
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:28
https://doi.org/10.1007/s10458-023-09610-z

1 3

Parameterized complexity of multiwinner determination:
more effort towards fixed‑parameter tractability

Yongjie Yang1 · Jianxin Wang2,3

Accepted: 26 May 2023
© The Author(s) 2023

Abstract
We study the parameterized complexity of winner determination problems for three preva-
lent k-committee selection rules, namely the minimax approval voting (MAV), the propor-
tional approval voting (PAV), and the Chamberlin–Courant’s approval voting (CCAV). It
is known that these problems are computationally hard. Although they have been studied
from the parameterized complexity point of view with respect to several natural parame-
ters, many of them turned out to be W[1]-hard or W[2]-hard. Aiming at obtaining plentiful
fixed-parameter algorithms, we revisit these problems by considering more natural single
parameters, combined parameters, and structural parameters.

Keywords Multiwinner voting · Fixed-parameter tractability · Minimax approval voting ·
Proportional approval voting · Chamberlin–Courant’s approval voting · Treewidth · W[1]-
hard

1 Introduction

Committee selection rules (a.k.a. multiwinner voting rules) have received a considerable
amount of attention recently due to their broad applications in social choice, multi-agent
systems, recommendation systems, etc. [31, 39, 40, 49]. How efficiently winning candidates
with respect to a committee selection rule can be calculated is one of the most significant
criteria to evaluate the applicability of these rules. Many rules, such as STV, Bloc, k-Borda,
approval voting, satisfaction approval voting, admit polynomial-time algorithms for comput-
ing winners [3, 28]. However, there are also salient committee selection rules with respect to

A 3-page extended abstract of the paper appeared in the proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018) [80].

 * Yongjie Yang
 yyongjiecs@gmail.com

 Jianxin Wang
 jxwang@mail.csu.edu.cn

1 Chair of Economic Theory, Saarland University, 66123 Saarbrücken, Germany
2 School of Computer Science and Engineering, Central South University, Changsha 410083, China
3 Xiangjiang Laboratory, Changsha 410205, China

http://orcid.org/0000-0002-7731-6818
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09610-z&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 2 of 35

which winners are NP-hard to compute. Among them are particularly the minimax approval
voting (MAV) [11, 50], the proportional approval voting (PAV) [3, 43, 70], and the Cham-
berlin–Courant’s approval voting (CCAV) [18, 61]. Nevertheless, as these rules possess their
own merits in many other aspects [2, 33, 43, 44, 49], researchers investigated the parameter-
ized complexity of winner determination problems under these rules, with the hope of procur-
ing as many fixed-parameter tractability results as possible. While many realistic parameters
have been considered in the literature so far, there are still many relevant but underappreciated
parameters. This paper aims to take a further step towards breaking the complexity barrier
against the applicability of the above-mentioned three approval-based rules by extensively
expanding the set of meaningful parameters leading to FPT-algorithms for the winner deter-
mination problems. Notably, in addition to many traditional parameters, we also study sev-
eral structural parameters of the incidence graphs of approval-based elections. The incidence
graph of an approval-based election is a bipartite graph whose vertex set is the candidate set
union the voter set, and there is an edge between a candidate and a voter if and only if this
voter approves the candidate. To date, less is known about whether some structural parameters
of the incidence graphs such as the treewidth and the size of a maximum matching lead to
some FPT-algorithms. These parameters are intimately connected to several important single
parameters. For example, they are lower bounds of both the number of candidates m and the
number of voters n, and hence any FPT-algorithm with respect to these two structural param-
eters directly carry over to m and n.

Organization. In Sect. 2, we give definitions and notations used in the paper. Then, we
elaborate on related works and summarize our main results in Sect. 3. Our concrete results
are encapsulated in Sects. 4–6. Specifically, Sect. 4 studies single parameters, Sect. 5
explores combinations of the single parameters occurring in Sect. 4 and Sect. 6 focuses
on the aforementioned structural parameters. For an overview of our main results, we refer
to Table 1. We complete the paper by recapping our contributions and laying out several
promising avenues for future research in Sect. 7.

2 Preliminaries

In this section, we give essential notions related to our study.

2.1 Elections

We study approval-based multiwinner voting. In this setting, an election is a tuple
E = (C,V) where C is a set of candidates and V is a multiset of votes. Each vote of V is
cast by a voter and is defined as a subset of C. In this paper, we interchangeably use the
terms vote and voter. We say that a vote v approves a candidate c if c ∈ v . For each can-
didate c, V(c) denotes the set of votes in V approving c. Let k be a nonnegative integer. A
k-set is a set of cardinality k. A committee (respectively, k-committee) is a subset (respec-
tively, k-subset) of candidates. A k-committee selection rule maps each election (C, V) and
every nonnegative integer k such that k ≤ |C| to a collection of k-committees of C, winning
k-committees of (C, V) under this rule.

The Hamming distance between two sets v and v′ is defined as

We study the following k-committee selection rules.

H(v, v�) = |v ⧵ v�| + |v� ⧵ v|.

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 3 of 35 28

Ta
bl

e
1

 A
 su

m
m

ar
y

of
 th

e
pa

ra
m

et
er

iz
ed

 c
om

pl
ex

ity
 o

f �
-M

U
L
T
IW

IN
N
E
R

O
ur

 re
su

lts
 a

re
 in

 b
ol

df
ac

e.
 A

dd
iti

on
al

ly
, �

 is
 th

e
tre

ew
id

th
 a

nd
 �

 is
 th

e
si

ze
 o

f a
 m

ax
im

um
 m

at
ch

in
g

of
 th

e
in

ci
de

nc
e

gr
ap

h
of

 a
 g

iv
en

 e
le

ct
io

n.
 H

ar
dn

es
s

re
su

lts
 m

ar
ke

d
by

th

e
⋆

 s
ym

bo
l m

ea
n

th
at

 th
ey

 h
ol

d
ev

en
 if

 e
ve

ry
 v

ot
e

ap
pr

ov
es

 tw
o

ca
nd

id
at

es
. R

es
ul

ts
 w

ith
ou

t a
ny

 m
ar

ks
 m

ea
n

th
at

 th
ey

 a
re

 e
ith

er
 tr

iv
ia

l o
r i

m
pl

ie
d

by
 o

th
er

 re
su

lts
 in

 th
e

ta
bl

e.
 U

nd
er

lin
ed

 F
P
T

-r
es

ul
ts

 m
ea

n
th

at
 th

e
co

rr
es

po
nd

in
g

pr
ob

le
m

s d
o

no
t a

dm
it

an
y

po
ly

no
m

ia
l k

er
ne

ls
 a

ss
um

in
g

ce
rta

in
 st

an
da

rd
 c

om
pl

ex
ity

 h
yp

ot
he

si
s

si
ng

le
 p

ar
am

et
er

s

d
m

n
k

k
(△

V
,
△

C
)

M
AV

�
�
�

 [5
7]

�
�
�

 [5
7]

�
�
�

 [5
7]

W
[2
]-h

 [5
7]

W
[1

]-
h⋆

(≥
2
,
≥
3
) :
N
P

-h
 [5

0]
(C

or
. 1

)
ot

he
rs

: P
 (C

or
. 5

, T
hm

. 4
)

C
CA

V
�
�
(�
)

�
�
�

[4
]

n
n
 [4

]
W
[2
]-h

 [4
]

W
[1

]-
h⋆

(≥
2
,
≥
3
) :
N
P

-h
 [

62
]

(C
or

. 2
)

�
�
(�
) (

C
or

. 3
)

W
[1
] -
h⋆

 (T
hm

. 7
)

(T
hm

. 2
)

ot
he

rs
: P

 (C
or

. 5
, T

hm
. 4

)
PA

V
op

en
F
P
T

FP
T

W
[1

]-
h⋆

(≥
2
,
≥
3
) :
N
P

-h
 [

3]
(T

hm
. 1

)
W
[1
]-h

⋆
 [3

]
(T

hm
. 3

)
(≥

3
,
2
) :

op
en

ot
he

rs
: P

 (C
or

. 5
, T

hm
. 5

)
co

m
bi

ne
d

pa
ra

m
et

er
s

str
uc

tu
ra

l p
ar

am
et

er
s

k
+
△

C
k
+
△

V
k
+
△

C
k
+
△

V
d
+
△

V
�

�

M
AV

FP
T

FP
T

FP
T

W
[1
]-h

⋆
F
P
T

�
+
k

FP
T

(T
hm

. 6
)

(C
or

. 7
)

(T
hm

. 8
)

FP
T

(T
hm

. 1
2)

(T
hm

. 1
3)

C
CA

V
FP

T
W
[1
]-h

⋆
FP

T
W
[1
]-h

⋆
F
P
T

4
�
 (T

hm
. 1

1)
4
�

(C
or

. 6
)

(T
hm

. 9
)

PA
V

k
+
△

C
+
△

V
W
[1
]-h

⋆
 [3

]
op

en
W
[1
]-h

⋆
FP

T
�
+
k

FP
T

FP
T

(C
or

. 8
)

(T
hm

. 1
0)

FP
T

(T
hm

. 1
2)

(T
hm

. 1
3)

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 4 of 35

MAV In general, MAV selects k-committees as close as possible to every vote, where
the closeness is measured by the Hamming distance. Precisely, the MAV score
of a committee w with respect to (C, V) is ���(V ,w) = maxv∈V H(v,w) . MAV
selects k-committees with the minimum MAV score.

CCAV A vote v is satisfied with a committee w if and only if at least one of v’s approved
candidates is contained in w , i.e., v ∩ w ≠ � . Candidates in v ∩ w are regarded
as representatives of v in w . The CCAV score of a committee w with respect
to (C, V) is ����(V ,w) = |{v ∈ V ∶ v ∩ w ≠ �}| . CCAV selects k-committees
with the maximum CCAV score.1

PAV The PAV score of a committee w with respect to an election (C, V) is
���(V ,w) =

∑
v∈V ,v∩w≠�

∑�v∩w�
i=1

1

i
 . PAV selects k-committees with the maximum

PAV score.

Note that by the above definitions, ����(V , �) = ���(V , �) = 0 holds.
For each � ∈ {MAV, CCAV, PAV} , we study the following problem.

�-MULTIWINNER

Input: An election E = (C,V) , an integer k ≤ |C| , and a rational number d.
Question: Is there a k-committee w ⊆ C such that �(V ,w) ≤ d for � = MAV , and �(V ,w) ≥ d for

� ∈ {CCAV, PAV}?

 Throughout this paper, we study the following single parameters and consistently use the
corresponding notations given below.

• m = |C|.
• n = |V|.
• d : the threshold score of a desired committee.
• k: size of winning committees.
• k = m − k.
• △V = maxv∈V |v| is the maximum number of candidates a vote approves.
• △C = maxc∈C |V(c)| is the maximum number of votes approving a candidate in com-

mon.

The first four parameters are natural and have been substantially covered in the literature.
(See Sect. 3 for the details.) The study of k is motivated by the observation that in many
real-life decision-making scenarios winners are picked by eliminating a small number of
losers, or more relevantly, many decision-making processes are directly designed to select
losers other than selecting winners. The last two parameters △V and △C have been either
explicitly or implicitly studied in the literature. In many real-world applications voters are
allowed to approve only a few candidates. In some other scenarios, voters are cognitively
limited or time constrained so that they are only able to evaluate a small number of candi-
dates. In these cases, △V is relatively small. Regarding the parameter △C , observe that it
is no greater than n. So, it is small whenever n is small. Moreover, as our goal is to provide
a landscape of the parameterized complexity of �-MULTIWINNER as complete as possible,

1 CCAV is a special rule of the class of Chamberlin–Courant’s rules. See [28] for further discussions.

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 5 of 35 28

it is theoretically significant to study this parameter so as that we can offer results for com-
bined parameters including △C.

2.2 Graphs

We assume the reader is familiar with the basic concepts of graph theory, and refer to [12,
73] for notions in graph theory used but not defined in the paper. We only reiterate some
basic notions below. A graph is a pair (N, A) where N is a set of vertices and A is a set of
edges over N. Each edge is defined as an unordered pair of vertices, and between every two
vertices there can be at most one edge. A multigraph is a generalization of a graph where
between every two vertices there may exist multiple edges, and there may exist loops on
vertices. A hypergraph is a generalization of a graph where every edge is a subset of verti-
ces. A multihypergraph is a generalization of a hypergraph so that there may exist multiple
edges consisting of the same vertices.

A matching of a graph G = (N,A) is a subset M of A such that no two edges in M share
a common vertex. A vertex v is saturated by M if v is a vertex in some edge in M. A maxi-
mum matching of G is a matching with the maximum cardinality among all matching of G.
We use �(G) to denote the size of a maximum matching of G.

2.3 Parameterized complexity

A parameterized problem is a subset of �∗ × ℕ , where � is a finite alphabet. A parameter-
ized problem can be either fixed-parameter tractable (FPT) or fixed-parameter intracta-
ble. In particular, a parameterized problem is FPT if there is an algorithm which correctly
determines for each instance (I, �) of the problem whether (I, �) is a Yes-instance in time
O(f (�) ⋅ |I|O(1)) , where f is a computable function and |I| is the size of I. Fixed-parameter
intractable problems are further classified into many classes including W[1]-hard, W[2]-
hard, etc. For greater details on parameterized complexity theory, we refer to [22, 25, 27].

3 Related works and our contributions

In this section, we discuss some important related works and outline our main
contributions.

3.1 Single parameters

�-MULTIWINNER has many natural parameters inherent in its definition, say, the seven sin-
gle parameters listed at the end of Sect. 2.1. All these seven parameters except k have been
explicitly or implicitly investigated in the literature prior to our work.

