
 

 

Micro-
electronics 

Journal Microelectronics Journal  00 (2016) 000–000 

www.elsevier.com/journals/microelectronics 
 

Energy-efficient data prefetch buffering for low-end embedded 

processors 

 

Muhammad Yasir Qadri1 Nadia N. Qadri2 Martin Fleury1a* Klaus D. McDonald-Maier1 

1School of Computer Sci. and Electronic Syst., University of Essex, Colchester Co4 3SQ, U.K. 

2Dept. of Electrical Engineering, COMSATS Institute of Information, Technology, Wah Campus, Pakistan 

 

Abstract 

An energy-efficient architecture should jointly optimize energy consumption and throughput, as captured 

by the Energy-Delay-Square Product (ED2P) metric. This paper introduces a prefetch data buffer micro-

architecture, which achieves that goal with the aid of software-inserted control words to govern the 

prefetch process. The proposed architecture is aimed at low-end embedded processors, which, so as to 

reduce energy consumption, lack a cache-based memory hierarchy. By identifying after compilation 

which data should be prefetched and modifying the object code, the rate of prefetch misses is reduced. 

And by pre-computing memory addresses using auxiliary software after compilation and modifying the 

object code, address computation by hardware at run time is avoided, reducing pipeline stalls and, thus, 

improving throughput. Additionally in the case of branches, by prefetching two data items at any one 

time, alternative instruction outcomes are anticipated. The paper contains results from running a range of 

well-known and representative benchmarks on the proposed architecture. There was an improvement of 

6%−20% compared to an unbuffered architecture in execution times when tested over those seven 

benchmarks. Furthermore, the average ED2P for the buffered architecture when normalized against the 

same architecture without buffering was found to vary between 54% − 90% according to benchmarking, 

though there is a cost in code size increase. That is to say, for the benchmarks tested there was a net 

energy efficiency improvement of between 10% and 46% in comparison with the equivalent unbuffered 

architecture with a lower area overhead. 
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1. Introduction 

The growing proliferation of embedded battery-powered devices, often performing 

complicated tasks, leads to the prioritization of energy-efficient design optimizations. Such 

design optimizations strive to strike a balance between energy usage and throughput in a system 

and do not simply attempt to reduce energy consumption. In some energy-efficient designs, for 

some applications, there might even be a negative impact on energy consumption. However, the 

throughput can to rise to compensate, as quantified in the Energy Delay Product (EDP) metric 

[1].  

The proposed architecture gives preference to a data prefetch buffer rather than a data cache. 

Though cache-based memory hierarchies are the norm for general-purpose PC architectures, in 

the embedded world system, architectures may employ alternatives to caches. The energy usage 

and chip area take-up of caches these can both be considerable.  In addition, if the cache is not 

carefully tuned the cache miss ratio will also increase, leading to processor idling. Thus it is [2] 

that caches are a problematic feature in battery-powered embedded systems. Prior research [3] 

[4] [5] confirms that caches may be responsible for as much as 50% of a low-end processor’s 

energy budget. For the most part, not herein, a cache-like structure underpins software-

prefetching schemes, i.e. software prefetching assists already present hardware cache memories. 

However, the proposed scheme does not require a cache-like structure to be present, which is 

why it is likely to be more effective. Instead, the proposed architecture with a data prefetch 

buffer replaces the typical cache memory, and, hence, the inherent disadvantages of such caches 

(i.e. compulsory, conflict, and capacity misses). Comparing to the typical cache, the proposed 

prefetch buffer requires: much smaller storage, is more area efficient, and less power 

consumption. 

Compiler-controlled prefetching of data [6] is one way that a data prefetch buffer can take the 

place of a data cache in an energy-efficient manner.  However, prefetching typically suffers from 
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an increased memory bandwidth. This increase is caused by unnecessary prefetches, owing to 

false predictions by the particular algorithm employed. (For previous research on prefetch 

buffering refer to Section 2.)   This paper proposes a software-controlled prefetch buffering 

architecture that, through the mechanism of control-word insertion, removes such false 

predictions.  The proposal also has a number of additional advantages, including a reduction in 

pipeline stalls arising from memory address calculations. We believe that the introduction of a 

varying instruction size, when control words are introduced is justified by the gains made. The 

Acorn RISC Machine (ARM) in its Thumb variant also includes 16-bit and 32-bit instructions.  

