that “The energy-delay

c Available at http://www.microchip.com/pagehandler/en-us/press-release/microchips-12-billionth-pic-mi.html

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

product E × t is often used to compare designs but is unfortunately not an acceptable metric”.

Indeed, some authors, for example [14], even suggest using the cube of delay to weight the delay

more than the energy of a system. However, we adopt a more moderate approach. The focus of

the architecture is to achieve greater throughput for an overall reduced active cycle for a

processor. Thus, the authors of this paper consider ED2P to be the most appropriate metric for

the research presented in this paper. Motivated and guided in that way, in this paper we introduce

a novel prefetch data buffering micro-architecture for low-end, embedded processors with on-

chip memories, which provides increased energy efficiency.

Finally in this introduction, notice that a brief outline of some of our ideas has been filed as a

U.S. patent application [15], though without relevant prior research papers, consideration of the

context, or performance results and analysis, as now occurs in this paper. This paper also

includes a longer description of the innovation and broadens the treatment. Our ideas are also

applicable to instruction prefetching. In [16] we did exactly that, thus confirming the benefit of

the ideas contained in this paper for data prefetching.

The rest of this paper is arranged as follows. Section 2 is a review of related work in this field

before going on to describe the proposed architecture in Section 3. In Section 4, the area and

power overheads of the software-controlled prefetching are compared against those of the

original unbuffered architecture. A detailed analysis of energy consumption reduction and

throughput improvement occurs using various benchmark applications. Finally, Section 5 rounds

up the paper with some concluding remarks.

2. Related research

A significant trend in low-power cache design [17] is to include an additional small extra data

buffer, which is accessed directly by the embedded system. Therefore, these designs require the

buffer to be accessed first, preventing altogether direct access to the original caching structure.

The intention of such designs is to save energy by achieving a high hit rate to the small

intermediate buffer. Notice that a larger buffer does not result in the same energy savings.

Investigation of these intermediate hardware buffers or caches is the inspiration behind

substituting software control of data prefetch. Crucially, however, the current paper avoids a

cache-based memory hierarchy. On the other hand, purely hardware-guided prefetching of data

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

into caches, e.g. [18], may be energy intensive [19] and is certainly not suitable for multicore

platforms. (For some counter-examples of energy efficient hardware prefetching consult [20].)

Most recently, there has been interest in introducing machine learning into prefetching. Work

in [21] considers the risk of aggressive prefetching saturating the memory bandwidth of a

multicore processor, for example, with a 40% risk of hardware prefetching harming the

performance of Intel’s Sandyridge i7-2600K processor. Instead [21] considers dynamically

combining hardware- and software-based prefetching in the Adaptive Resource Efficient

Prefetching (AREP) framework. That framework examines a selection of prefetch configurations

in order to choose the one with the least impact on performance. The work in [21] reports an 8%

increase on average in performance from applying AREP. The automatic prefetching tuner

(PATer) for the POWER8 processor [22] provides a way of tuning the prefetch configuration.

The need arises because the POWER8 processor has a 25-bit hardware register in which the

cache prefetch configuration can be set. Without the aid of linear discriminant analysis, manual

tuning of the register faces a difficult task owing to the large number of possible configurations.

However, to apply PATer requires an offline training phase with representative workloads. The

authors of [22] report a 1.4 improvement in processing speed but do not consider energy

consumption. Again, tuning is for a cache-based system, not the cache-less processors

considered in this paper. Moving on, in [23], machine learning, specifically Phase-Residency and

FFT fingerprints, is used to identify phases within a processor’s workload for which it is

preferable to either employ compiler-based prefetching or hardware-based prefetching. The work

targeted level-2 cache prefetching for the Xeon Phi many-core processor and a 95% prediction

precision was reported. Clearly though with between 57 and 61 cores, the Xeon Phi is a much

more complex processor than the ones considered herein.