First, it is easy to see that MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multi-
winner are FPT with respect to the parameter m. Misra, Nabeel, and Singh [57] proved
that MAV-Multiwinner is FPT with respect to the parameters d and n, but becomes W[2]-
hard when parameterized by k. Betzler, Slinko, and Uhlmann [4] proved that CCAV-Mul-
tiwinner is FPT with respect to the parameter n, but turned out to be W[2]-hard when k is
the parameter. Moreover, they considered a dual parameter R = n − d . They proved that
CCAV-Multiwinner is NP-hard even when R = 0 , but presented an FPT-algorithm with

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 6 of 35

respect to the combined parameter k + R.2 Aziz et al. [3] proved that PAV-Multiwinner is
W[1]-hard with respect to k even if every voter approves two candidates.

We complement these results as follows. First, we close some gaps and improve an
FPT-algorithm. Concretely, we propose an FPT-algorithm for PAV-Multiwinner when
parameterized by n. We also observe that CCAV-Multiwinner is equivalent to the Partial
Hitting Set problem, and as a consequence of a previous result for the Partial Hitting
Set problem, CCAV-Multiwinner can be solved in O∗(2O(d)) time or in O∗(2O(n)) time.3 It
should be noted that our new observation-based algorithm substantially improves the pre-
vious best FPT-algorithm for CCAV-Multiwinner parameterized by n studied in [4] which
runs in time O∗(nn) . Second, we study the parameter k = m − k , the number of nonwin-
ning candidates. We show that MAV-Multiwinner, CCAV-Multiwinner, and PAV-Mult-
iwinner are all W[1]-hard with respect to this parameter, even when every voter approves
two candidates. Third, from previous results by other researchers, we achieve numerous
dichotomy results with respect to the two natural parameters △V and △C . It is known
that MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multiwinner are already NP-hard
when △V = 2 and △C = 3 [3, 50, 62]. We prove that MAV-Multiwinner and CCAV-Mul-
tiwinner become polynomial-time solvable if △V ≤ 1 or △C ≤ 2 , and PAV-Multiwinner
becomes polynomial-time solvable if min{△V,△C} = 1 or △V = △C = 2.

3.2 Combined parameters

Obviously, if a problem is FPT with respect to a parameter � , it is FPT with respect to any
combined parameter including � . As except PAV-Multiwinner with respect to d whose
fixed-parameter tractability is open, MAV-Multiwinner, CCAV-Multiwinner, and PAV-
Multiwinner are FPT with respect to m, n, and d , it only makes sense to study combi-
nations of other parameters. As k + k = m , �-MULTIWINNER for � ∈ {MAV,CCAV, PAV}
is FPT with respect to k + k . For MAV and CCAV, the remaining combinations of two
single parameters are k +△V , k +△C , k +△V , and k +△C . We establish many FPT-
results with respect to these combined parameters. Concretely, we obtain FPT-results for
MAV-Multiwinner and CCAV-Multiwinner when parameterized by k +△C and k +△C .
However, as MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multiwinner are W[1]-
hard with respect to k (even when every vote approves two candidates), they are W[1]-hard
when parameterized by k +△V . For the parameter k +△V , we develop an FPT-algorithm
for MAV-Multiwinner, but we show that CCAV-Multiwinner is W[1]-hard even when
every vote approves two candidates. Concerning PAV, a reduction by Aziz et al. [3] implies
that PAV-Multiwinner is W[1]-hard with respect to k +△V . We are unable to prove the
FPT-membership of PAV-Multiwinner with respect to d , but we show that combining d
and △V leads to an FPT-result.

We would like to point out that Misra, Nabeel, and Singh [57] studied kernelization of
MAV-Multiwinner with respect to the combined parameters d + m and n + k , and showed

2 A parameterized problem is FPT with respect to the combination of two parameters � and �′ if it is solv-
able in time O∗(f (�, ��)) where f is a computable function in � and �′ , or equivalently it is FPT with respect
to � + ��.
3 O∗() is O() with polynomial factors being omitted.

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 7 of 35 28

that these problems do not admit any polynomial kernels unless ���� ⊆ ��∕����4. In
addition, Liu and Guo [53] studied the combined parameter k + n for some generalizations
of MAV-Multiwinner. Betzler, Slinko, and Uhlmann [4] proved that CCAV-Multiwinner
is W[2]-hard with respect to the combined parameter of R = n − d and k. Though not
explicitly stated, their reduction actually implies that CCAV-Multiwinner does not admit
any polynomial kernel with respect to both n and m, unless the polynomial hierarchy col-
lapses to the third level.5

3.3 Structural parameters

Heretofore, the most widely studied structural parameters in the setting of multiwinner vot-
ing are based on various concepts of restricted preference domains such as single-peaked
preferences and single-crossing preferences (see, e.g., [20]). Particularly, these parameters
measure how far an election is away from a specific domain of preferences. In this paper,
we study two structural parameters of incidence graphs of elections. Recall that the inci-
dence graph of an election E = (C,V) is a bipartite graph GE with vertex set C ∪ V so that
there is an edge between a candidate c ∈ C and a vote v ∈ V if and only if c ∈ v . We prove
that CCAV-Multiwinner is FPT with respect to treewidth of incidence graphs, and MAV-
Multiwinner and PAV-Multiwinner are FPT if we combine the treewidth and the param-
eter k. When parameterized by the size of maximum matchings of incidence graphs, we
have FPT-algorithms for all three rules.

3.4 Other related works

In addition to the extensive effort made from the angle of parameterized complexity, much
exploration on the complexity of �-MULTIWINNER restricted to preference domains has
been pursued over the past few years. Betzler, Slinko, and Uhlmann [4] developed polyno-
mial-time algorithms for CCAV-Multiwinner in the single-peaked domain. This algorithm
was subsequently extended to an FPT-algorithm with respect to the parameter single-
peaked width by Cornaz, Galand, and Spanjaard [20]. Yu, Chan, and Elkind [81] studied
the domain of single-peaked on trees, and obtained both polynomial-time algorithms and
NP-hardness results for many variants of CCAV. One of their results [81, Theorem 4.1] is
in essence an FPT-algorithm for CCAV-Multiwinner with respect to the combined param-
eter m + k + � , where � is the number of leaves of the underlying tree. A follow-up paper
by Peters and Elkind [59] addressed several open questions left in [81]. Later, Elkind and
Lackner [29] proposed 13 different restricted domains of dichotomous preferences, and
obtained several polynomial-time algorithms and FPT-algorithms for �-MULTIWINNER
for � being CCAV, MAV, and PAV with respect to the parameter △V , and the combined
parameter k + d , when the given elections fall into certain specific categories of their pro-
posed domains. Liu and Guo [53] presented polynomial-time algorithms for MAV-Mult-
iwinner in two of the domains proposed by Elkind and Lackner. Peters and Lackner [60]

4 A kernelization with respect to a parameter is a polynomial-time algorithm which transforms an instance
into an equivalent instance with the size of the main part being bounded from above by a computable func-
tion of the parameter. See [22, Chapter 2] for more details.
5 These kernelization lower bounds follow from a reduction by Betzler, Slinko, and Uhlmann [4] and sev-
eral techniques for establishing kernelization lower bounds delineated in [22, Chapter 14] and [24].

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 8 of 35

proposed the domain of single-peaked on a circle, an appealing generalization of the sin-
gle-peaked domain. They provided a polynomial-time algorithm for CCAV-Multiwinner in
this domain. Peters [58] observed a relationship between voting problems restricted to the
single-peaked domain and totally unimodular integer linear programming. In view of this
observation and the fact that totally unimodular integer linear programming is polynomial-
time solvable [64], a variety of polynomial-time solvability results were obtained, includ-
ing one for PAV-Multiwinner.6 Skowron et al. [68] complemented these results by show-
ing that CCAV-Multiwinner is polynomial-time solvable restricted to the single-crossing
domain. Clearwater, Puppe, and Slinko [19] then extended this result to the domain of
single-crossing on trees. Yang [78] expanded several domains of Elkind and Lackner [29]
to directed tree-embedded domains, and derived a number of polynomial-time algorithms
for MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multiwinner restricted to these
domains.

As traditional approaches tackling NP-hard problems, approximation and heuristic
algorithms for �-MULTIWINNER where � ∈ {MAV,CCAV, PAV} have also been perpetu-
ally reported over the past few years [16, 23, 35, 65, 66].

We would like to mention that the (parameterized) complexity of �-MULTIWINNER
for numerous ranking-based multiwinner voting rules � has been considerably studied in
the literature, too [4, 32, 42]. On top of that, the (parameterized) complexity of winner
determination problems for several variants of multiwinner voting rules has been explored
recently [13, 75].

Finally, we remark that, besides winner determination problems, investigating the com-
plexity of many strategic voting problems, such as manipulation, control, and bribery, has
gained increasing interest in recent years as well [14, 34, 76, 77]. We refer to [48] for a
comprehensive survey of approval-based multiwinner voting where many other important
issues not discussed above have been greatly elaborated on.

4 Single parameters

In this section, we investigate some predominant single parameters.

4.1 Parameters d, n, and k

We start with an FPT-algorithm for PAV-Multiwinner with respect to n. Before presenting
our algorithm, let us recall the main idea of an FPT-algorithm for MAV-Multiwinner with
respect to n [57]. First, the candidates are partitioned into at most 2n subsets, each con-
sisting of all candidates approved by exactly the same votes. Then, what matters for solv-
ing the problem is only how many candidates from each subset are contained in a desired
k-committee. Based on this observation, MAV-Multiwinner can be reduced to integer
linear programming (ILP) by assigning to each subset defined above an integer variable.
As the number of variables is bounded by 2n , Lenstra’s theorem [51] provides an FPT-
algorithm for MAV-Multiwinner with respect to n. Although the FPT-algorithm with
respect to n for CCAV-Multiwinner derived by Betzler, Slinko, and Uhlmann [4] is not
ILP-based, it is easy to see that CCAV-Multiwinner also admits a similar ILP formulation.

6 We note that [60] integrates a conference paper with the same title appeared in AAAI 2017 and [58].

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 9 of 35 28

Unfortunately, this framework does not apply to PAV-Multiwinner. The reason is that the
objective in this case is a nonlinear function. To overcome this obstacle, we resort to an
FPT-framework proposed by Bredereck et al. [15] for the Mixed Integer Programming
With Simple Piecewise Linear Transformations problem. In fact, we need only a special
case of the problem defined below. For a vector x ∈ ℤ

p and an integer i ∈ [p] , we use xi to
denote the i-th component of x.

A real-valued function f is concave if for every x and y such that x < y and every � such
that 0 ≤ � ≤ 1 it holds that

Intuitively, a function is concave if for every x, y, and z such that x ≤ y ≤ z , the point
(y, f(y)) is not below the straight line determined by the two points (x, f(x)) and (z, f(z)). A
piecewise linear concave function is a piecewise linear function that is concave.

Integer Programming With Simple Piecewise Linear Transformations (IPWSPLT)

Input: A collection {fi,j ∶ i ∈ [p], j ∈ [q]} of p ⋅ q piecewise linear concave functions, and a vector
b ∈ ℤ

p.
Question: Is there a vector x ∈ ℤ

q such that for every i ∈ [p] it holds that
∑q

j=1
fi,j(xj) ≤ bi? (1)

The original problem MIPWSPLT studied by Bredereck et al. [15] is more general in
that it allows the existence of additional variables which may take nonintegral values, and
allows the occurrences of both piecewise linear concave functions and piecewise linear
convex functions simultaneously.

Lemma 1 ([15]) IPWSPLT can be solved in time O(����(|I|, t) ⋅ q2.5q+o(q)) , where |I| is the
number of bits encoding the input, and t is the maximum number of pieces per function.

We note that Lemma 1 still holds if in the definition of IPWSPLT the less than sign is
replaced with the greater than sign or the equal sign in (1) for several i ∈ [p] [15].

Now we are ready to present our FPT-algorithm for PAV-Multiwinner with respect
to n. We provide indeed an algorithm for a more general problem called Annotated PAV-
Multiwinner. In this problem, we are given an election (C, V), a subset C′ ⊆ C of candi-
dates, an integer k such that |C′| ≤ k ≤ |C| , and a number d , and the question is whether
there is a k-committee w ⊆ C such that C′ ⊆ w ⊆ C and PAV(V ,w) ≥ d . Clearly, PAV-
Multiwinner is a special case of Annotated PAV-Multiwinner where C� = � . This gener-
alization is afterward exploited in an algorithm presented in Sect. 6.

Theorem 1 Annotated PAV-Multiwinner is FPT with respect to n.

Proof We prove Theorem 1 by reducing Annotated PAV-Multiwinner to IPWSPLT.
Let I = (E,C�, k, d) be an instance of Annotated PAV-Multiwinner, where E = (C,V)

and C′ ⊆ C . Let n = |V| be the number of votes. In what follows, we construct an inte-
ger programming formulation of Annotated PAV-Multiwinner, prove the correctness of
the reduction, and prove that the formulation is an instance of IPWSPLT. We create two
types of variables. First, we create a variable xv for each vote v ∈ V , indicating the num-
ber of v’s approved candidates in a desired k-committee. Second, for each U ⊆ V , let CU

f (� ⋅ x + (1 − �) ⋅ y) ≥ � ⋅ f (x) + (1 − �) ⋅ f (y).

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 10 of 35

be the set of candidates approved by all votes in U but disapproved by votes from V ⧵ U ,
i.e., CU = {c ∈ C ∶ V(c) = U} . We create a variable xU for each U ⊆ V which indicates
the number of candidates from CU that are supposed to be in a desired k-committee. The
constraints are as follows.

(1) for each variable xU, U ⊆ V , it holds that |C� ∩ CU| ≤ xU ≤ |CU|.
(2) For each v ∈ V , we have xv =

∑
v∈U⊆V xU.

