88 research outputs found

    An Investigation into Dynamic Web Service Composition Using a Simulation Framework

    Get PDF
    [Motivation] Web Services technology has emerged as a promising solution for creat- ing distributed systems with the potential to overcome the limitation of former distrib- uted system technologies. Web services provide a platform-independent framework that enables companies to run their business services over the internet. Therefore, many techniques and tools are being developed to create business to business/business to customer applications. In particular, researchers are exploring ways to build new services from existing services by dynamically composing services from a range of resources. [Aim] This thesis aims to identify the technologies and strategies cur- rently being explored for organising the dynamic composition of Web services, and to determine how extensively each of these has been demonstrated and assessed. In addition, the thesis will study the matchmaking and selection processes which are essential processes for Web service composition. [Research Method] We under- took a mapping study of empirical papers that had been published over the period 2000 to 2009. The aim of the mapping study was to identify the technologies and strategies currently being explored for organising the composition of Web services, and to determine how extensively each of these has been demonstrated and assessed. We then built a simulation framework to carry out some experiments on composition strategies. The rst experiment compared the results of a close replication of an ex- isting study with the original results in order to evaluate our close replication study. The simulation framework was then used to investigate the use of a QoS model for supporting the selection process, comparing this with the ranking technique in terms of their performance. [Results] The mapping study found 1172 papers that matched our search terms, from which 94 were classied as providing practical demonstration of ideas related to dynamic composition. We have analysed 68 of these in more detail. Only 29 provided a `formal' empirical evaluation. From these, we selected a `baseline' study to test our simulation model. Running the experiments using simulated data- sets have shown that in the rst experiment the results of the close replication study and the original study were similar in terms of their prole. In the second experiment, the results demonstrated that the QoS model was better than the ranking mechanism in terms of selecting a composite plan that has highest quality score. [Conclusions] No one approach to service composition seemed to meet all needs, but a number has been investigated more. The similarity between the results of the close replication and the original study showed the validity of our simulation framework and a proof that the results of the original study can be replicated. Using the simulation it was demonstrated that the performance of the QoS model was better than the ranking mechanism in terms of the overall quality for a selected plan. The overall objectives of this research are to develop a generic life-cycle model for Web service composition from a mapping study of the literature. This was then used to run simulations to replicate studies on matchmaking and compare selection methods

    МОДИФИЦИРОВАННАЯ ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ РАСПРЕДЕЛЕНИЯ ЗАДАНИЙ НА РЕСУРСЫ ДЛЯ СИСТЕМ ОБЛАЧНЫХ ВЫЧИСЛЕНИЙ

    Get PDF
    Объектом исследования выступает процесс распределения пула входных заданий на вычислительные ресурсы в гибридных кластерных системах. Предмет исследования – информационная технология распределения заданий на вычислительные ресурсы гибридных кластерных систем. Цель – разработка и внедрение этапа имитационного моделирования в модифицированную информационную технологию распределения входящего пула заданий на вычислительные мощности гибридных кластерных систем. Задачи: на основе математических моделей заданий, вычислительных ресурсов и методов распределения модифицировать существующую информационную технологию распределения заданий; разработать информационную систему, которая будет выполнять автоматизированный процесс сбора и обработки полученных данных; сформировать ряд экспериментов по распределению входного пула заданий, на основе реализованных в среде имитационного моделирования методов распределения. Методы исследования базируются на использовании теории множеств, общей теории систем и теории имитационного моделирования. Получены следующие результаты. Предложена модифицированная информационная технология распределения программных заданий большой размерности на вычислительные ресурсы для систем облачных вычислений с использованием имитационной среды моделирования с последующим выбором наилучшего плана распределения по каждому пулу входных заданий. Предложенная информационная технология внедрена в имитационную среду моделирования, которая позволяет воспроизводить процесс функционирования элементарных событий, происходящих в реальных гибридных кластерных системах с сохранением логики их взаимодействия в реальном времени. Выводы: предложенная информационная технология объединяет процессы сбора, хранения, обработки и передачи данных с использованием предложенных в работе методов распределения, средства для дальнейшего анализа результатов моделирования и принятия решения о выполнении определенного действия (выбора наилучшего плана распределения). Использование в среде моделирования множества методов распределения позволяет провести серию экспериментов и на основании полученных результатов, осуществить выбор наилучшего плана распределения для конкретного входного пула заданий (на основании выбранной стратегии распределения)