Low-end embedded microprocessors and microcontrollers typically have on-chip memory. 

This is a way to reduce the number of additional components needed in an embedded 

application. Such an arrangement also results in single-cycle access to the memory, which this 

paper’s proposal takes advantage of. In a further simplification, the instruction pipeline changes 

from the basic five-stages of a Reduced Instruction Set Processor (RISC) to just two stages. Both 

the 8-bit Atmel AVR [7] and the Peripheral Interface Controller (PIC) microcontroller families 

[8] support on-chip memory and two-stage pipelines, which the proposed software-based 

prefetching technique exploits. Both families also have a Harvard architecture, which allows 

instructions and data to be accessed simultaneously. As these microcontroller families are 

extensively deployed, the proposal in this paper is of wide generality and applicability to 

embedded applications. For example, by 2013 an AVR was present on every one of 700,000 

official Arduino boardsb and Microchip, PIC’s manufacturer, output a 2013 press releasec  

stating that it supplies one billion processors per year. According to an SAE article of 2014 

entitled “Market for 8-bit chips remains strong”, T. Costlow points out that such processors 

account for 24% of the automotive microcontroller market, which figure is expected only to 

decline to 22% by 2018. As the vast majority of applications for low-end processors are in 

embedded computing, not in general-purpose computing, our proposal is geared towards 

embedded computing applications. Though, as Section 2 describes, pioneering work has gone on 

in the past within the general field of pre-fetching, we believe there is still scope for 

improvements, even though these improvements will now be focussed on specific domains.  

 

b According to Cuartielles in 2013 on the Arduino FAQ at http:// http://www.arduino.cc/en/Main/FAQ 
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Immediately after the compilation of application code, our software inserts control words, 

which cause a processor to prefetch data required by the next instruction in the two-stage 

instruction pipeline. In this way, the method avoids static pointer-based data references and 

associated address computations. More generally, the prefetch technique is implementable either 

by an additional software tool operating at compile time, the choice herein, or by an enhanced 

compiler directly, not used by us. Specifically, during the software creation phase or after 

program compilation, control words are placed at a location at least one instruction ahead. As a 

result, during execution the data required can be fetched without pipeline stalls. Therefore, this 

architecture provides greater energy efficiency when compared to an unbuffered architecture 

with lower area overhead. As with other software prefetching schemes, our proposal leads to 

what could be for some applications a significant increase in code size owing to the need to store 

some 32-bit rather than 16-bit instructions to accommodate control words. The significance will 

depend on the size of the application code, which might anyway fit within the existing on-chip 

memory. 

Although the previously-mentioned EDP [1] is a widely adapted metric to evaluate energy and 

delay effects, Martin et al. [9] recommends a weighted approach, using another metric i.e. 

energy-delay-square-product (ED2P), which in [9] is alternatively called energy-time-square 

(ET2), as T is delay. This metric is very useful in evaluating trade-offs between the circuit-level 

power consumption and the overall energy efficiency of the system [10]. The ET2 (or 

alternatively ED2P) metric was first introduced by Martin et al. in [9] in order to evaluate the 

asynchronous MIPS3000 processor. The validity of the metric was later analysed by Martin in 

[11] [12]. In [13], ED2P is defined as ED2P = EPI·CPI2 = EPC·CPI3, where EPI is the energy per 

committed instruction, EPC is energy per cycle, and CPI is cycles per instruction. For a complete 

execution of benchmark i, ED2P can be calculated as: ED2Pηi=ηi.EPC.CPI3, where ηi is the 

number of instructions executed. However, herein we use the notation ED2P instead of ED2Pηi as 

a simplification. 

In evaluating a design [13], ED2P highlights performance more than EDP does. To first order, 

ED2P is also independent of variations in voltage and frequency. A mathematical analysis of the 

advantages of using ET2 over ET can be found in [11], where it is said that “The energy-delay 
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product E × t is often used to compare designs but is unfortunately not an acceptable metric”. 