(3) As we aim to select a committee of cardinality k, we have
∑

U⊆V xU = k.
(4) For the last constraint, we need to define a piecewise linear concave function

f ∶ ℝ≥0 → ℝ≥0 as follows. First, f (0) = 0 . Second, for each positive integer x, we
define f (x) = ∑x

i=1
1
i
 . Third, for each real x such that y < x < y + 1 and y is a nonnegative

integer, we define

 Fig. 1 illustrates the function f. The last constraint is then
∑

v∈V f (xv) ≥ d , which
ensures that the desired k-committee has PAV score at least d.

Now we show the correctness of the reduction, i.e., we show that the given instance I is a
Yes-instance if and only if the above integer programming has a feasible solution.

(⇒) Assume that I is a Yes-instance, i.e., there exists a k-committee w so that
C′ ⊆ w ⊆ C and ���(V ,w) ≥ d . We assign to the variables constructed above the corre-
sponding values, i.e., we let xU = |w ∩ CU| for each U ⊆ V , and let xv = |v ∩ w| for each
v ∈ V . Obviously, |w ∩ CU| ≤ |CU| . As C′ ⊆ w , it holds that |C� ∩ CU| ≤ |w ∩ CU| . There-
fore, constraints defined in (1) hold. As for every two distinct U,U′ ⊆ V , CU and CU′ are
disjoint and, moreover,

⋃
U⊆V CU = C , it holds that

for all v ∈ V , and
∑

U⊆V �w ∩ CU� = �w� = k . In other words, all constraints described
in (2)–(3) are satisfied. Notice that by the definition of CU , if v ∉ U then CU ∩ v = � , and
if v ∈ U then CU ⊆ v . This ensures the correctness of Equality (1). Finally, the constraint
given in (4) holds because

∑
v∈V f (xv) is exactly the PAV score of w with respect to V which

is equal to or greater than d.
(⇐) Assume that the above integer programming has a feasible solution. We show below

that I is a Yes-instance by constructing a desired k-committee w . Initially, let w = � . For
every xU , U ⊆ V , in the feasible solution, we arbitrarily select xU candidates from CU so
that all candidates in C� ∩ CU are selected, and add them into w . By the constraints in (1),
these xU candidates exist for each U ⊆ V . By the constraint in (3), we know that w consists

f (x) = f (y) + (x − y) ⋅ (f (y + 1) − f (y)).

(1)|v ∩ w| =
∑

v∈U⊆V

|v ∩ w ∩ CU| =
∑

v∈U⊆V

|w ∩ CU| =
∑

v∈U⊆V

xU

Fig. 1 An illustration of the
piecewise linear concave func-
tion f in the proof of Theorem 1

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 11 of 35 28

of k candidates. By the constraints in (2), xv is exactly the number of candidates from w
approved in v. As a result,

∑
v∈V f (xv) is exactly the PAV score of w with respect to V. Then,

from the constraint in (4), it follows that ���(V ,w) ≥ d . Finally, as
⋃

U⊆V CU = C , by the
definition of w we know that C′ is contained in w . Now we can conclude that I is a Yes-
instance of Annotated PAV-Multiwinner.

Next, we show that the above integer programming is an instance of IPWSPLT. To this
end, we reiterate that IPWSPLT contains ILP as a special case. Constraints described in
(1)–(3) are standard constraints (or can be transformed into standard form trivially) of ILP.
It is easy to see that the function f defined in (4) is a piecewise linear concave function.
Therefore, the above integer programming is an instance of IPWSPLT.

It remains to analyze the running time of the algorithm. The above reduction clearly
takes FPT-time in n, and the number of variables is n + 2n . Then, by Lemma 1 and the cor-
rectness of the reduction, Annotated PAV-Multiwinner is FPT with respect to n. ◻

We note that a similar FPT-algorithm for winners computation for a large class of
ranking-based multiwinner voting rules has been also derived by Faliszewski et al. [32,
Theorem 16].

Now we study the parameter k = m − k , i.e., the number of candidates not in a desired
k-committee. In regard to MAV, the NP-hardness proof by LeGrand [50] actually already
implied that MAV-Multiwinner is W[1]-hard with respect to k . Precisely, LeGrand’s NP-
hardness reduction is from the Vertex Cover problem, where vertices correspond to can-
didates, and edges correspond to votes so that each vote approves exactly the candidates
corresponding to its two endpoints. It is easy to see that there is a vertex cover of cardi-
nality � if and only if there is a �-committee so that the Hamming distance between this
committee and each vote is at most � . The -hardness of MAV-Multiwinner follows from
that Vertex Cover is W[1]-hard with respect to m − � where m is the number of vertices
(candidates) [26].

Corollary 1 ([26, 50]) MAV-Multiwinner is W[1]-hard with respect to k even when every
vote approves two candidates.

It should be noted that Vertex Cover with respect to m − � is exactly a parameterized
variant of the Independent Set problem. We provide the formal definition of the problem
below because it will be used to establish our next intractability result.

An independent set of a graph is a subset of pairwise nonadjacent vertices.

�-Independent Set (�-IDS)

Input: A graph G = (N,A) and an integer �.
Parameter: �.
Question: Does G admit an independent set of cardinality at least �?

Theorem 2 CCAV-Multiwinner is W[1]-hard with respect to k , even when every vote
approves two candidates.

Proof To prove Theorem 2, we offer a reduction from �-IDS to CCAV-Multiwinner, simi-
lar to the one for MAV-Multiwinner discussed above by LeGrand [50]. Let (G = (N,A), �)

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 12 of 35

be an instance of �-IDS. We construct an instance ((C,V), k, d) of CCAV-Multiwinner
as follows. For each vertex c ∈ N , we create one candidate denoted by the same symbol
for simplicity. Let C = N and let m = |C| . For each edge {c, c�} ∈ A , we create one vote v
approving exactly c and c′ , i.e., v = {c, c�} . Let V be the set of the created votes. Finally, we
set k = � (hence k = m − �) and set d = |A|.

The correctness of the reduction is easy to check. If there is an independent set I of
size k , the CCAV score of the (m − k)-committee N ⧵ I is d . Conversely, if there is an
(m − k)-committee w of CCAV score d , every vote has at least one of its approved candi-
dates in the committee. Due to the construction, this implies that N⧵w is an independent
set. ◻

For PAV, we also obtain a W[1]-hardness result via a reduction from the following
problem.

Minimum (�)-Vertex Subgraph (�-MVS)

Input: A graph G = (N,A) and two integers � and �.
Parameter: �.
Question: Is there S ⊆ N such that |S| = � and G[N ⧵ S] has at most � edges?

Cai [17] proved that the �-MVS problem is W[1]-hard even when the input graph is
regular, i.e., all vertices have the same degree.

Theorem 3 PAV-Multiwinner is W[1]-hard with respect to k , even when every vote
approves two candidates.

Proof We provide a reduction from �-MVS to PAV-Multiwinner. Let (G, �,�) be an
instance of �-MVS such that every vertex of G has degree r for some positive integer r.
Let G = (N,A) and let m = |N| . Without loss of generality, we assume that 𝜅 < m . We con-
struct an instance ((C,V), k, d) of PAV-Multiwinner as follows. For each vertex c ∈ N , we
create one candidate in C denoted by the same symbol, and for each edge {c, c�} ∈ A , we
create one vote approving c and c′ in V. We set k = m − � , and hence k = � . Finally, we set
d = (m − �) ⋅ r −

𝓁

2
 . It remains to show the correctness.

(⇒) Suppose that there exists S ⊆ N so that |S| = � and G[N ⧵ S] contains exactly �′ ≤ �
edges. Then the PAV score of the committee N⧵S is

Obviously, |N ⧵ S| = m − |S| = k . Therefore, the PAV-Multiwinner instance is a
Yes-instance.

(⇐) Conversely, suppose that w ⊆ C is an (m − �)-committee of PAV score at least d .
Let �′ be the number of votes whose both approved candidates are in w . Due to the
reduction, every candidate is approved by exactly r votes. Therefore, there are exactly
(m − �) ⋅ r − 2𝓁� votes which have exactly one of their approved candidates in w . Hence,
the PAV score of w is 3

2
𝓁� + ((m − �) ⋅ r − 2𝓁�) , which is at least d . It immediately follows

that �′ ≤ � , implying that N⧵w is a Yes-witness of the �-MVS instance (G, �,�) . ◻

3

2
𝓁� +

(
(m − �) ⋅ r − 2𝓁�

)
= (m − �) ⋅ r −

𝓁�

2
≥ d.

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 13 of 35 28

It should be pointed out that a reduction established by Skowron, Faliszewski, and Lang
[67, Theorem 5] for showing NP-hardness of a related problem also implies that PAV-
Multiwinner is W[1]-hard with respect to k.7

Now we move on to the parameter d . We observe that CCAV-Multiwinner is equivalent
to the Partial Hitting Set problem which has been intensively studied in the literature.

Partial Hitting Set

Input: A universe U, a collection S of subsets of U, and two nonnegative integers a and b.
Parameter: b.
Question: Is there S ⊆ U such that |S| = a and S intersects at least b elements of S ?

Clearly, by taking C = U , V = S , k = a , and d = b in the above definition we obtain
CCAV-Multiwinner. Bläser [5] derived an algorithm running in time O∗(2O(b)) for Partial
Hitting Set. This leads to the following corollary.

Corollary 2 ([5]) CCAV-Multiwinner can be solved in time O∗(2O(d)).

Observe that every CCAV-Multiwinner instance where d > n is a No-instance. As a
result, Corollary 2 implies an algorithm for CCAV-Multiwinner running in time O∗(2O(n)) ,
which appreciably improves the O∗(nn) algorithm presented in [4].

Corollary 3 ([5]) CCAV-Multiwinner can be solved in time O∗(2O(n)).

Bläser [5] also presented a randomized algorithm of running time O∗((2e)b) which
solves the Partial Hitting Set problem correctly with probability at least 1 − e−1 , where e
is the Napier’s constant. We arrive at the following corollary.

Corollary 4 ([5]) There is a randomized algorithm running in time O∗((2e)d) which solves
CCAV-Multiwinner correctly with probability at least 1 − e−1.

4.2 Parameters △
V

 and △
C

In this section, we study the two parameters △V and △C . First, as Vertex Cover remains
NP-hard when restricted to cubic graphs (i.e., 3-regular graphs) [38], the reduction for the
NP-hardness of MAV-Multiwinner established by LeGrand [50] implies that MAV-Mul-
tiwinner is NP-hard even when every candidate is approved by three votes and every vote
approves two candidates. It remains to study the cases where △V ≤ 1 or △C ≤ 2.

Recall that for a committee selection rule � and an election E = (C,V) , �(E, k) is the
set of all optimal k-committees under � . More precisely, for � being MAV, �(E, k) con-
sists of all k-committees of C with the minimum Hamming distance to the votes, and

7 Their reduction is from Vertex Cover restricted to 3-regular graphs, and a slight modification results in a
reduction based on Vertex Cover restricted to regular graphs which is W[1]-hard parameterized by m − �
[26].

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 14 of 35

for � being CCAV and PAV, �(E, k) consists of all k-committees of C with the maximum
CCAV and PAV scores, respectively.

It is easy to see that every election E = (C,V) where every vote approves only one
candidate admits a k-committee, k ≤ |C| , which is optimal with respect to MAV, CCAV,
and PAV at the same time. In fact, any optimal k-committee under the approval voting
(AV) is such a k-committee. The AV score of a candidate c is |V(c)| , the number of votes
approving c, and AV selects k-committees with the maximum sum of AV scores of can-
didates in the committees.

Observation 1 Let E = (C,V) be an election where every vote in V approves at most
one candidate, and let k ≤ |C| be an integer. It holds that AV(E, k) ⊆ MAV(E, k) and
AV(E, k) = CCAV(E, k) = PAV(E, k).

To see that AV(E, k) ⊆ MAV(E, k) instead of AV(E, k) = MAV(E, k) in Observation 1,
consider an election with two candidates a and b, where a is approved by two votes,
and b is approved by a third vote which does not approve a. For k = 1 , both {a} and {b}
are optimal with respect to MAV, but only {a} is optimal with respect to AV.

The following corollary follows from Observation 1 and the clear fact that an optimal
k-committee with respect to AV can be computed in polynomial time.

Corollary 5 For each � ∈ {MAV,CCAV, PAV} , �-MULTIWINNER is polynomial-time solv-
able when △V ≤ 1.

Regarding △C , we have several polynomial-time solvability results for △C ≤ 2 . One
of our results is based on the following polynomial-time solvable problem [52].

Simple b-Edge Cover of Multigraphs (SECM)

Input: A multigraph G = (N,A) , a function f ∶ N → ℤ
+ , and an integer �.

Question: Is there A′ ⊆ A such that |A′| ≤ � and every v ∈ N is incident to at least f(v) edges in A′?

If we require |A�| = � in the above definition, we obtain the exact version of SECM
(E-SECM). Clearly, E-SECM can also be solved in polynomial time.

Every election E = (C,V) can be represented by a multihypergraph where every vote
v ∈ V is considered as a vertex and every candidate c ∈ C is considered as an edge con-
sisting of vertices in V(c). When a candidate is approved by only one vote, there is a
loop on this vote. We use H(E) to denote this multihypergraph representing E. Clearly,
given an election, its multihypergraph representation can be computed in polynomial
time. When △C ≤ 2, H(E) degenerates to a multigraph.

For a class H of multihypergraphs, we say that an election E is an H -election if
H(E) ∈ H .

Theorem 4 MAV-Multiwinner and CCAV-Multiwinner are polynomial-time solvable if
△C ≤ 2.

Proof We derive polynomial-time algorithms for the special cases of MAV-Multiwinner
and CCAV-Multiwinner stated in the theorem as follows. Let (E, k, d) be an instance of
MAV-Multiwinner or CCAV-Multiwinner, where E = (C,V) . We first compute the

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 15 of 35 28

multigraph representation H(E) = (V ,A) of E which can be done in polynomial time,
where A is the set of edges corresponding to candidates in C.