There are a number of historical patents that are partially relevant to the software-controlled

data prefetch buffering mechanism proposed in this paper. Software supervision of cache

coherence is proposed in [24], especially in respect to a multiprocessor of the type in which

write-through to main memory is not used. It is suggested that the addition of cache-control

instructions to a processor’s instruction set can ensure main memory integrity in a situation when

each processor has its own private cache taken from a shared memory. Turning to the innovation

described in [25], this innovation is directly concerned with prefetch buffering, though for

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

instruction rather than data prefetch buffering. Two hardware pointers are maintained to indicate

where slots in the prefetch buffer can be updated and where instructions can be taken from to be

executed. This hardware control of the prefetch buffer is thought to be helpful in the case of

short loops, in which the same instructions from the prefetch buffer might be executed. The

prefetch buffer control can also be helpful when the buffer itself is a circular buffer because it

can control overwriting of still-to-be-executed instructions in the buffer. Branches

(approximately 15% − 25% of all instructions [26]) are another example of when instructions

from a prefetch buffer might be re-executed.

The purpose of the innovation just described is complementary to our proposal, as it involves

control of instructions about to be placed or already in a prefetch buffer, rather than the

instruction or (in our case) data access process itself. Patent [27] does involve a prefetch data

buffer and the addition of prefetch address decoding instructions (stored beforehand in the

instruction cache). Thus, a Harvard architecture is assumed such that the purpose of the prefetch

address decoding instructions is to bring data into the prefetch buffer before they are needed in

the instruction cache. Therefore, the motivation of the patent is different to that of this current

paper. Again in the context of caches, compiler control of instruction/data cache prefetching is

proposed in [28]. Specialist prefetch instructions are included in the processor instruction set for

use by the compiler. The main purpose of the innovation is to reduce thrashing occasioned by re-

storage of the same information in a cache because of a mapping clash causing a cache line to be

repeatedly overwritten while executing a program loop.

Off-line analysis of previous application execution traces is another technique that is utilized

in [29] to improve prefetch prediction performance. For static embedded applications, such

somewhat cumbersome techniques may be worthwhile. However, where dynamic adjustment is

required then helper threads [30] may run ahead of execution to guide prefetching. Alternatively,

idle hardware may be utilized [31] for a similar purpose. However, this is only appropriate if

there is available processing power, as may occur on multicores. Clearly also, these latter

techniques cannot also save energy.

Further examples of prefetch buffering receive detailed analysis in the authors’ previous work.

These examples are mostly intended to reduce the cache miss rate, reducing pipeline stalls, rather

than reducing energy usage. One threat that such designs [32] face is irregular memory

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

references, which result in high miss rates. Either compiler analysis [33] or pre-execution by a

thread [34] [35] [36] are ways that have been tried in the past in order to counter irregular

memory references. However, the survey in [37] of prior data prefetching techniques for

multicore processors indicates that random memory access remains a challenge to be addressed.

One principal weakness of prefetch proposals in the literature is that branch targets can be

inaccurately predicted. Software control of branch target prefetching has the potential to

significantly reduce this category of prediction error. At the same time, the energy expended by

prefetch prediction hardware is saved. Software intervention also avoids the need for hardware

computation of addresses, as they are calculated in advance. For these reasons, we were guided

by the literature towards software intervention in prefetch buffering, as now discussed.

3. Software-controlled data prefetch buffering

This Section describes the prefetch buffering mechanism in the context of embedded

processors.

3.1. Context

As mentioned in Section 1, energy efficiency is not simply the reduction of energy

consumption but requires the joint optimization of energy consumption and throughput. A

processor is usually in sleep mode [38], awakening for brief periods in time when required,

resulting in a low duty cycle. The period of activity can be reduced by increasing the throughput

during that time. The peak energy consumption and/or the sleep mode energy consumption can

also be reduced. Thus, energy and throughput are inter-related and are jointly involved in overall

power saving. Unfortunately for a cached architecture, whenever a processor in an active state

encounters a cache miss, it must stall until the required block of data is fetched from lower down

in the memory hierarchy and is made available to it. The amount of time a CPU spends in such a

state, the cache miss penalty, lowers the throughput in cache-based memory organizations. The

proposed design provides efficient prefetching by avoiding the large miss-prediction penalties

that can arise in typical cache-based memory hierarchies.

In fact, the proposed buffer storage is different from a typical cache memory in many ways. A

cache fetches data from memory on a block/line basis, which in turn can result in fetching some

data that is not required. This causes memory transactions that are not desired and results in an

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

energy overhead. Also the undesired data occupies the cache storage and needs to be flushed to

store other blocks of data as required. Therefore, the pipeline has to stall until the data are made

available in the cache. All these steps lead to energy consumption, which the intention of this

paper is to jointly reduce.