Indeed, some authors, for example [14], even suggest using the cube of delay to weight the delay 

more than the energy of a system.  However, we adopt a more moderate approach. The focus of 

the architecture is to achieve greater throughput for an overall reduced active cycle for a 

processor. Thus, the authors of this paper consider ED2P to be the most appropriate metric for 

the research presented in this paper. Motivated and guided in that way, in this paper we introduce 

a novel prefetch data buffering micro-architecture for low-end, embedded processors with on-

chip memories, which provides increased energy efficiency.  

Finally in this introduction, notice that a brief outline of some of our ideas has been filed as a 

U.S. patent application [15], though without relevant prior research papers, consideration of the 

context, or performance results and analysis, as now occurs in this paper. This paper also 

includes a longer description of the innovation and broadens the treatment. Our ideas are also 

applicable to instruction prefetching. In [16] we did exactly that, thus confirming the benefit of 

the ideas contained in this paper for data prefetching. 

The rest of this paper is arranged as follows. Section 2 is a review of related work in this field 

before going on to describe the proposed architecture in Section 3. In Section 4, the area and 

power overheads of the software-controlled prefetching are compared against those of the 

original unbuffered architecture. A detailed analysis of energy consumption reduction and 

throughput improvement occurs using various benchmark applications. Finally, Section 5 rounds 

up the paper with some concluding remarks. 

2. Related research 

A significant trend in low-power cache design [17] is to include an additional small extra data 

buffer, which is accessed directly by the embedded system. Therefore, these designs require the 

buffer to be accessed first, preventing altogether direct access to the original caching structure. 

The intention of such designs is to save energy by achieving a high hit rate to the small 

intermediate buffer. Notice that a larger buffer does not result in the same energy savings. 

Investigation of these intermediate hardware buffers or caches is the inspiration behind 

substituting software control of data prefetch. Crucially, however, the current paper avoids a 

cache-based memory hierarchy. On the other hand, purely hardware-guided prefetching of data 
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into caches, e.g. [18], may be energy intensive [19] and is certainly not suitable for multicore 

platforms. (For some counter-examples of energy efficient hardware prefetching consult [20].)  

Most recently, there has been interest in introducing machine learning into prefetching. Work 

in [21] considers the risk of aggressive prefetching saturating the memory bandwidth of a 

multicore processor, for example, with a 40% risk of hardware prefetching harming the 

performance of Intel’s Sandyridge i7-2600K processor. Instead [21] considers dynamically 

combining hardware- and software-based prefetching in the Adaptive Resource Efficient 

Prefetching (AREP) framework. That framework examines a selection of prefetch configurations 

in order to choose the one with the least impact on performance. The work in [21] reports an 8% 

increase on average in performance from applying AREP. The automatic prefetching tuner 

(PATer) for the POWER8 processor [22] provides a way of tuning the prefetch configuration. 

The need arises because the POWER8 processor has a 25-bit hardware register in which the 

cache prefetch configuration can be set.  Without the aid of linear discriminant analysis, manual 

tuning of the register faces a difficult task owing to the large number of possible configurations. 

However, to apply PATer requires an offline training phase with representative workloads. The 

authors of [22] report a 1.4 improvement in processing speed but do not consider energy 

consumption. Again, tuning is for a cache-based system, not the cache-less processors 

considered in this paper. Moving on, in [23], machine learning, specifically Phase-Residency and 

FFT fingerprints, is used to identify phases within a processor’s workload for which it is 

preferable to either employ compiler-based prefetching or hardware-based prefetching. The work 

targeted level-2 cache prefetching for the Xeon Phi many-core processor and a 95% prediction 

precision was reported. Clearly though with between 57 and 61 cores, the Xeon Phi is a much 

more complex processor than the ones considered herein.  

There are a number of historical patents that are partially relevant to the software-controlled 

data prefetch buffering mechanism proposed in this paper. Software supervision of cache 

coherence is proposed in [24], especially in respect to a multiprocessor of the type in which 

write-through to main memory is not used. It is suggested that the addition of cache-control 

instructions to a processor’s instruction set can ensure main memory integrity in a situation when 

each processor has its own private cache taken from a shared memory. Turning to the innovation 

described in [25], this innovation is directly concerned with prefetch buffering, though for 
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instruction rather than data prefetch buffering. Two hardware pointers are maintained to indicate 

where slots in the prefetch buffer can be updated and where instructions can be taken from to be 

executed. This hardware control of the prefetch buffer is thought to be helpful in the case of 

short loops, in which the same instructions from the prefetch buffer might be executed. The 

prefetch buffer control can also be helpful when the buffer itself is a circular buffer because it 

can control overwriting of still-to-be-executed instructions in the buffer. Branches 

(approximately 15% − 25% of all instructions [26]) are another example of when instructions 

from a prefetch buffer might be re-executed.  