MAV. We solve MAV-Multiwinner by reducing it to E-SECM. Recall that for each
v ∈ V , |v| is the number of candidates approved by v which is equal to the number of edges
incident to v in H(E). Observe that the Hamming distance between every vote v and every
k-committee can be at most |v| + k . Therefore, if d ≥ |v| + k , we can safely remove v
from V without changing the answer to the instance. In light of this fact, we assume now
that |v| + k > d for every v ∈ V . Let f ∶ V → ℤ

+ be a function such that f (v) = ⌈ �v�+k−d
2

⌉
for every v ∈ V . By setting � = k we complete the construction of an instance (H(E), f , �)
of E-SECM. Assume that there exists A′ ⊆ A of cardinality � so that every v ∈ V is inci-
dent to at least f(v) edges in A′ . Let w be the k-committee corresponding to A′ . The Ham-
ming distance between every vote v ∈ V and w is

The proof for the other direction is analogous.
CCAV. We derive a greedy algorithm for CCAV-Multiwinner. Let H′ be the graph

obtained from H(E) by

(1) removing all loops, and
(2) for every two vertices between which there are multiple edges, removing all but any

arbitrary one of these multiple edges.

Let M be a maximum matching of H′ , and let V(M) be the set of vertices saturated by M.
We distinguish between two cases.

– If |M| ≥ k , we arbitrarily select k edges in M, and let w be the k-committee corre-
sponding to these selected edges.

– If |M| < k , let w be the set of candidates corresponding to edges in M. Let E′ be the
election obtained from E by removing all votes in V(M) and all candidates approved
only by votes in V(M). As M is a maximum matching of H′ , no two votes of E′
approve a common candidate. Then, for every nonempty vote in E′ , we arbitrarily
select one candidate approved by the vote. Let w′ denote the set of all these selected
candidates. If |w�| ≥ k − |M| , we include into w any arbitrary k − |M| candidates
from w′ ; otherwise, we include into w all candidates of w′ together with any arbitrary
k − |w ∪ w�| remaining candidates.

In either case, we conclude that the given instance of CCAV-Multiwinner is a Yes-instance
if and only if ����(V ,w) ≥ d . ◻

Now we study special cases of PAV-Multiwinner where △C and △V are very small
integers. We need the following notions. A path is a graph comprised of a sequence v1, v2
, …, vt of t vertices and t − 1 edges so that there is an edge between two vertices if and only
if they are consecutive in the sequence. A cycle is a graph obtained from a path by adding
an edge between the first and the last vertices. A hairstick is a graph obtained from a path
by adding one loop either on the first vertex or on the last vertex. A double headed hair-
stick (DH-hairstick) is a graph obtained from a path by adding one loop on both the first
vertex and on the last vertex. We refer to Fig. 2 for an illustration of these graphs.

|v ⧵ w| + |w ⧵ v| ≤ (|v| − f (v)) + (k − f (v)) ≤ d.

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 16 of 35

Lemma 2 Let H be the set of all paths, cycles, hairsticks, and DH-hairsticks. Then, given
an H -election, we can compute a PAV optimal k-committee of the election in polynomial
time.

We defer the proof of Lemma 2 to the appendix.

Theorem 5 PAV-Multiwinner is polynomial-time solvable if △C ≤ 1 or △V = △C = 2.

Proof Let I = (E, k, d) be an instance of PAV-Multiwinner where E = (C,V).
We consider first the case where △C ≤ 1 . The following algorithm finds an optimal

k-committee. First, let w = � . Then, we arrange votes in V in a cyclic order (the relative
orders of the votes do not matter), and starting from any arbitrary vote we consider the
votes one-by-one in a clockwise order. In particular, if the currently considered vote v has
at least one approved candidate not contained in w , i.e., v ⧵ w ≠ ∅ , we add any arbitrary
candidate from v ⧵ w into w ; otherwise we proceed to the next vote. The procedure runs
until |w| = k or w cannot be expanded in the way described above. Finally, we conclude
that I is a Yes-instance if and only if ���(V ,w) ≥ d.

Now we consider the case where △C = △V = 2 . We first compute the multigraph rep-
resentation H(E) of E. Given a subgraph of H(E), the subelection of E restricted to this
subgraph refers to E restricted to candidates and votes corresponding respectively to the
edges and the vertices of the subgraph. Observe that every connected component of H(E) is
either a path, a cycle, a hairstick, or a DH-hairstick, and by Lemma 2, for every integer j, an
optimal j-committee of each subelection restricted to a connected component can be com-
puted in polynomial time. Based on this, we derive a dynamic programming algorithm.
Precisely, let (H1,H2,… ,Hz) be an arbitrary order of the connected components of H(E).
For each i ∈ [z] , let m≤i be the number of edges in the first i connected components in the
order. We maintain a table T(i, j) where i ∈ [z] and j ≤ min{k,m≤i} is a nonnegative inte-
ger. We define T(i, j) as the PAV score of an optimal j-committee in the election restricted
to the first i connected components. By Lemma 2, T(1, j) for all possible j can be computed
in polynomial time. We use the following recursion to compute T(i, j), assuming that all
entries T(i�, j�) such that i′ < i have been computed. For each j′ ≤ j , let d(j�) be the PAV
score of an optimal j′-committee of E restricted to Hi , which can be computed in polyno-
mial time by Lemma 2. Then, we have that

After all entries are computed, we conclude that the given instance I is a Yes-instance if
and only if T(z, k) ≥ d . ◻

T(i, j) = max
j� ∈ [j] ∪ {0},

j − j� ≤ m≤i−1

{d(j�) + T(i − 1, j − j�)}.

Fig. 2 An illustration of cycles, paths, hairsticks, and DH-hairsticks

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 17 of 35 28

5 Combined parameters

The study in the previous section revealed that the parameters k, k, △V , and △C generally
lead to fixed-parameter intractability results. In this section, we explore whether combining
two or three of them offers us FPT-results.

5.1 Combining k with △
V

 and △
C

We first consider the combined parameter k +△C , starting with an FPT-result for
MAV-Multiwinner.

Theorem 6 MAV-Multiwinner is FPT with respect to k +△C.

Proof We prove the theorem by giving an FPT-algorithm for MAV-Multiwinner as fol-
lows. Let I = (E, k, d) be an instance of MAV-Multiwinner, where E = (C,V) . Let n = |V| .
If n ≤ k ⋅ △C + 1 , then as MAV-Multiwinner is FPT with respect to n [57], we can solve I
in FPT-time in k +△C . Otherwise, let (v1, v2,… , vn) be a linear order on V such that
|vi| ≥ |vi+1| for every i ∈ [n − 1] , i.e., vi approves at least the same number of candidates
as vi+1 does. Then, the algorithm deletes the last n − (k ⋅ △C + 1) votes in this order, and
solves the remaining instance by an FPT-algorithm with respect to the number of votes
(e.g., the one presented in [57]).

It remains to prove the correctness of the algorithm. Let E′ be the election after the dele-
tion of the votes as described above. Clearly, every k-committee of the original election
with MAV score d is a k-committee of E′ with MAV score at most d . To show the correct-
ness for the opposite direction, let w be a k-committee of E′ with MAV score d . As every
candidate is approved by at most △C votes, at most k ⋅ △C votes in E′ intersect w . As E′
contains the first k ⋅ △C + 1 votes in the order defined above, there exists i ∈ [k ⋅ △C + 1]
so that the vote vi does not approve any candidate from w . The Hamming distance
between w and vi is k + |vi| ≤ d . As |vj| ≤ |vi| for every deleted vote vj , j ≥ k ⋅ △C + 2 , the
Hamming distance between w and vj is at most k + |vj| ≤ k + |vi| ≤ d . It follows that w has
MAV score d in the election E. ◻

Let us move on to CCAV. Obviously, if w is a k-committee, then at most k ⋅ △C
votes intersect w . Hence, the CCAV score of every optimal k-committee is bounded
from above by k ⋅ △C . This observation leads to a simple algorithm for CCAV-
Multiwinner: if d > k ⋅ △C , return “No”; otherwise, solve it by Corollary 2 in time
O∗(2O(d)) = O∗(2O(k⋅△C)).

Corollary 6 CCAV-Multiwinner is FPT with respect to k +△C.

Now we study the combined parameter k +△V . Observe that MAV-Multiwinner
admits a straightforward FPT-algorithm with respect to k +△V based on an algorithm in
[57]: if d > k +△V , every k-committee has MAV score at most d , and hence we directly
conclude that the given instance is a Yes-instance; otherwise, we solve it by the FPT-algo-
rithm with respect to d proposed in [57].

Corollary 7 MAV-Multiwinner is FPT with respect to k +△V.

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 18 of 35

Aziz et al. [3] proved that PAV-Multiwinner is W[1]-hard when the parameter is k even
if △V = 2 . This implies that PAV-Multiwinner is W[1]-hard with respect to k +△V . For
CCAV, Betzler, Slinko, and Uhlmann [4] proved that CCAV-Multiwinner is W[2]-hard
with respect to k by a reduction from the Hitting Set problem. However, in the reduc-
tion the maximum number of candidates approved by a vote is not bounded from above
by a constant. Using a reduction from the Partial Vertex Cover problem, we show that
CCAV-Multiwinner is W[1]-hard with respect to k in this special case.

Partial Vertex Cover (PVC)

Input: A graph G and two integers � and �.
Parameter: �.
Question: Is there a subset S ⊆ V(G) such that |S| = � and S covers at least �

edges of G?

It is known that PVC is W[1]-hard with respect to � [41].

Theorem 7 CCAV-Multiwinner is W[1]-hard with respect to k even if every vote approves
two candidates.

Proof Given an instance (G, �,�) of PVC, we create a CCAV-Multiwinner instance as
follows. We regard each vertex as a candidate and regard each edge as a vote approving
exactly the two candidates corresponding to its two endpoints. The reduction is completed
by setting k = � and d = � . The correctness is easy to see. ◻

5.2 Combining k with △
V

 and △
C

We have shown that MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multiwinner are
W[1]-hard or W[2]-hard with respect to the single parameter k even when △V = 2 . It fol-
lows that these problems are W[1]-hard or W[2]-hard when parameterized by k +△V .
Hence, we focus only on the combined parameter k +△C . We first prove that MAV-Mult-
iwinner is FPT with respect to this parameter by reducing it to an FPT problem which is a
generalization of the r-Set Packing problem.

Generalized r-Set Packing (GrSP)

Input: A universe U, a multiset S of r-subsets of U, a function
 f ∶ U → ℕ0 , and an integer �.

Parameter: � + r.
Question: Is there an S ⊆ S such that |S| = � and every u ∈ U occurs in at

most f(u) elements of S?

It is known that GrSP is FPT [79]8. It is easy to verify that the variant of the GrSP
problem where each s ∈ S is of cardinality at most r, instead of exactly r, is reducible

8 The definition of GrSP in [79] requests f(u) to be positive for all u ∈ U . However, it is fairly easy to
see that if we allow f (u) = 0 for some u ∈ U , we can safely remove all X ∈ S such that u ∈ X from the
instance without changing the answer to the instance. So, allowing f (u) = 0 for u ∈ U does not destroy the
fixed-parameter tractability of the problem.

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 19 of 35 28

to GrSP in polynomial time: for each s ∈ S such that |s| < r , create r − |s| new elements
in U, add them into s, and set f (u) = 1 for every newly introduced element in U. Therefore,
the above variant is also FPT. In the following, we use G r≤ SP to denote this variant.

Theorem 8 MAV-Multiwinner is FPT with respect to k +△C.

Proof Let I = (E, k, d) be an instance of MAV-Multiwinner, where E = (C,V) . Note
that the Hamming distance between each vote v and each k-committee is at least |k − |v|| .
Therefore, if there exists a vote v ∈ V such that |v| < k and d < k − |v| , we immediately
conclude that the given instance I is a No-instance. In what follows, we assume that for
all v ∈ V either it holds that |v| ≥ k , or it holds that |v| < k and d ≥ k − |v| . We reduce I
to an instance of G r≤ SP in polynomial time as follows. Precisely, let U = V , and let
S = {V(c) ∶ c ∈ C} . Clearly, each element of S is of cardinality at most △C . Hence, we
set r = △C . Regarding the function f, for each v ∈ V we define

By the above assumption, the function f is nonnegative. Finally, we define � = k = |C| − k.
It remains to prove that the two instances are equivalent.
(⇒) Suppose that the G r≤ SP instance is a Yes-instance. In particular, let S ⊆ S be such

that |S| = � and every u ∈ U occurs in at most f(u) elements of S. Let C′ be the subset
of candidates corresponding to S. Clearly, |C�| = |S| = k . We claim that w = C ⧵ C� is
a k-committee with MAV score at most d . Due to the above construction, every vote v
occurs in at most f(v) submultisets from S. This implies that v has at least |v| − f (v) of its
approved candidates in w . Hence, the Hamming distance between v and w is at most

In other words, the instance I is a Yes-instance.
(⇐) Suppose that I is a Yes-instance, i.e., there is a k-committee w ⊆ C such that

���(V ,w) ≤ d . Let C� = C⧵w . Then, for each vote v ∈ V at least ⌈ �v�+k−d
2

⌉ of its approved
candidates must be in w . In other words, at most �v� − ⌈ �v�+k−d

2
⌉ = f (v) of v’s approved

candidates can be in S = {V(c) ∶ c ∈ C�} . This implies that the G r≤ SP instance is a Yes-
instance. ◻

Next, we prove that CCAV-Multiwinner is FPT with respect to the combined parameter
k +△C as well.

Theorem 9 CCAV-Multiwinner is FPT with respect to k +△C.

Proof We prove Theorem 9 by deriving a branch-and-bound FPT-algorithm with respect
to k +△C . Let I = ((C,V), k, d) be an instance of CCAV-Multiwinner. Throughout the
algorithm, let k = |C| − k.