However, despite not using data cache memory, prefetch buffering can be compared

(hypothetically) to a cache configuration in which: the prefetch locations are fully associative;

and the replacement policy is simple, as with each new instruction the data in the buffers get

replaced if required. The write policy is write-through, since the memory latency is usually one

in low-end, embedded processors.

Tri-state data busses are assumed in the design; both the Atmel AVR and the PIC have these.

In addition, the presence of a dual-ported memory structure is assumed. In fact, it is common to

implement register files as dual- or multi-ported Static RAM and in [39] there is an example of

an AVR communicating with a Field Programmable Gate Array (FPGA) via dual-ported RAM.

The control words are inserted when required. To reduce energy consumption further, null

control words are available to put the data bus into the high-impedance state of the tristate bus.

Although, on the one hand, the insertion of control words in this software-assisted prefetch

buffering increases the code memory size, on the other hand, throughput increases and prefetch

accuracy is improved. The addition of a control word requires an extra 16-bits of data, along

with the usual 16-bit program memory width. By increasing the bus width to accommodate

control words, there is no impact on memory bandwidth.

To operate this scheme almost certainly requires a software tool or an augmented compiler to

automatically generate control words and insert them into a program’s code. Additionally

software functionality is needed to keep track of available data buffer space. There now follows

a discussion in which the data buffering architecture is further explained.

3.2. Data prefetch buffering

The proposed system comprises of a storage array (the data buffers). The storage array has

several storage locations each with an associated tag (refer to Figure 1, where the additional

storage locations are labelled A, B, and C). The software inserts control words into a program’s

code. These control words are subsequently employed whenever needed to direct prefetching of

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

data required by the instructions that follow. At a minimum, the control words are inserted one

instruction ahead of the targeted instruction in the case of a two-stage pipeline but may need to

be placed several instructions before the targeted instruction in the case of pipelines with more

than two stages. Typically, the next instructions will be load instructions but store instructions

can also benefit, as these also require address computations. Address computation usually

requires multiple machine cycles and, thus, can cause pipeline stalls.

Data Buffers

Buffer A

Buffer B

Buffer C

Compute Address

Code MemoryData Memory

Data

Data

Data

Data

Fig. 1. Data buffering architecture

The authors have developed simple Visual Basic software to add these control words. In a first

pass, once the application code is compiled and linked, the resulting .hex file is read by this

software and all the instructions that are load/store/branch instructions are identified. This is

achieved by matching the opcodes against the instruction-set table. Subsequently in a second

pass, control words are inserted an instruction before the target instruction. As the control words

will be fetched ahead of the target instruction and as they point to the location of the data, the

pre-fetch process starts and data are made available in buffers A, B, and C beforehand. An AVR

implementation of control word insertion is described in more detail in Section 4.1.

As mentioned in Section 1, the method is, therefore, particularly helpful in avoiding stalls

whenever there are pointer-based operations including pre-increment, post-decrement, indirect

load or store with fixed displacement, or combinations of these operations. In the case of

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

dynamic pointer-based operations, in which address calculation is performed dynamically during

execution such as in pointer-chasing, prefetch buffering can supply the data needed by the next

instruction to start execution in the pipeline. This is achieved by operand forwarding from the

instruction already executing, the result of which instruction will determine the address for the

next data to be fetched. The operand forwarding scheme that is commonly used to avoid pipeline

stalls results in a reduction of an additional cycle that is otherwise required for address

computation.

The data buffering space contains several data buffer locations and has address tags associated

with each storage location. Taking advantage of dual-port memory of the data buffering, a pair of

data can be fetched in every machine cycle based on the preceding control words. If a branch

instruction occurs then the fact that two data items can be fetched simultaneously is very

beneficial, as one data item is available for a true result and the other for a false result. The data

buffering has to contain address tags of the data to be fetched. However, the buffering size can

be much smaller than the typical cache because the data fetching is highly targeted and no other

data other than that required are fetched. The data replacement is determined in advance under

software control as per the requirements of the program executing and the data buffering space

available.