The purpose of the innovation just described is complementary to our proposal, as it involves 

control of instructions about to be placed or already in a prefetch buffer, rather than the 

instruction or (in our case) data access process itself. Patent [27] does involve a prefetch data 

buffer and the addition of prefetch address decoding instructions (stored beforehand in the 

instruction cache). Thus, a Harvard architecture is assumed such that the purpose of the prefetch 

address decoding instructions is to bring data into the prefetch buffer before they are needed in 

the instruction cache. Therefore, the motivation of the patent is different to that of this current 

paper. Again in the context of caches, compiler control of instruction/data cache prefetching is 

proposed in [28]. Specialist prefetch instructions are included in the processor instruction set for 

use by the compiler. The main purpose of the innovation is to reduce thrashing occasioned by re-

storage of the same information in a cache because of a mapping clash causing a cache line to be 

repeatedly overwritten while executing a program loop.  

Off-line analysis of previous application execution traces is another technique that is utilized 

in [29] to improve prefetch prediction performance. For static embedded applications, such 

somewhat cumbersome techniques may be worthwhile. However, where dynamic adjustment is 

required then helper threads [30] may run ahead of execution to guide prefetching. Alternatively, 

idle hardware may be utilized [31] for a similar purpose. However, this is only appropriate if 

there is available processing power, as may occur on multicores. Clearly also, these latter 

techniques cannot also save energy. 

Further examples of prefetch buffering receive detailed analysis in the authors’ previous work. 

These examples are mostly intended to reduce the cache miss rate, reducing pipeline stalls, rather 

than reducing energy usage. One threat that such designs [32] face is irregular memory 
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references, which result in high miss rates. Either compiler analysis [33] or pre-execution by a 

thread [34] [35] [36] are ways that have been tried in the past in order to counter irregular 

memory references. However, the survey in [37] of prior data prefetching techniques for 

multicore processors indicates that random memory access remains a challenge to be addressed.  

One principal weakness of prefetch proposals in the literature is that branch targets can be 

inaccurately predicted. Software control of branch target prefetching has the potential to 

significantly reduce this category of prediction error.  At the same time, the energy expended by 

prefetch prediction hardware is saved. Software intervention also avoids the need for hardware 

computation of addresses, as they are calculated in advance. For these reasons, we were guided 

by the literature towards software intervention in prefetch buffering, as now discussed.  

3. Software-controlled data prefetch buffering 

This Section describes the prefetch buffering mechanism in the context of embedded 

processors.  

3.1. Context 

As mentioned in Section 1, energy efficiency is not simply the reduction of energy 

consumption but requires the joint optimization of energy consumption and throughput. A 

processor is usually in sleep mode [38], awakening for brief periods in time when required, 

resulting in a low duty cycle. The period of activity can be reduced by increasing the throughput 

during that time. The peak energy consumption and/or the sleep mode energy consumption can 

also be reduced. Thus, energy and throughput are inter-related and are jointly involved in overall 

power saving. Unfortunately for a cached architecture, whenever a processor in an active state 

encounters a cache miss, it must stall until the required block of data is fetched from lower down 

in the memory hierarchy and is made available to it. The amount of time a CPU spends in such a 

state, the cache miss penalty, lowers the throughput in cache-based memory organizations. The 

proposed design provides efficient prefetching by avoiding the large miss-prediction penalties 

that can arise in typical cache-based memory hierarchies. 

In fact, the proposed buffer storage is different from a typical cache memory in many ways. A 

cache fetches data from memory on a block/line basis, which in turn can result in fetching some 

data that is not required. This causes memory transactions that are not desired and results in an 
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energy overhead. Also the undesired data occupies the cache storage and needs to be flushed to 

store other blocks of data as required. Therefore, the pipeline has to stall until the data are made 

available in the cache. All these steps lead to energy consumption, which the intention of this 

paper is to jointly reduce. 