We first remove from C all candidates not approved by any votes, and remove from V
all empty votes. Then, we assume that neither of C and V is empty, since otherwise the
instance can be solved trivially. Observe now that if a vote v ∈ V approves more than k
candidates, any k-committee intersects v. In light of this observation, we need only to focus
on votes approving at most k candidates. Let U ⊆ V be the submultiset of votes from V

f (v) =

⌊
d + |v| − k

2

⌋
.

f (v) + (k − (|v| − f (v))) = 2 ⋅ f (v) + k − |v| ≤ d.

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 20 of 35

approving at most k candidates. Let B = ∪v∈Uv be the set of candidates approved by votes
from U. If U = � or |B| ≤ k , any k-committee containing B satisfies all votes. In this case,
we conclude that I is a Yes-instance if and only if d ≤ |V| . Assume now that |B| ≥ k + 1 .
For each candidate c ∈ C , let V1(c) be the multiset of votes in U that approve c only, i.e.,
V1(c) = {v ∈ U ∶ v = {c}} . Let c⋆ ∈ B be such that |V1(c⋆)| ≤ |V1(c)| for all c ∈ B . Let
A =

⋃
v∈V(c)∩U v . A significant observation is that there is an optimal k-committee which

does not contain A. (A proof for the observation is given later.) In line with this observa-
tion, we solve the instance by branching on which candidate from A is not contained in
a certain optimal k-committee. In particular, we create |A| branching cases, one for each
x ∈ A . In the branching case for x ∈ A , we reset C ∶= C ⧵ {x} (note that this implies that k
is decreased by one), d ∶= d − |V⧵U| , and V ∶= U , and solve the subinstance iteratively
by the above procedure. We use two pruning criteria to determine when to terminate the
branching: d ≤ 0 or k = 0 . When we arrive at a branching node where d ≤ 0 and k ≥ 0 , it
holds clearly that the given instance I is a Yes-instance, and thus in this case we terminate
the whole algorithm by returning “Yes”. When we arrive at a branching node where k = 0
and d > 0 , we determine that I is a Yes-instance if ����(V ,C) ≥ d , and discard the cor-
responding branching case otherwise.

Now we prove the correctness of the above mentioned observation. To this end,
assume that w is an optimal k-committee such that A ⊆ w . Then, we can obtain another
optimal k-committee from w by replacing c⋆ (notice that c⋆ ∈ A) with any arbitrary can-
didate from B ⧵ w (as |B| ≥ k + 1 such a candidate exists). The reason is that every vote
from (V(c⋆) ∩ U) ⧵ V1(c⋆) approves at least one candidate from w ⧵ {c⋆} (because A ⊆ w).
Hence, removing c⋆ from w may only affect the existence of representatives of votes
from V1(c⋆) in the committee. However, as |V1(c⋆)| ≤ |V1(c)| for all c ∈ B , adding any
arbitrary candidate from B ⧵ w into w makes all votes from V1(c⋆) which do not have any
representatives before have representatives now.

Regarding the running time of the algorithm, note that |A| ≤ △C ⋅ k . Hence, each
branching node has at most △C ⋅ k children, implying that the branching algorithm has
running time O∗((△C ⋅ k)k) . ◻

5.3 Combining d and △
V

It is known that MAV-Multiwinner and CCAV-Multiwinner are both FPT with respect to
the parameter d . However, it is unknown whether PAV-Multiwinner is FPT with respect
to d . Even though we are unable to resolve this open question, we provide an FPT-algo-
rithm when combining d and △V.

Theorem 10 PAV-Multiwinner is FPT with respect to d +△V.

Proof We prove the theorem by giving a branch-and-bound FPT-algorithm. Let
I = (E, k, d) be an instance of PAV-Multiwinner, where E = (C,V).

First, if C contains a candidate approved by at least d votes in V, any k-committee
including this candidate is a desired committee. So, in this case, we directly conclude that I
is a Yes-instance.

Second, let C0 ⊆ C be the set of candidates not approved by any votes in V. We remove
from the election (C, V) all candidates in C0 , and reset k ∶= min{k, |C|} . It is easy to verify

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 21 of 35 28

that the two instances before and after this step are equivalent. Afterwards, if k = |C| , we
conclude that I is a Yes-instance if and only if ���(V ,C) ≥ d.

From now on, let us assume that every candidate is approved by at least one and at
most d − 1 votes in V, and k < |C| . For each S ⊊ C and each c ∈ C ⧵ S , we define

as the marginal contribution of c to the PAV score of the committee S ∪ {c} . In our branch-
ing tree, each branching node is associated with a subset S ⊊ C of cardinality at most k,
which is supposed to be contained in a desired committee. The root of the branching tree
is associated with S = � . Suppose we are now at a branching node associated with a sub-
set S ⊊ C . Let c ∈ C⧵S be a candidate such that �(S, c) ≥ �(S, c�) for all c� ∈ C ⧵ S . Let
A = (

⋃
v∈V(c) v) ⧵ S be the set of candidates approved by votes approving c but not con-

tained in S. Then, we create |A| branching cases, one for each x ∈ A . The set associated
with the branching case for x ∈ A is S ∪ {x} . The correctness of our branching is rooted in
the fact (a proof supporting this fact is provided later) that, if the given instance I is a Yes-
instance, there exists at least one desired k-committee which includes at least one candidate
from A.

We terminate the branching when the branching depth of the current branching node
reaches min{k, d ⋅ △V} . Recall that the branching depth of a branching node is the number
of edges on the path from the root to the node in the branching tree. By our branching strat-
egy, the branching depth of a branching node associated with S is exactly |S| . Therefore,
when k ≤ d ⋅ △V and the branching depth of the current node associated with S reaches k,
we have that |S| = k . In this case, if S has PAV score at least d with respect to V, we con-
clude that the given instance I is a Yes-instance. Consider now the case where k > d ⋅ △V .
Note that �(S, x) ≥ 1

△V

 for each possible S and x. Therefore, if the current branching node
associated with S has branching depth d ⋅ △V, S is a k′-committee, k′ ≤ k , of PAV score at
least d . As a result, when k > d ⋅ △V and the current node has branching depth d ⋅ △V , we
directly conclude that I is a Yes-instance. If none of the branching nodes leads to a “Yes”-
answer, we conclude that I is a No-instance.

Note that |A| ≤ |V(c)| ⋅ △V ≤ d ⋅ △V , where A is as defined above. Therefore, the run-
ning time of the whole algorithm is bounded by O∗((d ⋅ △V)

d⋅△V).
To show the correctness, it suffices to prove the following claim (corresponding to the

aforementioned fact).

Claim Let S ⊊ C be a subset of at most k − 1 candidates, and let c ∈ C ⧵ S be a candidate
such that �(S, c) ≥ �(S, c�) for all c� ∈ C ⧵ S . Let A = (

⋃
v∈V(c) v) ⧵ S . Then, if there is a

k-committee w ⊊ C such that ���(V ,w) ≥ d , S ⊊ w , and A ∩ w = � , there exists a k-com-
mittee w′ ⊊ C such that ���(V ,w�) ≥ d , S ⊆ (w ∩ w�) , and A ∩ w� ≠ �.

Now we prove the claim. Let S, c, and A be as stipulated in the claim. Suppose that
there is a k-committee w ⊊ C such that ���(V ,w) ≥ d , S ⊊ w , and A ∩ w = � . Let c′
be any candidate in w⧵S , and let w� = w⧵{c�} ∪ {c} . Obviously, S ⊆ (w ∩ w�) and
A ∩ w� ≠ � . To complete the proof, it suffices to show that ���(V ,w�) ≥ d . First, as
w ∩ A = � and S ⊆ w , it holds that �(w, c) = �(S, c) . Second, as S ⊆ w ⧵ {c�} , it holds that
�(w ⧵ {c�}, c�) ≤ �(S, c�) . Third, it is clear that �(w ⧵ {c�}, c) ≥ �(w, c) . We also reiterate
that �(S, c) ≥ �(S, c�) . Putting this all together, we obtain �(w ⧵ {c�}, c) ≥ �(w ⧵ {c�}, c�)
which implies ���(V ,w�) ≥ ���(V ,w) ≥ d . The proof is completed. ◻

�(S, c) = ���(V , S ∪ {c}) − ���(V , S),

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 22 of 35

We have derived many FPT-algorithms with respect to different single parameters and
their combinations. Our results reveal that MAV-Multiwinner and CCAV-Multiwinner are
FPT with respect to any combinations of three single parameters studied so far. Unfortu-
nately, we have only a few FPT-results for PAV-Multiwinner even for combinations of
two single parameters. We finish this section by remarking that PAV-Multiwinner is FPT
with respect to k +△V +△C : if d > k ⋅ △C , return “No”; otherwise, solve the instance in
FPT-time via Theorem 10.

Corollary 8 PAV-Multiwinner is FPT with respect to k +△V +△C.

6 Structural parameters

In this section, we study two structural parameters of incidence graphs of elections. For an
election E, let GE denote the incidence graph of E.

6.1 Treewidth

Treewidth is a widely-studied notion to measure the closeness of a graph to a tree [63].
It has been shown that a great deal of graphs stemming from innumerable combinatorial
problems in a variety of areas have bounded treewidth (see, e.g., [47, 56, 71, 74]). Addi-
tionally, it has been scrutinized that even when treewidth is large, using tree decomposi-
tions could also be helpful for designing algorithms [55]. From a theoretical point of view,
a myriad of NP-hard problems are known to be FPT with respect to the parameter tree-
width [21]. With regard to the applicability of treewidth in multiwinner voting, we point
out that the treewidth of the incidence graph of an election is no greater than the number m
of candidates and the number n of voters in the election, implying that any FPT-algorithm
for �-MULTIWINNER with respect to the treewidth also runs in FPT-time in m and n.

A tree decomposition of a graph G = (N,A) is a tuple (T ,B) , where T = (L,F) is
a rooted tree with vertex set L and edge set F, and B = {Bx ⊆ N ∶ x ∈ L} is a col-
lection of subsets of vertices of G such that the following three conditions are fulfilled
simultaneously:

• For each vertex v ∈ N in G there exists at least one Bx ∈ B such that v ∈ Bx , i.e., every
vertex of G is in at least one element of B.

• For each edge {v, u} ∈ A in G there exists at least one Bx ∈ B such that v, u ∈ Bx , i.e.,
every edge of G is contained in at least one element of B.

• If a vertex v ∈ N is in Bx,By ∈ B , then v is in every Bz ∈ B where z is a vertex on the
unique path between x and y in T.

The width of the tree decomposition is defined as maxB∈B |B| − 1 . The treewidth of a
graph G, denoted �(G) , is the minimum possible width of tree decompositions of G. Ele-
ments of B are called bags. To avoid confusion, in the following we call vertices of T
nodes.

A more refined notion commonly used in designing FPT-algorithms is the so-called
nice tree decomposition [9]. In particular, a nice tree decomposition (T ,B) of a graph G is
a tree decomposition of G which further satisfies the following conditions simultaneously:

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 23 of 35 28

• Every bag B ∈ B associated with the root or a leaf of T is empty, i.e., Bx = � if x is the
root or a leaf of T.

• Nonleaf nodes of T are categorized into introduce nodes, forget nodes, and join nodes
such that:

• Each introduce node x has exactly one child y such that By ⊊ Bx and |Bx⧵By| = 1 ,
i.e., Bx has exactly one more element than By.

• Each forget node x has exactly one child y such that Bx ⊊ By and |By⧵Bx| = 1 , i.e., Bx
is obtained from By by removing one element.

• Each join node x has exactly two children y and z such that Bx = By = Bz.

It is easy to see from the definition that in a nice tree decomposition, each vertex can be
introduced multiple times but can be only forgotten once. Moreover, when a vertex is intro-
duced in a bag Bx , all of its neighbors contained in bags associated with nodes in the sub-
tree rooted at x are contained in Bx.

Lemma 3 ([45]) Let G be a graph of p vertices. Then, given a tree decomposition of G of
width � , a nice tree decomposition of G of width � having O(p ⋅ �) nodes can be computed
in polynomial time.

It has long been known that calculating treewidth is NP-hard even for bipartite graphs
[7]. However, determining whether the treewidth of a graph is at most � is FPT with
respect to � and, moreover, powerful heuristic and approximation algorithms for calcu-
lating treewidth have been perpetually reported [6, 8, 72]. Besides, treewidth of chordal
bipartite graphs can be computed in polynomial time,9 and the gap between chordal bipar-
tite graphs and general bipartite graphs is quite small [46]. It is also well-known that
every graph of p vertices admits an optimal tree decomposition of O(p) nodes. Then, by
Lemma 3, when we study FPT-algorithms with respect to treewidth or a combined param-
eter involving treewidth, it does not lose any generality to assume that a nice tree decompo-
sition is given.

Theorem 11 CCAV-Multiwinner can be solved in time O∗(4�) if a nice tree decomposi-
tion of width � and of ����(p) nodes of the incidence graph of the input election is given,
where p is the number of vertices of the incidence graph.

Proof Let (E, k, d) be an instance of CCAV-Multiwinner where E = (C,V) and k ≤ |C| . In
addition, let (T ,B) be a nice tree decomposition of GE of width � that has ����(p) nodes,
where p = |C| + |V| . We design a dynamic programming algorithm running in time O∗(4�)
as follows.