As also mentioned in Section 1, we take the Atmel AVR as an example of the targeted low-

end, embedded processors. Because the Atmel AVR is a RISC-based Load/Store architecture, all

the ALU operations are carried out on the registers, i.e. data from the memory are fetched to

registers and stored back from them to the main memory. In this architecture, the direct load and

store instructions, (LDS and STS in the AVR instruction set), take one cycle to execute on the

reduced core version. However, indexed or pointer-based load/store operations take two cycles

to execute (on the reduced core version). The proposed data buffering architecture resolves the

data dependencies of the subsequent instruction a cycle ahead and stores the required data in the

data buffering beforehand. The AVR architecture has three index registers namely X, Y, and Z;

hence, three data buffers, labelled A, B, C, are now introduced to hold the respective data

associated with them. The load and store instructions for the pointer-based operations also

support pre-increment, post-decrement, and indirect load and store with fixed displacement, as

previously described.

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

Thus, the prefetched data are stored in buffers A, B, and C. In the VHSIC Hardware

Description Language (VHDL) source code, the instruction fetch unit is modified. We have

added registers to store control words and logic to fetch data from addresses pointed to in those

registers. Figure 2 is a timing diagram for illustrative code before the modifications, whereas

Figure 3 is a timing diagram for after the modifications. Notice that in Figure 2, the unmodified

architecture takes two cycles to perform a load operation, whereas in the proposed buffered

architecture of Figure 3, such an instruction executes in one cycle only.

0000 CLR R0
0001 LD R0,X
0010 LDS R1,255
0011 ADD R1,R0
0100 BRCS 0B

.

.

.
1011 NEG R1

Clock

LD R0,X

CLR R0

ADD R1,R0

LDS R1,255

Fig. 2. Instruction timing diagram in the original architecture

Clock

LD R0,X

LDS R1,255

CLR R0

ADD R1,R0

Execute Instruction and

Prefetch Data for Next

0000 CLR R0
0001 LD R0,X
0010 LDS R1,255
0011 ADD R1,R0
0100 BRCS 0B

.

.

.
1011 NEG R1

Fig. 3. Instruction timing diagram in the modified architecture

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

All of these operations use an address computation module to resolve the target address. The

control words tell the address computation module about the forthcoming operation in the

pipeline so that, upon arrival, the respective instruction can find the required data in the related

data buffers and, thus, take just one cycle to execute. In Figure 2, in the case of a load

instruction, the pipeline has to stall for two reasons 1) address computation and 2) the data fetch

operation. In the proposed architecture, address computation at runtime is avoided as the data

required in the next instruction are prefetched and made available in the buffers beforehand.

Hence, during the execution of the load instruction, the proposal avoids address computation and

allows data to be directly accessed from the local buffers without stalling the pipeline.

As an alternative to control word insertion, compiler instruction reordering cannot achieve

equivalent performance because the time a load/store instruction requires will not be changed in

that case. The pipeline has to stall for one more cycle until the data fetch is complete, see Figure

2. In the proposed architecture, the data are fetched and stored in the buffers before the

instruction commit.

4. Architecture Implementation, and Evaluation

This Section describes an FPGA implementation of the proposed architecture together with

energy-delay-square-product (ED2P) results relative to an architecture without the addition of the

prefetch control and buffering.

4.1. Data prefetch buffering

The control word format is illustrated in Figure 4. After compilation control words are

introduced into the code by auxiliary software. Our software passes over a binary version of the

code in order to identify those instructions that require data prefetches, including load/store

operations that have pointer-based data references. The software then inserts control words

before those instructions identified, so that during execution, the data prefetch unit can fetch the

data beforehand based on one or more pre-calculated addresses. In Figure 5, our software

identifies that the address 0010b contains a load direct from data space instruction.

Consequently, a control word is placed at 0010b. Within the control word is the address of the

data that is FFh or 11111111b, according to the prefetch instruction format of Figure 4. The

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

software continues its pass through the compiled binary until all the control words have been

introduced ready for data prefetching.

Fig. 4. Control Word format

Compiler

0010 0100 0000 0000
1001 0000 0000 1100
1001 0000 0001 0000
0000 0000 1111 1111
0000 1100 0001 0000
0010 0000 0000 0001
1001 0010 0001 1100

.

.

.
1001 0100 0001 0001

1010 0000 1000 0000 0010 0100 0000 0000
1000 0001 1111 1111 1001 0000 0000 1100
0000 0000 0000 0000 1001 0000 0001 0000
0000 0000 0000 0000 0000 0000 1111 1111
1010 0001 1000 0000 0000 1100 0001 0000
0000 0000 0000 0000 0010 0000 0000 0001
0000 0000 0000 0000 1001 0010 0001 1100

.