However, despite not using data cache memory, prefetch buffering can be compared 

(hypothetically) to a cache configuration in which: the prefetch locations are fully associative; 

and the replacement policy is simple, as with each new instruction the data in the buffers get 

replaced if required. The write policy is write-through, since the memory latency is usually one 

in low-end, embedded processors. 

Tri-state data busses are assumed in the design; both the Atmel AVR and the PIC have these. 

In addition, the presence of a dual-ported memory structure is assumed.  In fact, it is common to 

implement register files as dual- or multi-ported Static RAM and in [39] there is an example of 

an AVR communicating with a Field Programmable Gate Array (FPGA) via dual-ported RAM. 

The control words are inserted when required. To reduce energy consumption further, null 

control words are available to put the data bus into the high-impedance state of the tristate bus. 

Although, on the one hand, the insertion of control words in this software-assisted prefetch 

buffering increases the code memory size, on the other hand, throughput increases and prefetch 

accuracy is improved. The addition of a control word requires an extra 16-bits of data, along 

with the usual 16-bit program memory width. By increasing the bus width to accommodate 

control words, there is no impact on memory bandwidth. 

To operate this scheme almost certainly requires a software tool or an augmented compiler to 

automatically generate control words and insert them into a program’s code. Additionally 

software functionality is needed to keep track of available data buffer space. There now follows 

a discussion in which the data buffering architecture is further explained. 

3.2. Data prefetch buffering 

The proposed system comprises of a storage array (the data buffers). The storage array has 

several storage locations each with an associated tag (refer to Figure 1, where the additional 

storage locations are labelled A, B, and C). The software inserts control words into a program’s 

code. These control words are subsequently employed whenever needed to direct prefetching of 
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data required by the instructions that follow. At a minimum, the control words are inserted one 

instruction ahead of the targeted instruction in the case of a two-stage pipeline but may need to 

be placed several instructions before the targeted instruction in the case of pipelines with more 

than two stages. Typically, the next instructions will be load instructions but store instructions 

can also benefit, as these also require address computations. Address computation usually 

requires multiple machine cycles and, thus, can cause pipeline stalls. 

 

Data Buffers

Buffer A

Buffer B

Buffer C

Compute Address

Code MemoryData Memory

Data

Data

Data

Data

 

Fig. 1. Data buffering architecture 

 

The authors have developed simple Visual Basic software to add these control words. In a first 

pass, once the application code is compiled and linked, the resulting .hex file is read by this 

software and all the instructions that are load/store/branch instructions are identified. This is 

achieved by matching the opcodes against the instruction-set table. Subsequently in a second 

pass, control words are inserted an instruction before the target instruction. As the control words 

will be fetched ahead of the target instruction and as they point to the location of the data, the 

pre-fetch process starts and data are made available in buffers A, B, and C beforehand. An AVR 

implementation of control word insertion is described in more detail in Section 4.1.  

As mentioned in Section 1, the method is, therefore, particularly helpful in avoiding stalls 

whenever there are pointer-based operations including pre-increment, post-decrement, indirect 

load or store with fixed displacement, or combinations of these operations. In the case of 
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dynamic pointer-based operations, in which address calculation is performed dynamically during 

execution such as in pointer-chasing, prefetch buffering can supply the data needed by the next 

instruction to start execution in the pipeline. This is achieved by operand forwarding from the 

instruction already executing, the result of which instruction will determine the address for the 

next data to be fetched. The operand forwarding scheme that is commonly used to avoid pipeline 

stalls results in a reduction of an additional cycle that is otherwise required for address 

computation. 

The data buffering space contains several data buffer locations and has address tags associated 

with each storage location. Taking advantage of dual-port memory of the data buffering, a pair of 

data can be fetched in every machine cycle based on the preceding control words. If a branch 

instruction occurs then the fact that two data items can be fetched simultaneously is very 

beneficial, as one data item is available for a true result and the other for a false result. The data 

buffering has to contain address tags of the data to be fetched. However, the buffering size can 

be much smaller than the typical cache because the data fetching is highly targeted and no other 

data other than that required are fetched. The data replacement is determined in advance under 

software control as per the requirements of the program executing and the data buffering space 

available.  

