658 research outputs found

    Single machine scheduling with job-dependent machine deterioration

    Get PDF
    We consider the single machine scheduling problem with job-dependent machine deterioration. In the problem, we are given a single machine with an initial non-negative maintenance level, and a set of jobs each with a non-preemptive processing time and a machine deterioration. Such a machine deterioration quantifies the decrement in the machine maintenance level after processing the job. To avoid machine breakdown, one should guarantee a non-negative maintenance level at any time point; and whenever necessary, a maintenance activity must be allocated for restoring the machine maintenance level. The goal of the problem is to schedule the jobs and the maintenance activities such that the total completion time of jobs is minimized. There are two variants of maintenance activities: in the partial maintenance case each activity can be allocated to increase the machine maintenance level to any level not exceeding the maximum; in the full maintenance case every activity must be allocated to increase the machine maintenance level to the maximum. In a recent work, the problem in the full maintenance case has been proven NP-hard; several special cases of the problem in the partial maintenance case were shown solvable in polynomial time, but the complexity of the general problem is left open. In this paper we first prove that the problem in the partial maintenance case is NP-hard, thus settling the open problem; we then design a 22-approximation algorithm.Comment: 15 page

    Minimizing value-at-risk in the single-machine total weighted tardiness problem

    Get PDF
    The vast majority of the machine scheduling literature focuses on deterministic problems, in which all data is known with certainty a priori. This may be a reasonable assumption when the variability in the problem parameters is low. However, as variability in the parameters increases incorporating this uncertainty explicitly into a scheduling model is essential to mitigate the resulting adverse effects. In this paper, we consider the celebrated single-machine total weighted tardiness (TWT) problem in the presence of uncertain problem parameters. We impose a probabilistic constraint on the random TWT and introduce a risk-averse stochastic programming model. In particular, the objective of the proposed model is to find a non-preemptive static job processing sequence that minimizes the value-at-risk (VaR) measure on the random TWT at a specified confidence level. Furthermore, we develop a lower bound on the optimal VaR that may also benefit alternate solution approaches in the future. In this study, we implement a tabu-search heuristic to obtain reasonably good feasible solutions and present results to demonstrate the effect of the risk parameter and the value of the proposed model with respect to a corresponding risk-neutral approach

    Minimizing total completion time on a single machine with step improving jobs

    Get PDF
    Production systems often experience a shock or a technological change, resulting in performance improvement. In such settings, job processing times become shorter if jobs start processing at, or after, a common critical date. This paper considers a single machine scheduling problem with step-improving processing times, where the effects are job-dependent. The objective is to minimize the total completion time. We show that the problem is NP-hard in general and discuss several special cases which can be solved in polynomial time. We formulate a Mixed Integer Programming (MIP) model and develop an LP-based heuristic for the general problem. Finally, computational experiments show that the proposed heuristic yields very effective and efficient solutions

    Minimizing total completion time on a single machine with step improving jobs

    Get PDF
    Production systems often experience a shock or a technological change, resulting in performance improvement. In such settings, job processing times become shorter if jobs start processing at, or after, a common critical date. This paper considers a single machine scheduling problem with step-improving processing times, where the effects are job-dependent. The objective is to minimize the total completion time. We show that the problem is NP-hard in general and discuss several special cases which can be solved in polynomial time. We formulate a Mixed Integer Programming (MIP) model and develop an LP-based heuristic for the general problem. Finally, computational experiments show that the proposed heuristic yields very effective and efficient solutions

    Single-machine scheduling with deteriorating jobs under a series-parallel graph constraint

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
    corecore