.

.
0000 0000 0000 0000 1001 0100 0001 0001

Control Word

Post-

Compilation

CW Insertion

0000 CLR R0
0001 LD R0,X
0010 LDS R1,255
0011 ADD R1, R0
0100 BRCS 0B
0101 ST X, R1

.

.

.
1011 NEG R1

Multi-word Instruction

Fig. 5. Control Word insertion during compile time for data prefetch

Thus, control words are treated separately from instructions in the existing Instruction Set

Architecture (ISA). Therefore, no modification is made to the ISA. When an augmented

instruction is fetched, Figure 5, the lower 16-bits are passed to the instruction decoder; whereas

the upper 16-bits are decoded as described in Figure 4. The first bit shows if a prefetch operation

is required or not; bits 2-3 define the type of operation i.e. register to memory; or indexed

operation. Bits 4-8 define the address of the register; and the rest of the bits show the address

from where the data has to be fetched. The source location, as shown in the control word, is

accessed and stored in the buffers shown in Figure 1.

4.2. Hardware implementation

In order to introduce the additional buffer, the implementation took advantage of an existing

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

VHDL implementation of an AVR cored. The existing open-source, cycle-accurate VHDL

hereby is referred to as the Original architecture. The version with the additional buffer is called

the Buffered architecture in the following set of comparisons aimed at highlighting the gain from

introducing the prefetch buffer mechanism. To clarify further, the Original and Buffered

architectures are both built upon an ATMEL AVR core, the VHDL Atmega103(L) model [40].

The instruction throughput of the core approaches 1 MIPS per MHz, due to single machine cycle

rate of execution. The 32 general-purpose registers are all connected directly to the ALU. As a

result, two independent registers can be accessed in one machine cycle. There are separate

SRAM instruction and data memories. The data memory size is 4k×8 bits.

The proposed architecture was implemented with Xilinx ISE Design Suite ver. 13.1 (available

from http://www.xilinx.com) verified by simulation by means of Mentor Graphics Modelsim

ver. 6.1 (available from http://www.mentor.com/products/fv/modelsim/). The implementation

took place on a Xilinx XC3S500E FPGA. For cache-based memory structures, the CACTI tool

[41] is commonly used. However, as a prefetch buffer rather than cache is employed, it was

found to be preferable to utilize the Xilinx XPower Estimator (XPE) tool (available from

http://www.xilinx.com). XPE estimates the worst-case power consumption by means of a

spreadsheet. As is normal practice for FPGA designs so as to discover whether the energy

consumption would be within the limits set for an embedded application, the XPE was applied at

an early stage in the design process. As on-chip Dual Ported (DP)-RAM was to be added to the

core, the interest was in discovering its impact. Notice though that the XPE takes account of all

components of the design in its estimate.

While the Original unbuffered architecture consumed 2940 Look-up-Tables (LUTs) and 797

Logic slices, the proposed Buffered architecture consumed an additional 2984 LUTs and 87

Logic Slices. All the same, both architectures could each fit on the XC3S500E FPGA and each

could operate up to a maximum 33 MHz clock frequency. The addition of control words, when

present, requires an increase in the memory size for their storage from 16-bit to 32-bit in width

(i.e. the code size doubles), consequently the area of the processor core has increased. However,

area optimization is not the aim of this paper. Section 4.3 confirms the gains from the additional

d See R. Lepetenok. The VHDL implementation of AVR Open Core. Aug. 2014, available from

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

area, which still does not take up the resources of a quite small FPGA.

In general, a user’s application code could be instrumented with control words directly by the

compiler or immediately after compilation into binary object code. As previously outlined, the

experimental procedure was to employ our post-compilation software to identify locations and

insert appropriate control words.

4.3. Findings

To test the proposed design, we selected routines from the MiBench [42] benchmark suite.

Though MiBench offers 38 benchmarks, a number of these are inappropriate to the anticipated

workload. For example, we did not select routines from the office sub-set of benchmarks, which

includes the ghostscript postscript renderer, the ispell spelling checker, and the rsynch text-to-

speech synthesizer. Instead routines that could reasonably be run on a low-end processor were

chosen. Overall the per-cycle energy consumption increases somewhat by 13 mW compared to

the 100 mWs of the Original architecture. However, this would be to miss the point, as energy

efficiency improves as a result of employing the Buffered architecture because the throughput

increases. That is the number of cycles required to execute a routine decreases.