For each bag Bx ∈ B associated with a node x in the tree T, let C(Bx) and V(Bx) be the
set of candidate-vertices and the set of vote-vertices contained in Bx , respectively. Moreo-
ver, let C(Tx) be the set of candidates in bags associated with nodes in the subtree rooted
at x. Obviously, C(Bx) ⊆ C(Tx) . We maintain for each node x in T a 3-dimensional table
Dx(C

�,V �, k�) , where C′ is a subset of C(Bx) such that |C′| ≤ k, V ′ is a submultiset of V(Bx) ,
and k′ is an integer such that |C�| ≤ k� ≤ min{k, |C(Tx)|} . We say that a k′-committee w

9 A chordal bipartite graph is a bipartite graph without induced cycles of length at least six.

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 24 of 35

is a valid committee for the entry Dx(C
�,V �, k�) if all the following conditions hold

simultaneously:

(1) w ⊆ C(Tx);
(2) C� = C(Bx) ∩ w ; and
(3) a vote in V(Bx) has a representative in w if and only if this vote is in V ′ , i.e., for every

v ∈ V(Bx) it holds that v ∩ w ≠ � if and only if v ∈ V �.

The value of the entry Dx(C
�,V �, k�) is the CCAV score of an optimal valid k′-com-

mittee for the entry. If Dx(C
�,V �, k�) admits no valid k′-committees, we define

Dx(C
�,V �, k�) = −∞ . Clearly, each table associated with a bag has at most 2�+1 ⋅ (k + 1)

entries.
The algorithm updates the tables from those associated with the leaves up to the one

associated with the root of T. The values of entries associated with leaves are all 0 (recall
that each leaf bag is empty). We update the entry Dx(C

�,V �, k�) associated with a nonleaf
node x in T as follows.

First, if some candidate from C′ is approved by some vote from V(Bx) ⧵ V
� , we set

Dx(C
�,V �, k�) = −∞ . Otherwise, we consider the following cases with respect to the types

of x.

• x is a join node
• Let y and z be the two children of x. We have Bx = By = Bz . In this case, we let

 It is obvious that there are O∗(2�) different combinations of k′
1
, k′

2
, V ′

1
 , and V ′

2
 to con-

sider in the max function. As a result, Dx(C
�,V �, k�) can be computed in O∗(2�) time.

• x is an introduce node
• Let y be the child of x, and let {h} = Bx ⧵ By . We further distinguish between two sub-

cases.

• h is a vote
• If h ∉ V � , then due to the above discussion h does not approve any candi-

dates from C′ . We set Dx(C
�,V �, k�) = Dy(C

�,V �, k�) . If h ∈ V � , then we set
Dx(C

�,V �, k�) = Dy(C
�,V � ⧵ {h}, k�) + 1 if h approves at least one candidate from C′ ;

and set Dx(C
�,V �, k�) = −∞ otherwise.

• h is a candidate
• If h ∉ C� , we set Dx(C

�,V �, k�) = −∞ when k� = |C(Tx)| , and set
Dx(C

�,V �, k�) = Dy(C
�,V �, k�) when k� < |C(Tx)| . If h ∈ C� , let Vx(h) be the submul-

tiset of votes in V ′ approving h. Then, we set

 Note that in this case if Vx(h) = � , we have that
Dx(C

�,V �, k�) = Dy(C
�⧵{h},V �, k� − 1) . As |Vx(h)| ≤ � , Dx(C

�,V �, k�) can be calcu-
lated in O∗(2�)-time.

Dx(C
�
,V �

, k�) = max

k�
1
+ k�

2
= k� − |C�|

0 ≤ k�
1
≤ |C(Ty) ⧵ C�|

0 ≤ k�
2
≤ |C(Tz) ⧵ C�|

V �
1
,V �

2
⊆ V �,V �

1
∪ V �

2
= V �

{
Dy

(
C�

,V �
1
, k�

1
+ ||C�||

)
+ Dz

(
C�

,V �
2
, k�

2
+ ||C�||

)
− ||V �

1
∩ V �

2
||
}
.

Dx

(
C�,V �, k�

)
= max

U⊆Vx(h)

{
Dy

(
C� ⧵ {h},V � ⧵ U, k� − 1

)
+ |U|

}
.

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 25 of 35 28

• x is a forget node
• Let y be the child of x and let {h} = By ⧵ Bx . We consider the following two subcases.

• h is a vote
• We set Dx

(
C�,V �, k�

)
= max

{
Dy

(
C�,V �, k�

)
,Dy

(
C�,V � ∪ {h}, k�

)}
.

• h is a candidate
• Clearly, h ∉ C� . If |C�| = k� or h is approved by some votes in V(Bx) ⧵ V

� , we set
Dx(C

�,V �, k�) = Dy(C
�,V �, k�) ; otherwise, let

By the definition of the table, Dr(�, �, k) is the CCAV score of an optimal valid k-com-
mittee for the entry, where r is the root of T (recall that the bag associated with the root is
empty). By Conditions (1)–(3) given above, every k-committee of C is valid for Dr(�, �, k) .
Therefore, after all tables are computed, we conclude that the given instance of CCAV-
Multiwinner is a Yes-instance if and only if Dr(�, �, k) ≥ d.

It remains to analyze the running time of the algorithm. Each node in the nice tree
decomposition is associated with a table of O∗(2�) entries. Due to the above procedure,
calculating an entry corresponding to a forget node takes polynomial time, and calculating
an entry corresponding to a join or an introduce node takes O∗(2�) time. As the nice tree
decomposition has polynomially many nodes, the running time of the algorithm is O∗(4�) .
 ◻

Similar algorithms for PAV-Multiwinner and MAV-Multiwinner can be derived but
with the running time being bounded by O∗((k + 1)�) . The reason is that in these cases we
need to maintain more information in order to solve the problem. For example, for PAV-
Multiwinner, we need to maintain for each vote in V ′ the number of its approved candi-
dates that are supposed to be in a desired committee, which requests a table of size at least
O∗((k + 1)�).

Theorem 12 PAV-Multiwinner and MAV-Multiwinner are FPT with respect to the com-
bined parameter k + � , if a nice tree decomposition of width � having ����(p) nodes of
the incidence graph of the input election is given, where p is the number of vertices of the
incidence graph.

Proof To prove the theorem, we derive FPT-algorithms for PAV-Multiwinner and MAV-
Multiwinner with respect to k + � . Let I = (E, k, d) be an instance of �-MULTIWINNER
where � ∈ {PAV,MAV} , E = (C,V) , and k ≤ |C| . In addition, let p = |C| + |V| , and
let (T ,B) be a nice tree decomposition of GE of width � that has ����(p) nodes. The algo-
rithms have the same skeleton as the one in the proof of Theorem 11 for CCAV-Multiwin-
ner. More concretely, we maintain a table for each node of T, compute the tables in a bot-
tom-up manner, and determine if the given instance I is a Yes-instance according to the
table associated with the root. To delineate the algorithms, we need the following nota-
tions. For an integer i, we define f (i) =

∑i

j=1
1

j
 if i ≥ 1 and define f (i) = 0 otherwise. For a

function � ∶ A → B and an element a ∈ A , �−a denotes � restricted to the domain A ⧵ {a} ,
i.e., �−a ∶ A⧵{a} → B is a function such that for all a� ∈ A⧵{a} it holds that �−a(a�) = �(a�) .
Additionally, let C(Bx), V(Bx) , and C(Tx) be defined as in the proof of Theorem 11. Further-
more, in parallel with C(Tx) , we let V(Tx) denote the multiset of all votes contained in bags
associated with nodes in the subtree rooted at x.

Dx

(
C�,V �, k�

)
= max

{
Dy

(
C�,V �, k�

)
,Dy

(
C� ∪ {h},V �, k�

)}
.

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 26 of 35

PAV. For each node x in T, we maintain a table Dx(C
�, k�,�) where C� ⊆ C(Bx) ,

|C�| ≤ k� ≤ min{k, |C(Tx)|} , and � ∶ V(Bx) → [k] ∪ {0} is a function. We note that
if V(Bx) = �, � is an empty function. We say that a k′-committee w ⊆ C(Tx) is valid for
Dx(C

�, k�,�) if Conditions (1) and (2) listed in the proof of Theorem 11, and the following
condition are satisfied simultaneously:

(D) |v ∩ w| = �(v) for all v ∈ V(Bx).

We define Dx(C
�, k�,�) as the maximum possible PAV score of k′-committees valid for

Dx(C
�, k�,�) with respect to V(Tx) . More precisely,

if Dx(C
�, k�,�) admits at least one valid k′-committee, and Dx(C

�, k�,�) = −∞ otherwise.
The tables for the leaves can be computed trivially according to the definition of the

tables. We show how to update an entry Dx(C
�, k�,�) by distinguishing the types of the

node x.

• x is a join node
• Let y and z be the two children of x. We let

 where

(a) k′
1
 and k′

2
 run over all integers so that k�

1
+ k�

2
= k� − |C�| , 0 ≤ k�

1
≤ |C(Ty)⧵C�| , and

0 ≤ k�
2
≤ |C(Tz) ⧵ C�|;

(b) �1 and �2 run over all functions from V(Bx) to nonnegative integers so that for all
v ∈ V(Bx) it holds that �1(v) + �2(v) = �(v) − |v ∩ C�|;

(c) for each i ∈ [2], �′
i
 is a function from V(Bx) to [k] ∪ {0} so that

�
�
i
(v) = �i(v) + |v ∩ C�| for all v ∈ V(Bx) ; and

(d) for each � ∈ {�,��
1
,��

2
} , g(�) =

∑
v∈V(Bx)

f (�(v)).

 By Condition (4), the number of different combinations of �1 and �2 in (b) is bounded
from above by O∗((k + 1)�+1) ⋅ O∗((k + 1)�+1) = O∗(k2�) . As a result, an entry in this
case can be computed in time O∗(k2�) . (Note that by the above recursion, when V(Bx) = �
we have that Dx(C

�, k�,�) = maxk�
1
,k�
2

{Dy(C
�, k�

1
+ |C�|,�) + Dz(C

�, k�
2
+ |C�|,�)}.)

• x is an introduce node
• Let y be the child of x, and let {h} = Bx ⧵ By . We further distinguish between the fol-

lowing two subcases.

• h is a vote
• In this case, we set

Dx(C
�, k�,𝜇) ∶= max

w ⊆ C(Tx), |w| = k�

w is valid for Dx(C
�, k�,𝜇)

���(V(Tx),w),

Dx(C
�
, k�,�) = max

k�
1
,k�
2
,�1,�2

{Dy

(
C�
, k�

1
+ ||C�||,��

1

)
− g(��

1
)

+ Dz

(
C�
, k�

2
+ |C�|,��

2

)
− g(��

2
)

+ g(�)},

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 27 of 35 28

• h is a candidate
• If h ∉ C� , we set Dx(C

�, k�,�) = −∞ when k� = |C(Tx)| , and set
Dx(C

�, k�,�) = Dy(C
�, k�,�) when k� < |C(Tx)| . If h ∈ C� , we set Dx(C

�, k�,�) = −∞
if there exists v ∈ V(Bx) such that h ∈ v and �(v) = 0 , and set
Dx(C

�, k�,�) = Dy(C
�⧵{h}, k� − 1,��) +

∑
v∈V(Bx),h∈v

1

�(v)
 otherwise, where

�� ∶ V(By) → [k] ∪ {0} is the function so that for all v ∈ V(By) it holds that
��(v) = �(v) − |v ∩ {h}| . (If V(Bx) = �, �′ is an empty function.)

• x is a forget node
• Let y be the child of x and let {h} = By ⧵ Bx . Similar to the above case we distinguish

between the following two subcases.

• h is a vote We set Dx(C
�, k�,�) = max

�� ∶ V(By) → [k] ∪ {0}

�
�
−h

= �

Dy(C
�, k�,��) . Obvi-

ously, we have at most (k + 1)�+1 different functions �′ to check, and hence such an
entry Dx(C

�, k�,�) can be computed in O∗(k�) time.
• h is a candidate

In this case, we set

After the table for the root r is computed, we conclude that the given instance I is a Yes-
instance if and only if Dr(�, k,�) ≥ d , where � is an empty function (recall that the bag
associated with the root is empty). This is because that by the definition of the table,
Dr(�, k,�) is the maximum possible PAV score of a valid k-committee for Dx(�, k,�)
with respect to V(Tr) = V .

MAV. For each node x in T, we maintain a table Dx(C
�, k�,�) whose components are defined

as with the ones for PAV. The validity of a k′-committee for an entry is also defined the same.
However, in this case each entry takes only binary values 1 and 0. The entry Dx(C

�, k�,�) is 1 if
and only if there is at least one k′-committee w which is valid for the entry (i.e., a k′-committee
satisfying Conditions (1)–(2) in the proof of Theorem 11, and Condition (4) given above) and,
moreover, for each v ∈ V(Tx) ⧵ V(Bx) , it holds that |w ∩ v| ≥ k+|v|−d

2
 . Observe that, by the defi-

nition of nice tree decomposition, none of the votes in V(Tx) ⧵ V(Bx) approves any candidates
from C ⧵ C(Tx) . Therefore, for every k-committee w′ ⊆ C such that w� ∩ C(Tx) = w and every
v ∈ V(Tx)⧵V(Bx) , it holds that v ∩ w = v ∩ w� , implying that the Hamming distance between v
and w′ is at most d if and only if |v ∩ w| ≥ k+|v|−d

2
 . The requirement |w ∩ v| ≥ k+|v|−d

2
 ensures

that as long as the given instance admits a Yes-witness w′ ⊆ C such that w� ∩ C(Tx) = w , the
existence of this Yes-witness is safely preserved in the table.

The tables for the leaves can be computed trivially according to their definitions. We
show how to update an entry Dx(C

�, k�,�) by distinguishing the types of the node x.