As also mentioned in Section 1, we take the Atmel AVR as an example of the targeted low-

end, embedded processors. Because the Atmel AVR is a RISC-based Load/Store architecture, all 

the ALU operations are carried out on the registers, i.e. data from the memory are fetched to 

registers and stored back from them to the main memory. In this architecture, the direct load and 

store instructions, (LDS and STS in the AVR instruction set), take one cycle to execute on the 

reduced core version. However, indexed or pointer-based load/store operations take two cycles 

to execute (on the reduced core version). The proposed data buffering architecture resolves the 

data dependencies of the subsequent instruction a cycle ahead and stores the required data in the 

data buffering beforehand. The AVR architecture has three index registers namely X, Y, and Z; 

hence, three data buffers, labelled A, B, C, are now introduced to hold the respective data 

associated with them. The load and store instructions for the pointer-based operations also 

support pre-increment, post-decrement, and indirect load and store with fixed displacement, as 

previously described. 
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Thus, the prefetched data are stored in buffers A, B, and C. In the VHSIC Hardware 

Description Language (VHDL) source code, the instruction fetch unit is modified. We have 

added registers to store control words and logic to fetch data from addresses pointed to in those 

registers. Figure 2 is a timing diagram for illustrative code before the modifications, whereas 

Figure 3 is a timing diagram for after the modifications. Notice that in Figure 2, the unmodified 

architecture takes two cycles to perform a load operation, whereas in the proposed buffered 

architecture of Figure 3, such an instruction executes in one cycle only. 

 

0000 CLR R0
0001 LD R0,X
0010 LDS R1,255
0011 ADD R1,R0
0100 BRCS 0B

.

.

.
1011 NEG R1

Clock

LD R0,X

CLR R0

ADD R1,R0

LDS R1,255

 

Fig. 2. Instruction timing diagram in the original architecture 

Clock

LD R0,X

LDS R1,255

CLR R0

ADD R1,R0

Execute Instruction and 

Prefetch Data for Next

0000 CLR R0
0001 LD R0,X
0010 LDS R1,255
0011 ADD R1,R0
0100 BRCS 0B

.

.

.
1011 NEG R1

 

Fig. 3. Instruction timing diagram in the modified architecture 
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All of these operations use an address computation module to resolve the target address. The 

control words tell the address computation module about the forthcoming operation in the 

pipeline so that, upon arrival, the respective instruction can find the required data in the related 

data buffers and, thus, take just one cycle to execute. In Figure 2, in the case of a load 

instruction, the pipeline has to stall for two reasons 1) address computation and 2) the data fetch 

operation.  In the proposed architecture, address computation at runtime is avoided as the data 

required in the next instruction are prefetched and made available in the buffers beforehand. 

Hence, during the execution of the load instruction, the proposal avoids address computation and 

allows data to be directly accessed from the local buffers without stalling the pipeline. 

As an alternative to control word insertion, compiler instruction reordering cannot achieve 

equivalent performance because the time a load/store instruction requires will not be changed in 

that case. The pipeline has to stall for one more cycle until the data fetch is complete, see Figure 

2. In the proposed architecture, the data are fetched and stored in the buffers before the 

instruction commit. 

4. Architecture Implementation, and Evaluation 

This Section describes an FPGA implementation of the proposed architecture together with 

energy-delay-square-product (ED2P) results relative to an architecture without the addition of the 

prefetch control and buffering. 

 

4.1. Data prefetch buffering 

The control word format is illustrated in Figure 4. After compilation control words are 

introduced into the code by auxiliary software. Our software passes over a binary version of the 

code in order to identify those instructions that require data prefetches, including load/store 

operations that have pointer-based data references. The software then inserts control words 

before those instructions identified, so that during execution, the data prefetch unit can fetch the 

data beforehand based on one or more pre-calculated addresses. In Figure 5, our software 

identifies that the address 0010b contains a load direct from data space instruction. 

Consequently, a control word is placed at 0010b. Within the control word is the address of the 

data that is FFh or 11111111b, according to the prefetch instruction format of Figure 4. The 
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software continues its pass through the compiled binary until all the control words have been 

introduced ready for data prefetching. 

 

Fig. 4. Control Word format 

 

Compiler

0010 0100 0000 0000
1001 0000 0000 1100
1001 0000 0001 0000
0000 0000 1111 1111
0000 1100 0001 0000
0010 0000 0000 0001
1001 0010 0001 1100

.

.