The chosen routines are (1) Basic Math, (2) Quick Sort, (3) CRC-32, (4) FFT, (5) Dijkstra, (6)

Matrix Multiplication, and (7) FIR Filter. The benchmark results show normalized energy

consumption to be over 5.85% (i.e. a negative sign shows energy consumption on an energy

savings plot) for FFT, and the most savings i.e. 11.5% for Matrix Multiplication application (see

Figure 6(a)). This variation of energy consumption from a positive energy savings to negative for

a range of benchmarks is due to the fact that the applications comprise of varying amount of

instructions that take advantage of the proposed architecture. For an application with minimal

amount of Jumps and Branches the proposed architecture will consume more energy and vice

versa.

For timing performance Matrix Multiplication shows savings in access of 21%, whereas the

least amount of time savings i.e. 7.3% occurs for the Basic Math benchmark (see Figure 6(b)).

An overall effect of energy and timing takes place according to ED2P in Figure 6(c), in which

Matrix Multiplication achieves normalized ED2P of 0.54 and the highest one is 0.9 for the Basic

Math application. Rather than relative percentages, for completeness Table 1 records the actual

http://opencores.org/

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

figures recorded in the experiments of Figure 6. Due to the large dynamic range of the results,

with the figures for the Basic Math benchmark dominating the others, the tabular format is

preferable.

Fig. 6: Buffered Architecture (a) Energy, (b) Time Savings, and (c) Normalized ED2P

Table 1: Energy and Time Comparison of Original and Buffered Architectures

Energy [j] Time [s]

Benchmark
Original

Architecture
Buffered

Architecture
Original

Architecture
Buffered

Architecture

BasicMath 2.80E+00 2.93E+00 5.78E+01 5.36E+01

Qsort 2.15E-04 2.19E-04 4.44E-03 4.00E-03

CRC32 2.87E-05 2.88E-05 5.91E-04 5.25E-04

FFT 7.30E-04 7.73E-04 1.51E-02 1.41E-02

dijkstra 3.82E-03 3.46E-03 7.87E-02 6.31E-02

matrixmul 9.04E-06 8.01E-06 1.87E-04 1.46E-04

FIR Filter 2.90E-03 2.97E-03 5.97E-02 5.43E-02

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

5. Conclusion

This paper introduces a software-controlled prefetch data buffering design, targeted at low-

cost embedded microprocessors. Such processors as the Atmel AVR and Microchip PIC have

single cycle latency. Consequently, increased throughput results in significant gains in energy

efficiency. Thus, the proposed design demonstrates greater net energy efficiency according to the

ED2P metric, with efficiency being 54% to 90% of that of an equivalent unbuffered architecture,

i.e. 10% to 46% more efficient As this class of processor does not possess cache memory, tuning

the caches in some way is not available as a means of improving energy efficiency, while, in

contrast, prefetch buffering can lead to gains. As these processors are now more likely to be

embedded in battery-operated devices, the proposal in this paper is timely. In fact, the

architecture shows a 6%−20% improvement in execution times when tested over seven widely

deployed bench-marks for this class of low-end processor. Basic algorithm such as the CRC and

FFT gain from this proposal, which implies that there will be many embedded applications that

benefit from this innovation. Further research will investigate, for a set of applications, the trade-

off between area increase from the use of a device with additional on-chip memory and the

performance gains shown in this paper.

References

[1] J. Laros III, K. Pedretti, S. Kelly, W. Shu, K. Ferreira, J. Vandyke, C. Vaughan, Energy delay

product, in: Energy-Efficient High Performance Computing, Berlin, Germany: Springer Verlag,

2013, pp. 51–55.

[2] J.M. Rabaey, M. Pedram, Low power design methodologies, Boston, MA: Kluwer Academic

Publ., 1996.

[3] C. Zhang, F. Vahid, W. Najjar, A highly configurable cache architecture for embedded

systems, in: Proc. IEEE 30th Ann. Int. Symp. Computer Architecture, 2003, pp. 136–146.

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

[4] A. Malik, B. Moyer, D. Cermak, A low power unified cache architecture providing power

and performance flexibility, in: Proc. IEEE Int. Symp. Low Power Electronics and Design, 2000,

pp. 241–243.