• x is a join node
• Let y and z be the two children of x. In this case, we set Dx(C

�, k�,�) = 1 if and only if
there are two functions �1,�2 ∶ V(Bx) → [k] ∪ {0} and two nonnegative integers k′

1
 and k′

2

such that

Dx(C
�, k�,�) =

{
−∞, if �(h) ≠ |h ∩ C�|
Dy(C

�, k�,�−h) + f (�(h)), otherwise

Dx(C
�, k�,�) =

{
Dy(C

�, k�,�), if |C�| = k�

max{Dy(C
�, k�,�),Dy(C

� ∪ {h}, k�,�)}, otherwise

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 28 of 35

(a) k�
1
+ k�

2
= k� − |C�|;

(b) for all v ∈ V(Bx) it holds that �1(v) + �2(v) = �(v) − |v ∩ C�| and, moreover,
(c) Dy

(
C�, k�

1
+ |C�|,��

1

)
= Dz

(
C�, k�

2
+ |C�|,��

2

)
= 1 , where for each i ∈ [2], �′

i
 is the

function from V(Bx) to [k] ∪ {0} so that ��
i
(v) = �i(v) + |v ∩ C�| for all v ∈ V(Bx).

 It is obvious that there are O∗(kO(�)) different combinations of k′
1
, k′

2
, �1 , and �2 to

enumerate. As a result, it takes O∗(kO(�)) time to compute Dx(C
�, k�,�) . (Note that when

V(Bx) = � , the above recursion indicates that Dx(C
�, k�,�) = 1 if and only if there are k′

1

and k′
2
 as above so that Dy(C

�, k�
1
+ |C�|,�) = Dz(C

�, k�
2
+ |C�|,�) = 1.)

• x is an introduce node
• Let y be the child of x, and let {h} = Bx ⧵ By . We further distinguish between the fol-

lowing two subcases.

• h is a vote
• We set Dx(C

�, k�,�) = 1 if and only if �(h) = |C� ∩ h| and Dy(C
�, k�,�−h) = 1.

• h is a candidate
• If h ∉ C� , we set Dx(C

�, k�,�) = 0 when k� = |C(Tx)| , and set
Dx(C

�, k�,�) = Dy(C
�, k�,�) when k� < |C(Tx)| . If h ∈ C� , we set Dx(C

�, k�,�) = 1 if
and only if Dy(C

� ⧵ {h}, k� − 1,��) = 1 where �� ∶ V(By) → [k] ∪ {0} is a function
so that for all v ∈ V(By) it holds that ��(v) = �(v) − |v ∩ {h}| . (When V(Bx) = � ,
Dx(C

�, k�,�) = Dy(C
�⧵{h}, k� − 1,�).)

• x is a forget node
• Let y be the child of x and let {h} = By ⧵ Bx.

• h is a vote
• We set Dx(C

�, k�,�) = 1 if and only if

(1) �(h) ≥
k+|h|−d

2
 , and

(2) there is a function �� ∶ V(By) → [k] ∪ {0} so that � = �
�
−h

 and
Dy(C

�, k�,��) = 1.

 The first condition is to ensure that there is a k-committee which contains a
valid k′-committee w for the entry and the Hamming distance between w and h is at
most d.

• h is a candidate
• If |C�| = k� , we set Dx(C

�, k�,�) = Dy(C
�, k�,�) . Otherwise, we set Dx(C

�, k�,�) = 1
if and only if Dy(C

�, k�,�) + Dy(C
� ∪ {h}, k�,�) ≥ 1.

After the table for the root r is computed, we conclude that the given instance I is a Yes-
instance if and only if Dr(�, k,�) = 1 , where � is an empty function. The reason for this is
that by the definition of the table, it holds that Dr(�, k,�) = 1 if and only if there is at least
one k-committee w ⊆ C(Tr) = C which is valid for Dr(�, k,�) and, moreover, for each
v ∈ V(Tr) ⧵ V(Br) = V , it holds that |w ∩ v| ≥ k+|v|−d

2
.

The running times of the algorithms for PAV-Multiwinner and MAV-Multiwinner are
dominated by the total size of all tables which is bounded from above by O∗(kO(�)) . ◻

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 29 of 35 28

6.2 Maximum matching

It is well-known that for every bipartite graph G, the size of a maximum matching of G
equals the size of a minimum vertex cover of G [54]. As the treewidth of a graph is
bounded from above by the size of a minimum vertex cover of the graph [37], it follows
from Theorem 11 that CCAV-Multiwinner is FPT with respect to �(GE) , where E is a
given election. We show that MAV-Multiwinner and PAV-Multiwinner are also FPT
with respect to this parameter. Observe that the size of a maximum matching of GE can
be at most min{m, n} , where m is the number of candidates and n is the number of votes
in the election E. Consequently, every FPT-algorithm with respect to �(GE) also runs in
FPT-time in n and m.

Theorem 13 MAV-Multiwinner and PAV-Multiwinner are FPT with respect to �(GE) ,
where E is the election in the input.

Proof Let I = (E, k, d) be an instance of �-MULTIWINNER , where E = (C,V) and
� ∈ {MAV, PAV} . Let GE be the incidence graph of E, and let M be a maximum match-
ing of GE . Hence, �(GE) = |M| . For simplicity, we write � for �(GE) . Let C(M) and V(M)
be the set of candidates and the multiset of votes saturated by M, respectively. Obviously,
|C(M)| = |V(M)| = � . We derive algorithms for MAV and PAV as follows.

MAV. We split I into at most 2� subinstances, each of which takes I and a subset
C� ⊆ C(M) of size at most k as input, and asks whether there is a k-committee w ⊆ C of
MAV score at most d such that C� = C(M) ∩ w . It is easy to see that I is a Yes-instance if
and only if at least one of the subinstances is a Yes-instance. We show how to solve each
subinstance in polynomial time.

Let I� = (I,C�) be a subinstance. Let v be a vote in V⧵V(M) . Assume that w is a k-com-
mittee such that w ∩ C(M) = C� . As M is a maximum matching of GE , no vote from
V ⧵ V(M) approves any candidate from C ⧵ C(M) . Consequently, the Hamming distance
between v and w is |v| + k − 2|v ∩ C�| . Hence, if there is a vote in V ⧵ V(M) such that
|v| + k − 2|v ∩ C�| > d , the subinstance is a No-instance. So, let us assume that this is not
the case. Now the task is to identify a subset H of k − |C�| candidates from C ⧵ C(M) such
that the Hamming distance between every vote from V(M) and the committee H ∪ C� is
at most d , or equivalently, for every v ∈ V(M), H contains at least |v|+k−d

2
− |v ∩ C�| of v’s

approved candidates in C ⧵ C(M) . For each v ∈ V(M) , let f (v) = |v|+k−d
2

− |v ∩ C�| . We
reduce the subinstance into an ILP with a bounded number of variables. Specifically, for
each U ⊆ V(M) , let CU be the set of candidates in C ⧵ C(M) approved by all votes in U but
not approved by any vote in V(M)⧵U , and let mU = |CU| . For each U ⊆ V(M) , we create
one nonnegative integer variable xU which indicates the number of candidates from CU that
are supposed to be in a desired committee. The constraints are as follows.

• First, for each variable xU we have that 0 ≤ xU ≤ mU.
• Second, as we seek k − |C�| candidates from C⧵C(M) , it holds that

• Finally, for every v ∈ V(M) , it holds that

∑

U⊆V(M)

xU = k − |C�|.

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 30 of 35

 This inequality ensures that the Hamming distance between every vote v ∈ V(M) and
the desired committee is at most d.

It is known that ILP is FPT with respect to the number of variables [51]. As the above ILP
has at most 2� variables, the subinstance can be solved in FPT-time in � . As there are at
most 2� subinstances, the whole algorithm runs in FPT-time in �.

PAV. The algorithm is analogous to the above one for MAV. First, we split the given
instance I into subinstances by enumerating all possible intersections C′ of C(M) and a
desired k-committee. Then, every nonempty vote v ∈ V ⧵ V(M) such that v ∩ C� ≠ �
provides a PAV score

∑�v∩C��
i=1

1

i
 to every k-committee whose intersection with C(M) is

exactly C′ . Let

The question now is equivalent to solving an instance ((C,V(M)),C�, k, d − d�) of Anno-
tated PAV-Multiwinner, which can be done in FPT-time in |V(M)| = |M| = � (Theo-
rem 1). ◻

7 Conclusion

We have investigated the parameterized complexity of �-MULTIWINNER for � being the
three prevalent approval-based k-committee selection rules MAV, CCAV, and PAV, aim-
ing at providing plentiful fixed-parameter tractability results with respect to meaningful
parameters. We studied many natural single parameters, their combinations, and two struc-
tural parameters of incidence graphs of elections, and obtained an almost complete land-
scape of the parameterized complexity of �-MULTIWINNER for � ∈ {MAV,CCAV, PAV}
with respect to these parameters. For a summary of our concrete results, we refer to
Table 1. It should be noted that many of our tractability results were obtained by reducing
�-MULTIWINNER to well-studied graph/set problems. As advocated by several researchers
[30, 36], a remarkable advantage of using the reduction scheme is that we can automati-
cally update our results with the state-of-the-art of these graph/set problems. In addition,
though many reductions are trivial and direct, we deem that pointing out the connections
between �-MULTIWINNER and the graph/set problems benefits researchers from different
communities.

Our exploration leaves several intriguing problems for future research. We select two
open questions that we believe to be the most challenging.

Open Question 1 Is PAV-Multiwinner FPT with respect to d?

Open Question 2 Is PAV-Multiwinner FPT with respect to the treewidth of the inci-
dence graph of the given election?

∑

U⊆V(M),v∈U

xU ≥ f (v).

d� =
∑

v∈V⧵V(M),v∩C�≠�

|v∩C�|∑

i=1

1

i
.

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 31 of 35 28

Besides these open questions, improving the FPT-algorithms presented in the paper
or investigating the kernelizations of FPT problems are also promising avenues for future
research. We remark that Agrawal et al. [1] studied kernelizations of the Partial Hitting
Set problem. Their results imply that CCAV-Multiwinner admits a polynomial kernel with
respect to d +△V . It is interesting to see if the same holds for PAV-Multiwinner. Regard-
ing MAV, Misra, Nabeel, and Singh [57] have shown that MAV-Multiwinner is unlikely
to admit any polynomial kernels with respect to d + m and n + k , assuming standard com-
plexity hypothesis. This means that MAV-Multiwinner is unlikely to admit any polynomial
kernels with respect to smaller parameters (e.g., d, n, d +△V , etc.).

Finally, we would like to mention that recently a few researchers have examined a num-
ber of structural parameters based on real electoral data or data generated by promising
models, largely motivated by previous theoretical works on the parameterized complexity
of voting problems with respect to these parameters (see, e.g., [10, 69]). Although graphs
of small treewidth arisen from various research areas have been continually reported in
the literature, to the best of our knowledge, analogous works on the treewidth of incidence
graphs of elections have not been conducted heretofore. We hope that our algorithms pre-
sented in Sect. 6 would inspire such an investigation.

Appendix

This appendix is devoted to the proof of Lemma 2. In the following, when we remove a
candidate from an election, we remove it from the candidate set and from all votes approv-
ing the candidate. Lemma 2. Let H be the set of all paths, cycles, hairsticks, and DH-
hairsticks. Then, given an H -election, we can compute a PAV optimal k-committee of the
election in polynomial time.

Proof Let E = (C,V) be an election whose multihypergraph representation H(E) is either
a path, a cycle, a hairstick, or a DH-hairstick. Let k be a nonnegative integer such that
k ≤ |C| . Let n = |V| . Note that n is also the number of vertices in H(E). We consider all the
possible cases of H(E) as follows.

Case 1: H(E) is a path or a cycle. We first compute a maximum matching M of H(E). If
|M| ≥ k , it is easy to see that the k-committee corre-
sponding to M is optimal. Otherwise, we further distin-
guish between two subcases based on the parity of n.
Let w be the committee corresponding to M. If n is
even, we know that M is a perfect matching. Let M′ be
the set of edges of H(E) without M. Obviously, M′ is
also a matching of H(E). Let C(M�) be the set of candi-
dates corresponding to M′ . As M is a perfect matching,
adding each c ∈ C(M�) into any committee contain-
ing w and excluding c increases the PAV score of the
committee by exactly one. In light of this fact, we add
any k − |M| arbitrary candidates from C(M�) into w ,
and return w . If n is odd, there is exactly one vertex v
in H(E) not saturated by M. We put into w one arbitrary

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 32 of 35

candidate approved by v. Then, we arbitrarily add
k − 1 − |M| candidates from the remaining candidates
into w , and return w.

Case 2: H(E) is a hairstick. If k = n , we return the whole set of candidates. Other-
wise (i.e., k < n), a key observation is that there exist
optimal k-committees which do not contain the candi-
date corresponding to the loop in H(E). By this obser-
vation, we directly remove the loop-candidate from the
election. Now, the election admits a path representa-
tion, and we use the algorithm described in Case 1 to
compute an optimal k-committee.

Case 3: H(E) is a DH-hairstick. If k = n + 1 , we return the whole set of candidates.
Otherwise, there exist optimal k-committees which
contain at most one of the two candidates correspond-
ing to the loops in H(E). In this case, we arbitrarily
select one loop, and remove the corresponding candi-
date from the election. Then, we arrive at a hairstick
representation of the election. The algorithm given in
Case 2 is applied to solve the problem.

It is easy to see that the above algorithms in all cases run in polynomial time. ◻

Acknowledgements This work was supported in part by the National Natural Science Foundation of China
under Grant 62172446, and in part by the Open Project of Xiangjiang Laboratory under Grants 22XJ02002
and 22XJ03005. The authors would like to thank all anonymous reviewers who have provided helpful com-
ments on the paper.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Agrawal, A., Choudhary, P., Jain, P., Kanesh, L., Sahlot, V., & Saurabh, S. (2018). Hitting and cover-
ing partially. In COCOON (pp. 751–763).

 2. Aziz, H., Brill, M., Conitzer, V., Elkind, E., Freeman, R., & Walsh, T. (2017). Justified representation
in approval-based committee voting. Social Choice and Welfare, 48(2), 461–485.