    A fault tolerant, peer-to-peer based scheduler for home grids

    Get PDF
    This thesis presents a fault-tolerant, Peer-to-Peer (P2P) based grid scheduling system for highly dynamic and highly heterogeneous environments, such as home networks, where we can find a variety of devices (laptops, PCs, game consoles, etc.) and networks. The number of devices found in a house that are capable of processing data has been increasing in the last few years. However, being able to process data does not mean that these devices are powerful, and, in a home environment, there will be a demand for some applications that need significant computing resources, beyond the capabilities of a single domestic device, such as a set top box (examples of such applications are TV recommender systems, image processing and photo indexing systems). A computational grid is a possible solution for this problem, but the constrained environment in the home makes it difficult to use conventional grid scheduling technologies, which demand a powerful infrastructure. Our solution is based on the distribution of the matchmaking task among providers, leaving the final allocation decision to a central scheduler that can be running on a limited device without a big loss in performance. We evaluate our solution by simulating different scenarios and configurations against the Opportunistic Load Balance (OLB) scheduling heuristic, which we found to be the best option for home grids from the existing solutions that we analysed. The results have shown that our solution performs similar or better to OLB. Furthermore, our solution also provides fault tolerance, which is not achieved with OLB, and we have formally verified the behaviour our solution against two cases of network partition failure

    A customized semantic service retrieval methodology for the digital ecosystems environment

    Get PDF
    With the emergence of the Web and its pervasive intrusion on individuals, organizations, businesses etc., people now realize that they are living in a digital environment analogous to the ecological ecosystem. Consequently, no individual or organization can ignore the huge impact of the Web on social well-being, growth and prosperity, or the changes that it has brought about to the world economy, transforming it from a self-contained, isolated, and static environment to an open, connected, dynamic environment. Recently, the European Union initiated a research vision in relation to this ubiquitous digital environment, known as Digital (Business) Ecosystems. In the Digital Ecosystems environment, there exist ubiquitous and heterogeneous species, and ubiquitous, heterogeneous, context-dependent and dynamic services provided or requested by species. Nevertheless, existing commercial search engines lack sufficient semantic supports, which cannot be employed to disambiguate user queries and cannot provide trustworthy and reliable service retrieval. Furthermore, current semantic service retrieval research focuses on service retrieval in the Web service field, which cannot provide requested service retrieval functions that take into account the features of Digital Ecosystem services. Hence, in this thesis, we propose a customized semantic service retrieval methodology, enabling trustworthy and reliable service retrieval in the Digital Ecosystems environment, by considering the heterogeneous, context-dependent and dynamic nature of services and the heterogeneous and dynamic nature of service providers and service requesters in Digital Ecosystems.The customized semantic service retrieval methodology comprises: 1) a service information discovery, annotation and classification methodology; 2) a service retrieval methodology; 3) a service concept recommendation methodology; 4) a quality of service (QoS) evaluation and service ranking methodology; and 5) a service domain knowledge updating, and service-provider-based Service Description Entity (SDE) metadata publishing, maintenance and classification methodology.The service information discovery, annotation and classification methodology is designed for discovering ubiquitous service information from the Web, annotating the discovered service information with ontology mark-up languages, and classifying the annotated service information by means of specific service domain knowledge, taking into account the heterogeneous and context-dependent nature of Digital Ecosystem services and the heterogeneous nature of service providers. The methodology is realized by the prototype of a Semantic Crawler, the aim of which is to discover service advertisements and service provider profiles from webpages, and annotating the information with service domain ontologies.The service retrieval methodology enables service requesters to precisely retrieve the annotated service information, taking into account the heterogeneous nature of Digital Ecosystem service requesters. The methodology is presented by the prototype of a Service Search Engine. Since service requesters can be divided according to the group which has relevant knowledge with regard to their service requests, and the group which does not have relevant knowledge with regard to their service requests, we respectively provide two different service retrieval modules. The module for the first group enables service requesters to directly retrieve service information by querying its attributes. The module for the second group enables service requesters to interact with the search engine to denote their queries by means of service domain knowledge, and then retrieve service information based on the denoted queries.The service concept recommendation methodology concerns the issue of incomplete or incorrect queries. The methodology enables the search engine to recommend relevant concepts to service requesters, once they find that the service concepts eventually selected cannot be used to denote their service requests. We premise that there is some extent of overlap between the selected concepts and the concepts denoting service requests, as a result of the impact of service requesters’ understandings of service requests on the selected concepts by a series of human-computer interactions. Therefore, a semantic similarity model is designed that seeks semantically similar concepts based on selected concepts.The QoS evaluation and service ranking methodology is proposed to allow service requesters to evaluate the trustworthiness of a service advertisement and rank retrieved service advertisements based on their QoS values, taking into account the contextdependent nature of services in Digital Ecosystems. The core of this methodology is an extended CCCI (Correlation of Interaction, Correlation of Criterion, Clarity of Criterion, and Importance of Criterion) metrics, which allows a service requester to evaluate the performance of a service provider in a service transaction based on QoS evaluation criteria in a specific service domain. The evaluation result is then incorporated with the previous results to produce the eventual QoS value of the service advertisement in a service domain. Service requesters can rank service advertisements by considering their QoS values under each criterion in a service domain.The methodology for service domain knowledge updating, service-provider-based SDE metadata publishing, maintenance, and classification is initiated to allow: 1) knowledge users to update service domain ontologies employed in the service retrieval methodology, taking into account the dynamic nature of services in Digital Ecosystems; and 2) service providers to update their service profiles and manually annotate their published service advertisements by means of service domain knowledge, taking into account the dynamic nature of service providers in Digital Ecosystems. The methodology for service domain knowledge updating is realized by a voting system for any proposals for changes in service domain knowledge, and by assigning different weights to the votes of domain experts and normal users.In order to validate the customized semantic service retrieval methodology, we build a prototype – a Customized Semantic Service Search Engine. Based on the prototype, we test the mathematical algorithms involved in the methodology by a simulation approach and validate the proposed functions of the methodology by a functional testing approach