[5] S. Segars, Low power design techniques for microprocessors, in: Proc. IEEE Int. Solid-State

Circuits Conf. Tutorial, 2001.

[6] T.C. Mowry, M.S. Lam, A. Gupta, Design and evaluation of a compiler algorithm for

prefetching, ACM Sigplan Notices 27, (1992) 62–73.

[7] J. Turley, Atmel AVR brings RISC to 8-bit world, Microprocessor Report 11, (1997) 1–4.

[8] T. Wilmshurst, Designing embedded systems with PIC microcontrollers: Principles and

applications (2nd ed.), Burlington, MA: Newnes Publishers, 2009.

[9] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U. Cummings,

and T. K. Lee. The design of an asynchronous MIPS R3000 microprocessor, in: Proc. of the

IEEE 17th Conf. on Advanced Research in VLSI, 1997, pp. 164-181.

[10] R. Gonzalez, B.M. Gordon, M.A. Horowitz, Supply and threshold voltage scaling for low

power CMOS, IEEE Journal of Solid-State Circuits 32, (1997) 1210–1216.

[11] A. J. Martin. Towards an energy complexity of computation. Info. Processing Letters 77,

(2001) 181-187.

[12] A. J. Martin, M. Nyström, and P. I. Pénzes. ET2: a metric for time and energy efficiency of

computation, in: Power Aware Computing, R. Graybill and R. Melhem (Eds.), Norwell, MA,

USA: Kluwer Academic Publishers, 2002, pp. 293-315.

[13] S. Eyerman, L. Eeckhout, and K. D. Bosschere. The shape of the processor design space and

its implications for early stage explorations, in Proc. 7th WSEAS Int. Conf. on Automatic

Control, Modeling and Simulation. 2005.

http://www.amazon.co.uk/Designing-Embedded-Systems-PIC-Microcontrollers/dp/1856177505/ref=sr_1_1?s=books&ie=UTF8&qid=1446831448&sr=1-1&keywords=pic+microcontroller+and+embedded+systems
http://www.amazon.co.uk/Designing-Embedded-Systems-PIC-Microcontrollers/dp/1856177505/ref=sr_1_1?s=books&ie=UTF8&qid=1446831448&sr=1-1&keywords=pic+microcontroller+and+embedded+systems

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

[14] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva, A. Buyuktosunoglu, J.D.

Wellman, V. Zyuban, M. Gupta, P.W. Cook, Power-aware microarchitecture: Design and

modelling challenges for next-generation microprocessors, IEEE Micro 20, (2000) 26–44.

[15] M. Qadri, N. Qadri, K. McDonald-Maier, Software controlled data prefetch buffering,

Patent application no. 13/918,407, United States Patent and Trademark Office, June 2013.

[16] M.Y. Qadri, N.N. Qadri, M. Fleury, K.D. McDonald-Maier, Software controlled instruction

prefetch buffering for low-end processors, Journal of Circuits, Syst., and Computers 24, (2015).

[17] J. Henkel, S. Parameswaran, Designing embedded processors: A low power perspective,

Berlin, Germany: Springer Verlag, 2007.

[18] J. Xie, J. Mao, A novel hardware prefetching scheme exploiting 2-D spatial locality in

multimedia applications, in: Proc. of IEEE 9th Int. Conf. on ASICs, 2011, pp. 192–195.

[19] Y. Guo, S. Chheda, I. Koren, C. Krishna, A. Moritz, Energy characterization of hardware-

based data prefetching, in: Proc. of IEEE Int. Conf. on Computer Design, 2004, pp. 518–523.

[20] J. Tang, S. Liu, S. Gu, C. Liu, J.L. Gaudiot, Prefetching in embedded mobile systems can be

energy-efficient, IEEE Computer Architecture Letters 10, (2014) 8–11.

[21] M. Kahn, M.A. Laurenzano, J. Mars, E. Hagersten, D. Black-Schaffer, AREP: Adaptive

Resource Efficient Prefetching for maximising multicore performance, in: Proc. of IEEE Int.

Conf. on Parallel Architecture and Compilation, 2015, pp. 367-378.

[22] M. Li, G. Chen, Q. Wang, Y. Lin, P. Hofstee, P. Stenstrom, D. Zhou, PATer: A hardware

prefetching automatic tuner on IBM POWER8 processor, IEEE Computer Architecture Letters

11, (2015) 1-4.