 3. Aziz, H., Gaspers, S., Gudmundsson, J., Mackenzie, S., Mattei, N., & Walsh, T. (2015). Computational
aspects of multi-winner approval voting. In AAMAS (pp. 107–115).

 4. Betzler, N., Slinko, A., & Uhlmann, J. (2013). On the computation of fully proportional representation.
Journal of Artificial Intelligence Research, 47, 475–519.

 5. Bläser, M. (2003). Computing small partial coverings. Information Processing Letters, 85(6), 327–331.
 6. Bodlaender, H. L. (2012). Fixed-parameter tractability of treewidth and pathwidth. In The Multivariate

Algorithmic Revolution and Beyond (pp. 196–227).
 7. Bodlaender, H. L. (1993). A tourist guide through treewidth. Acta Cybernetica, 11(1–2), 1–21.

http://creativecommons.org/licenses/by/4.0/

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 33 of 35 28

 8. Bodlaender, H. L., Drange, P. G., Dregi, M. S., Fomin, F. V., Lokshtanov, D., & Pilipczuk, M. (2016).
A ckn 5-approximation algorithm for treewidth. SIAM Journal on Computing, 45(2), 317–378.

 9. Bodlaender, H. L., & Kloks, T. (1991). Better algorithms for the pathwidth and treewidth of graphs. In
ICALP (pp. 544–555).

 10. Boehmer, N., & Schaar, N. (2023). Collecting, classifying, analyzing, and using real-world ranking
data. In AAMAS (pp. 1706–1715).

 11. Brams, S. J., Kilgour, D. M., & Sanver, M. R. (2007). A minimax procedure for electing committees.
Public Choice, 132(3–4), 401–420.

 12. Brandstädt, A., Le, V. B., & Spinrad, J. P. (1999). Graph classes: A survey. SIAM Monographs on Dis-
crete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia.

 13. Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2021). Parameterized
algorithms for finding a collective set of items. In AAAI (pp. 1838–1845).

 14. Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P., & Talmon, N. (2021).
Robustness among multiwinner voting rules. Artificial Intelligence, 290, 103403.

 15. Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., & Talmon, N. (2020). Mixed integer
programming with convex/concave constraints: Fixed-parameter tractability and applications to multi-
covering and voting. Theoretical Computer Science, 814, 86–105.

 16. Byrka, J., & Sornat, K. (2014). PTAS for minimax approval voting. In WINE (pp. 203–217).
 17. Cai, L. (2008). Parameterized complexity of cardinality constrained optimization problems. The Com-

puter Journal, 51(1), 102–121.
 18. Chamberlin, J. R., & Courant, P. N. (1983). Representative deliberations and representative decisions:

Proportional representation and the Borda rule. American Political Science Review, 77(3), 718–733.
 19. Clearwater, A., Puppe, C., & Slinko, A. (2015). Generalizing the single-crossing property on lines and

trees to intermediate preferences on median graphs. In IJCAI (pp. 32–38).
 20. Cornaz, D., Galand, L., & Spanjaard, O. (2012). Bounded single-peaked width and proportional repre-

sentation. In ECAI (pp. 270–275).
 21. Courcelle, B., & Mosbah, M. (1993). Monadic second-order evaluations on tree-decomposable graphs.

Theoretical Computer Science, 109(1–2), 49–82.
 22. Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., & Sau-

rabh, S. (2015). Parameterized algorithms. Springer.
 23. Cygan, M., Kowalik, L., Socala, A., & Sornat, K. (2018). Approximation and parameterized complex-

ity of minimax approval voting. Journal of Artificial Intelligence Research, 63, 495–513.
 24. Dom, M., Lokshtanov, D., & Saurabh, S. (2014). Kernelization lower bounds through colors and IDs.

ACM Transactions on Algorithms, 11(2), 13.
 25. Downey, R. G., & Fellows, M. R. (2013). Fundamentals of parameterized complexity. Texts in com-

puter science. Springer.
 26. Downey, R. G., & Fellows, M. R. (1995). Fixed-parameter tractability and completeness II: On com-

pleteness for W[1]. Theoretical Computer Science, 141(1–2), 109–131.
 27. Downey, R. G., & Fellows, M. R. (1992). Fixed parameter tractability and completeness. In Complex-

ity Theory: Current Research (pp. 191–225).
 28. Elkind, E., Faliszewski, P., Skowron, P., & Slinko, A. (2017). Properties of multiwinner voting rules.

Social Choice and Welfare, 48(3), 599–632.
 29. Elkind, E., & Lackner, M. (2015). Structure in dichotomous preferences. In IJCAI (pp. 2019–2025).
 30. Elkind, E., & Lackner, M. (2014). On detecting nearly structured preference profiles. In AAAI (pp.

661–667).
 31. Endriss, U. (Ed.). (2017). Trends in computational social choice. AI Access.
 32. Faliszewski, P., Skowron, P., Slinko, A., & Talmon, N. (2018). Multiwinner analogues of the plurality

rule: Axiomatic and algorithmic perspectives. Social Choice and Welfare, 51(3), 513–550.
 33. Faliszewski, P., Skowron, P., Slinko, A., & Talmon, N. (2016). Committee scoring rules: Axiomatic

classification and hierarchy. In IJCAI (pp. 250–256).
 34. Faliszewski, P., Skowron, P., & Talmon, N. (2017). Bribery as a measure of candidate success: Com-

plexity results for approval-based multiwinner rules. In AAMAS (pp. 6–14).
 35. Faliszewski, P., Slinko, A., Stahl, K., & Talmon, N. (2018). Achieving fully proportional representa-

tion by clustering voters. Journal of Heuristics, 24(5), 725–756.
 36. Fernau, H., Fomin, F. V., Lokshtanov, D., Mnich, M., Philip, G., & Saurabh, S. (2014). Social choice

meets graph drawing: How to get subexponential time algorithms for ranking and drawing problems.
Tsinghua Science and Technology, 19(4), 374–386.

 37. Fomin, F. V., Liedloff, M., Montealegre, P., & Todinca, I. (2018). Algorithms parameterized by vertex
cover and modular width, through potential maximal cliques. Algorithmica, 80(4), 1146–1169.

 Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

 28 Page 34 of 35

 38. Garey, M. R., Johnson, D. S., & Stockmeyer, L. (1976). Some simplified NP-complete graph problems.
Theoretical Computer Science, 1(3), 237–267.

 39. Gawron, G., & Faliszewski. P. (2022). Using multiwinner voting to search for movies. In EUMAS (pp.
134–151).

 40. Ghosh, S., Mundhe, M., Hernandez, K., & Sen, S. (1999). Voting for movies: The anatomy of a recom-
mender system. In AGENTS (pp. 434–435).

 41. Guo, J., Niedermeier, R., & Wernicke, S. (2005). Parameterized complexity of generalized vertex
cover problems. In WADS (pp. 36–48).

 42. Gupta, S., Jain, P., Saurabh, S., & Talmon, N. (2021). Even more effort towards improved bounds and
fixed-parameter tractability for multiwinner rules. In IJCAI (pp. 217–223).

 43. Kilgour, D. M. (2010). Approval balloting for multi-winner elections. In J.-F. Laslier & M. R. Sanver
(Eds.), Handbook on Approval Voting (pp. 105–124). Springer.

 44. Kilgour, D. M., & Marshall, E. (2012). Approval balloting for fixed-size committees. In D. S.
Felsenthal & M. Machover (Eds.), Electoral systems-paradoxes, assumptions, and procedures (pp.
305–326). Springer.

 45. Kloks, T. (eds.) (1994). Treewidth: Computations and approximations. Lecture Notes in Computer Sci-
ence, vol. 842. Springer.

 46. Kloks, T., & Kratsch, D. (1995). Treewidth of chordal bipartite graphs. Journal of Algorithms, 19(2),
266–281.

 47. Krause, P. K., Larisch, L., & Salfelder, F. (2020). The tree-width of C. Discrete Applied Mathematics,
278, 136–152.

 48. Lackner, M., & Skowron, P. (2023). Multi-winner voting with approval preferences. Springer.
 49. Lackner, M., & Skowron, P. (2021). Consistent approval-based multi-winner rules. Journal of Eco-

nomic Theory, 192, 105173.
 50. LeGrand, R. (2004). Analysis of the minimax procedure. Techical Report, Department of Computer

Science and Engineering, Washington University, St. Louis, USA
 51. Lenstra, H. W. (1983). Integer programming with a fixed number of variables. Mathematics of Opera-

tions Research, 8(4), 538–548.
 52. Lin, A.P. (2011). The complexity of manipulating k-approval elections. In ICAART (Vol. 2, pp. 212–

218). arXiv: 1005. 4159.
 53. Liu, H., & Guo, J. (2016). Parameterized complexity of winner determination in minimax committee

elections. In AAMAS (pp. 341–349).
 54. Lovász, L., & Plummer, M. D. (1986). Matching theory. Elsevier.
 55. Maniu, S., Senellart, P., & Jog, S. (2019). An experimental study of the treewidth of real-world graph

data. In ICDT (p. 12).
 56. Marchand, B., Ponty, Y., & Bulteau, L. (2022). Tree diet: reducing the treewidth to unlock FPT algo-

rithms in RNA bioinformatics. Algorithms for Molecular Biology, 17(1), 8.
 57. Misra, N., Nabeel, A., & Singh, H. (2015). On the parameterized complexity of minimax approval vot-

ing. In: AAMAS (pp. 97–105).
 58. Peters, D. (2018). Single-peakedness and total unimodularity: New polynomial-time algorithms for

multi-winner elections. In AAAI (pp. 1169–1176).
 59. Peters, D., & Elkind, E. (2016). Preferences single-peaked on nice trees. In AAAI (pp. 594–600).
 60. Peters, D., & Lackner, M. (2020). Preferences single-peaked on a circle. Journal of Artificial Intelli-

gence Research, 68, 463–502.
 61. Procaccia, A. D., Rosenschein, J. S., & Zohar, A. (2008). On the complexity of achieving proportional

representation. Social Choice and Welfare, 30(3), 353–362.
 62. Procaccia, A.D., Rosenschein, J.S., & Zohar, A. (2007). Multi-winner elections: Complexity of manip-

ulation, control and winner-determination. In IJCAI (pp. 1476–1481).
 63. Robertson, N., & Seymour, P. D. (1986). Graph minors. II. Algorithmic aspects of tree-width. Journal

of Algorithms, 7(3), 309–322.
 64. Schrijver, A. (1986). Theory of linear and integer programming. Wiley.
 65. Skowron, P. (2017). FPT approximation schemes for maximizing submodular functions. Information

and Computation, 257, 65–78.
 66. Skowron, P., & Faliszewski, P. (2017). Chamberlin-Courant rule with approval ballots: Approximat-

ing the maxcover problem with bounded frequencies in FPT time. Journal of Artificial Intelligence
Research, 60, 687–716.

 67. Skowron, P., Faliszewski, P., & Lang, J. (2016). Finding a collective set of items: From proportional
multirepresentation to group recommendation. Artificial Intelligence, 241, 191–216.

 68. Skowron, P., Yu, L., Faliszewski, P., & Elkind, E. (2015). The complexity of fully proportional repre-
sentation for single-crossing electorates. Theoretical Computer Science, 569, 43–57.

http://arxiv.org/abs/1005.4159

Autonomous Agents and Multi-Agent Systems (2023) 37:28

1 3

Page 35 of 35 28

 69. Sui, X., Francois-Nienaber, A., & Boutilier, C. (2013). Multi-dimensional single-peaked consistency
and its approximations. In IJCAI (pp. 375–382).

 70. Thiele, T. N. (1895). Om Flerfoldsvalg. In: Oversigt over det Kongelige Danske Videnskabernes
Selskabs Forhandlinger (pp. 415–441).

 71. Thorup, M. (1998). All structured programs have small tree-width and good register allocation. Infor-
mation and Computation, 142(2), 159–181.

 72. van der Zanden, T. C. (2019). Theory and practical applications of treewidth. Ph.D. thesis, Utrecht
University, Netherlands.

 73. West, D. B. (2000). Introduction to graph theory. Prentice-Hall.
 74. Yamaguchi, A., Aoki, K. F., & Mamitsuka, H. (2003). Graph complexity of chemical compounds in

biological pathways. Genome Informatics, 14, 376–377.
 75. Yang, Y. (2021). A model of winners allocation. In: AAAI (pp. 5760–5767).
 76. Yang, Y. (2020). On the complexity of destructive bribery in approval-based multi-winner voting. In

AAMAS (pp. 1584–1592).
 77. Yang, Y. (2019). Complexity of manipulating and controlling approval-based multiwinner voting. In

IJCAI (pp. 637–643).
 78. Yang, Y. (2019). On the tree representations of dichotomous preferences. In IJCAI (pp. 644–650).
 79. Yang, Y., & Guo, J. (2017). The control complexity of r-approval: From the single-peaked case to the

general case. Journal of Computer and System Sciences, 89, 432–449.
 80. Yang, Y., & Wang, J. (2018). Parameterized complexity of multi-winner determination: More effort

towards fixed-parameter tractability. In AAMAS (pp. 2142–2144).
 81. Yu, L., Chan, H., & Elkind, E. (2013). Multiwinner elections under preferences that are single-peaked

on a tree. In IJCAI (pp. 425–431).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Parameterized complexity of multiwinner determination: more effort towards fixed-parameter tractability
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Elections
	2.2 Graphs
	2.3 Parameterized complexity

	3 Related works and our contributions
	3.1 Single parameters
	3.2 Combined parameters
	3.3 Structural parameters
	3.4 Other related works

	4 Single parameters
	4.1 Parameters , n, and
	4.2 Parameters and

	5 Combined parameters
	5.1 Combining k with and
	5.2 Combining with and
	5.3 Combining and

	6 Structural parameters
	6.1 Treewidth
	6.2 Maximum matching

	7 Conclusion
	Appendix
	Acknowledgements
	References