.
1001 0100 0001 0001

1010 0000 1000 0000 0010 0100 0000 0000
1000 0001 1111 1111 1001 0000 0000 1100
0000 0000 0000 0000 1001 0000 0001 0000
0000 0000 0000 0000 0000 0000 1111 1111
1010 0001 1000 0000 0000 1100 0001 0000
0000 0000 0000 0000 0010 0000 0000 0001
0000 0000 0000 0000 1001 0010 0001 1100

.

.

.
0000 0000 0000 0000 1001 0100 0001 0001

Control Word

Post-

Compilation

CW Insertion

0000 CLR R0
0001 LD R0,X
0010 LDS R1,255 
0011 ADD R1, R0
0100 BRCS 0B
0101 ST X, R1

.

.

.
1011 NEG R1

Multi-word Instruction

 

 

Fig. 5. Control Word insertion during compile time for data prefetch 

 

Thus, control words are treated separately from instructions in the existing Instruction Set 

Architecture (ISA). Therefore, no modification is made to the ISA. When an augmented 

instruction is fetched, Figure 5, the lower 16-bits are passed to the instruction decoder; whereas 

the upper 16-bits are decoded as described in Figure 4. The first bit shows if a prefetch operation 

is required or not; bits 2-3 define the type of operation i.e. register to memory; or indexed 

operation. Bits 4-8 define the address of the register; and the rest of the bits show the address 

from where the data has to be fetched. The source location, as shown in the control word, is 

accessed and stored in the buffers shown in Figure 1. 

4.2. Hardware implementation 

In order to introduce the additional buffer, the implementation took advantage of an existing 
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VHDL implementation of an AVR cored. The existing open-source, cycle-accurate VHDL 

hereby is referred to as the Original architecture. The version with the additional buffer is called 

the Buffered architecture in the following set of comparisons aimed at highlighting the gain from 

introducing the prefetch buffer mechanism. To clarify further, the Original and Buffered 

architectures are both built upon an ATMEL AVR core, the VHDL Atmega103(L) model [40]. 

The instruction throughput of the core approaches 1 MIPS per MHz, due to single machine cycle 

rate of execution. The 32 general-purpose registers are all connected directly to the ALU. As a 

result, two independent registers can be accessed in one machine cycle. There are separate 

SRAM instruction and data memories. The data memory size is 4k×8 bits.  

The proposed architecture was implemented with Xilinx ISE Design Suite ver. 13.1 (available 

from http://www.xilinx.com) verified by simulation by means of Mentor Graphics Modelsim 

ver. 6.1 (available from http://www.mentor.com/products/fv/modelsim/). The implementation 

took place on a Xilinx XC3S500E FPGA. For cache-based memory structures, the CACTI tool 

[41] is commonly used. However, as a prefetch buffer rather than cache is employed, it was 

found to be preferable to utilize the Xilinx XPower Estimator (XPE) tool (available from 

http://www.xilinx.com). XPE estimates the worst-case power consumption by means of a 

spreadsheet. As is normal practice for FPGA designs so as to discover whether the energy 

consumption would be within the limits set for an embedded application, the XPE was applied at 

an early stage in the design process. As on-chip Dual Ported (DP)-RAM was to be added to the 

core, the interest was in discovering its impact. Notice though that the XPE takes account of all 

components of the design in its estimate. 

While the Original unbuffered architecture consumed 2940 Look-up-Tables (LUTs) and 797 

Logic slices, the proposed Buffered architecture consumed an additional 2984 LUTs and 87 

Logic Slices. All the same, both architectures could each fit on the XC3S500E FPGA and each 

could operate up to a maximum 33 MHz clock frequency. The addition of control words, when 

present, requires an increase in the memory size for their storage from 16-bit to 32-bit in width 

(i.e. the code size doubles), consequently the area of the processor core has increased. However, 

area optimization is not the aim of this paper. Section 4.3 confirms the gains from the additional 

 

d See R. Lepetenok. The VHDL implementation of AVR Open Core. Aug. 2014, available from 
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area, which still does not take up the resources of a quite small FPGA. 

In general, a user’s application code could be instrumented with control words directly by the 

compiler or immediately after compilation into binary object code. As previously outlined, the 

experimental procedure was to employ our post-compilation software to identify locations and 

insert appropriate control words. 