    Requirements of the SALTY project

    Get PDF
    This document is the first external deliverable of the SALTY project (Self-Adaptive very Large disTributed sYstems), funded by the ANR under contract ANR-09-SEGI-012. It is the result of task 1.1 of the Work Package (WP) 1 : Requirements and Architecture. Its objective is to identify and collect requirements from use cases that are going to be developed in WP 4 (Use cases and Validation). Based on the study and classification of the use cases, requirements against the envisaged framework are then determined and organized in features. These features will aim at guide and control the advances in all work packages of the project. As a start, features are classified, briefly described and related scenarios in the defined use cases are pinpointed. In the following tasks and deliverables, these features will facilitate design by assigning priorities to them and defining success criteria at a finer grain as the project progresses. This report, as the first external document, has no dependency to any other external documents and serves as a reference to future external documents. As it has been built from the use cases studies that have been synthesized in two internal documents of the project, extracts from the two documents are made available as appendices (cf. appen- dices B and C)

    Thinking outside the TBox multiparty service matchmaking as information retrieval

    Get PDF
    Service oriented computing is crucial to a large and growing number of computational undertakings. Central to its approach are the open and network-accessible services provided by many different organisations, and which in turn enable the easy creation of composite workflows. This leads to an environment containing many thousands of services, in which a programmer or automated composition system must discover and select services appropriate for the task at hand. This discovery and selection process is known as matchmaking. Prior work in the field has conceived the problem as one of sufficiently describing individual services using formal, symbolic knowledge representation languages. We review the prior work, and present arguments for why it is optimistic to assume that this approach will be adequate by itself. With these issues in mind, we examine how, by reformulating the task and giving the matchmaker a record of prior service performance, we can alleviate some of the problems. Using two formalisms—the incidence calculus and the lightweight coordination calculus—along with algorithms inspired by information retrieval techniques, we evolve a series of simple matchmaking agents that learn from experience how to select those services which performed well in the past, while making minimal demands on the service users. We extend this mechanism to the overlooked case of matchmaking in workflows using multiple services, selecting groups of services known to inter-operate well. We examine the performance of such matchmakers in possible future services environments, and discuss issues in applying such techniques in large-scale deployments

    Coarse preferences: representation, elicitation, and decision making

    Get PDF
    In this thesis we present a theory for learning and inference of user preferences with a novel hierarchical representation that captures preferential indifference. Such models of ’Coarse Preferences’ represent the space of solutions with a uni-dimensional, discrete latent space of ’categories’. This results in a partitioning of the space of solutions into preferential equivalence classes. This hierarchical model significantly reduces the computational burden of learning and inference, with improvements both in computation time and convergence behaviour with respect to number of samples. We argue that this Coarse Preferences model facilitates the efficient solution of previously computationally prohibitive recommendation procedures. The new problem of ’coordination through set recommendation’ is one such procedure where we formulate an optimisation problem by leveraging the factored nature of our representation. Furthermore, we show how an on-line learning algorithm can be used for the efficient solution of this problem. Other benefits of our proposed model include increased quality of recommendations in Recommender Systems applications, in domains where users’ behaviour is consistent with such a hierarchical preference structure. We evaluate the usefulness of our proposed model and algorithms through experiments with two recommendation domains - a clothing retailer’s online interface, and a popular movie database. Our experimental results demonstrate computational gains over state of the art methods that use an additive decomposition of preferences in on-line active learning for recommendation

    Overcoming Barriers to the Transfer and Diffusion of Climate Technologies

    Get PDF
    corecore