4,032 research outputs found

    Recognising Multidimensional Euclidean Preferences

    Full text link
    Euclidean preferences are a widely studied preference model, in which decision makers and alternatives are embedded in d-dimensional Euclidean space. Decision makers prefer those alternatives closer to them. This model, also known as multidimensional unfolding, has applications in economics, psychometrics, marketing, and many other fields. We study the problem of deciding whether a given preference profile is d-Euclidean. For the one-dimensional case, polynomial-time algorithms are known. We show that, in contrast, for every other fixed dimension d > 1, the recognition problem is equivalent to the existential theory of the reals (ETR), and so in particular NP-hard. We further show that some Euclidean preference profiles require exponentially many bits in order to specify any Euclidean embedding, and prove that the domain of d-Euclidean preferences does not admit a finite forbidden minor characterisation for any d > 1. We also study dichotomous preferencesand the behaviour of other metrics, and survey a variety of related work.Comment: 17 page

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Preferences Single-Peaked on a Tree: Multiwinner Elections and Structural Results

    Full text link
    A preference profile is single-peaked on a tree if the candidate set can be equipped with a tree structure so that the preferences of each voter are decreasing from their top candidate along all paths in the tree. This notion was introduced by Demange (1982), and subsequently Trick (1989) described an efficient algorithm for deciding if a given profile is single-peaked on a tree. We study the complexity of multiwinner elections under several variants of the Chamberlin-Courant rule for preferences single-peaked on trees. We show that the egalitarian version of this problem admits a polynomial-time algorithm. For the utilitarian version, we prove that winner determination remains NP-hard, even for the Borda scoring function; however, a winning committee can be found in polynomial time if either the number of leaves or the number of internal vertices of the underlying tree is bounded by a constant. To benefit from these positive results, we need a procedure that can determine whether a given profile is single-peaked on a tree that has additional desirable properties (such as, e.g., a small number of leaves). To address this challenge, we develop a structural approach that enables us to compactly represent all trees with respect to which a given profile is single-peaked. We show how to use this representation to efficiently find the best tree for a given profile for use with our winner determination algorithms: Given a profile, we can efficiently find a tree with the minimum number of leaves, or a tree with the minimum number of internal vertices among trees on which the profile is single-peaked. We also consider several other optimization criteria for trees: for some we obtain polynomial-time algorithms, while for others we show NP-hardness results.Comment: 44 pages, extends works published at AAAI 2016 and IJCAI 201

    Computational Aspects of Nearly Single-Peaked Electorates

    Full text link
    Manipulation, bribery, and control are well-studied ways of changing the outcome of an election. Many voting rules are, in the general case, computationally resistant to some of these manipulative actions. However when restricted to single-peaked electorates, these rules suddenly become easy to manipulate. Recently, Faliszewski, Hemaspaandra, and Hemaspaandra studied the computational complexity of strategic behavior in nearly single-peaked electorates. These are electorates that are not single-peaked but close to it according to some distance measure. In this paper we introduce several new distance measures regarding single-peakedness. We prove that determining whether a given profile is nearly single-peaked is NP-complete in many cases. For one case we present a polynomial-time algorithm. In case the single-peaked axis is given, we show that determining the distance is always possible in polynomial time. Furthermore, we explore the relations between the new notions introduced in this paper and existing notions from the literature.Comment: Published in the Journal of Artificial Intelligence Research (JAIR). A short version of this paper appeared in the proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2013). An even earlier version appeared in the proceedings of the Fourth International Workshop on Computational Social Choice 2012 (COMSOC 2012

    Parameterized Complexity of Multi-winner Determination: More Effort Towards Fixed-Parameter Tractability

    Get PDF
    We study the parameterized complexity of Winners Determination for three prevalent kk-committee selection rules, namely the minimax approval voting (MAV), the proportional approval voting (PAV), and the Chamberlin-Courant's approval voting (CCAV). It is known that Winners Determination for these rules is NP-hard. Moreover, these problems have been studied from the parameterized complexity point of view with respect to some natural parameters recently. However, many results turned out to be W[1]-hard or W[2]-hard. Aiming at deriving more fixed-parameter algorithms, we revisit these problems by considering more natural and important single parameters, combined parameters, and structural parameters.Comment: 31 pages, 2 figures, AAMAS 201

    Resolving the Complexity of Some Fundamental Problems in Computational Social Choice

    Get PDF
    This thesis is in the area called computational social choice which is an intersection area of algorithms and social choice theory.Comment: Ph.D. Thesi
    corecore