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

[23] D. Guttman, M.T. Kandemir, M. Arunachalam, R. Khanna, Machine learning techniques for

improved data prefetching, in: Proc. of IEEE Int. Conf. on Energy Aware Computing Systems &

Apps., 2015, pp. 1-4.

[24] W. Worley Jr., W. Bryg, Cache memory consistency control with explicit software

instructions, Patent no. 4,713,755, United States Patent and Trademark Office, June 1985.

[25] V. Oklobdzija, T. Ling, Instruction prefetch buffer control, Patent no. 4,714,994, United

States Patent and Trademark Office, December 1985.

[26] A.K. Ray, K.M. Bhurchandi, Advanced microprocessors and peripherals: architecture,

programming and interfacing, Noida, India: Tata McGraw-Hill Publishing Company, 2000.

[27] C.H. Chi, Data prefetching under the control of instruction cache, Patent no. 5,784, 711,

United States Patent and Trademark Office Patent, June 1998.

[28] D. Emberson, Tunable software control of Harvard architecture cache memories using

prefetch instructions, Patent no. 5,838,945, United States Patent and Trademark Office,

November 1998.

[29] J. Kim, K.V. Palem, W.F. Wong, A framework for data prefetching using off-line training

of Markovian predictors, in: Proc. of IEEE Int. Conf. on Computer Design, 2002, pp. 340–347.

[30] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, W. Gropp, Hiding I/O latency with pre-execution

prefetching for parallel applications, in: Proc. Int. Conf. for High Performance Computing,

Networking, Storage and Analysis, 2008, Article No.40.

[31] I. Ganusov, M. Burtscher, Future execution: A hardware prefetching technique for chip

multiprocessors, In: Proc. Int. Conf. on Parallel Architectures and Compilation Techniques,

2005, pp.350–360.

M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

[32] A.E. Eichenberger, J.K. O’Brien, K.M. O’Brien, P. Wu, et al., Using advanced compiler

technology to exploit the performance of the Cell Broadband Engine architecture, IBM Systems

Journal 45, (2006) 59–84.

[33] T. Chen, T. Zhang, Z. Sura, M.G. Tallada, Prefetching irregular references for software

cache on cell, In: Proc. 6th Ann. IEEE/ACM Int. Symp. Code Generation and Optimization,

2008, pp. 155–164.

[34] Y. Solihin, J. Lee, J. Torrellas, Using a user-level memory thread for correlation

prefetching, in: Proc. 29th Ann. Int. Symp. Computer Architecture, 2002, pp. 171–182.

[35] M. Annavaram, J.M. Patel, E.S. Davidson. Data prefetching by dependence graph

precomputation, in: ACM Ann. Int. Symp. on Computer Architecture, 2001, pp. 52–61.

[36] C.-K. Luk, Tolerating memory latency through software-controlled pre-execution in

simultaneous multithreading processors, in: ACM Ann. Int. Symp. on Computer Architecture,

2001, pp. 40–51.

[37] S. Byna, Y. Chen, X.-H. Sun, Taxonomy of data prefetching for multicore processors,

Journal of Computer Science and Technology 24, (2009) 405–417.

[38] A.M. Holberg, A. Saetre, Innovative techniques for extremely low power consumption with

8-bit microcontrollers, White Paper: 7903A- AVR-2006/02, 2006.

[39] M. Iliopoulos, T. Antonakopoulos, Reconfigurable network processors based on field

programmable system level integrated circuits, in: Field-Programmable Logic and Applications,

2000, pp. 39-47.

[40] T. van Leuken, A. de Graaf, H. Lincklaen Arriens, A high-level design and implementation

platform for IP prototyping on FPGA, in: Proc. ProRISC IEEE 15th Ann. Workshop on Circuits,

Syst. and Signal Process., 2004, pp. 68–71.

 M.Y. Qadri / Microelectronics Journal 00 (2017) 000–000

[41] G. Reinman, N. Jouppi, CACTI 2.0: An integrated cache timing and power model, Tech.

report, Compaq Computer Corporation Western Research Laboratory, 2000.

[42] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown, MiBench: A

free, commercially representative embedded benchmark suite, in: Proc. IEEE Int. Workshop on

Workload Characterization, 2001, pp. 3–14.