4.3. Findings 

To test the proposed design, we selected routines from the MiBench [42] benchmark suite. 

Though MiBench offers 38 benchmarks, a number of these are inappropriate to the anticipated 

workload. For example, we did not select routines from the office sub-set of benchmarks, which 

includes the ghostscript postscript renderer, the ispell spelling checker, and the rsynch text-to-

speech synthesizer. Instead routines that could reasonably be run on a low-end processor were 

chosen.   Overall the per-cycle energy consumption increases somewhat by 13 mW compared to 

the 100 mWs of the Original architecture. However, this would be to miss the point, as energy 

efficiency improves as a result of employing the Buffered architecture because the throughput 

increases. That is the number of cycles required to execute a routine decreases. 

The chosen routines are (1) Basic Math, (2) Quick Sort, (3) CRC-32, (4) FFT, (5) Dijkstra, (6) 

Matrix Multiplication, and (7) FIR Filter. The benchmark results show normalized energy 

consumption to be over 5.85% (i.e. a negative sign shows energy consumption on an energy 

savings plot) for FFT, and the most savings i.e. 11.5% for Matrix Multiplication application (see 

Figure 6(a)). This variation of energy consumption from a positive energy savings to negative for 

a range of benchmarks is due to the fact that the applications comprise of varying amount of 

instructions that take advantage of the proposed architecture. For an application with minimal 

amount of Jumps and Branches the proposed architecture will consume more energy and vice 

versa. 

For timing performance Matrix Multiplication shows savings in access of 21%, whereas the 

least amount of time savings i.e. 7.3% occurs for the Basic Math benchmark (see Figure 6(b)). 

An overall effect of energy and timing takes place according to ED2P in Figure 6(c), in which 

Matrix Multiplication achieves normalized ED2P of 0.54 and the highest one is 0.9 for the Basic 

Math application. Rather than relative percentages, for completeness Table 1 records the actual 

                                                                                                                                                                                           

http://opencores.org/ 
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figures recorded in the experiments of Figure 6. Due to the large dynamic range of the results, 

with the figures for the Basic Math benchmark dominating the others, the tabular format is 

preferable. 

 

Fig. 6: Buffered Architecture (a) Energy, (b) Time Savings, and (c) Normalized ED2P 

 

 

Table 1: Energy and Time Comparison of Original and Buffered Architectures 

 
Energy [j] Time [s] 

Benchmark 
Original 

Architecture 
Buffered 

Architecture 
Original 

Architecture 
Buffered 

Architecture 

BasicMath 2.80E+00 2.93E+00 5.78E+01 5.36E+01 

Qsort 2.15E-04 2.19E-04 4.44E-03 4.00E-03 

CRC32 2.87E-05 2.88E-05 5.91E-04 5.25E-04 

FFT 7.30E-04 7.73E-04 1.51E-02 1.41E-02 

dijkstra 3.82E-03 3.46E-03 7.87E-02 6.31E-02 

matrixmul 9.04E-06 8.01E-06 1.87E-04 1.46E-04 

FIR Filter 2.90E-03 2.97E-03 5.97E-02 5.43E-02 
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5. Conclusion 

This paper introduces a software-controlled prefetch data buffering design, targeted at low-

cost embedded microprocessors. Such processors as the Atmel AVR and Microchip PIC have 

single cycle latency. Consequently, increased throughput results in significant gains in energy 

efficiency. Thus, the proposed design demonstrates greater net energy efficiency according to the 

ED2P metric, with efficiency being 54% to 90% of that of an equivalent unbuffered architecture, 

i.e. 10% to 46% more efficient As this class of processor does not possess cache memory, tuning 

the caches in some way is not available as a means of improving energy efficiency, while, in 

contrast, prefetch buffering can lead to gains. As these processors are now more likely to be 

embedded in battery-operated devices, the proposal in this paper is timely. In fact, the 

architecture shows a 6%−20% improvement in execution times when tested over seven widely 

deployed bench-marks for this class of low-end processor. Basic algorithm such as the CRC and 

FFT gain from this proposal, which implies that there will be many embedded applications that 

benefit from this innovation. Further research will investigate, for a set of applications, the trade-

off between area increase from the use of a device with additional on-chip memory and the 

performance gains shown in this paper. 
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