483 research outputs found

    Better Unrelated Machine Scheduling for Weighted Completion Time via Random Offsets from Non-Uniform Distributions

    Full text link
    In this paper we consider the classic scheduling problem of minimizing total weighted completion time on unrelated machines when jobs have release times, i.e, R∣rij∣∑jwjCjR | r_{ij} | \sum_j w_j C_j using the three-field notation. For this problem, a 2-approximation is known based on a novel convex programming (J. ACM 2001 by Skutella). It has been a long standing open problem if one can improve upon this 2-approximation (Open Problem 8 in J. of Sched. 1999 by Schuurman and Woeginger). We answer this question in the affirmative by giving a 1.8786-approximation. We achieve this via a surprisingly simple linear programming, but a novel rounding algorithm and analysis. A key ingredient of our algorithm is the use of random offsets sampled from non-uniform distributions. We also consider the preemptive version of the problem, i.e, R∣rij,pmtn∣∑jwjCjR | r_{ij},pmtn | \sum_j w_j C_j. We again use the idea of sampling offsets from non-uniform distributions to give the first better than 2-approximation for this problem. This improvement also requires use of a configuration LP with variables for each job's complete schedules along with more careful analysis. For both non-preemptive and preemptive versions, we break the approximation barrier of 2 for the first time.Comment: 24 pages. To apper in FOCS 201

    The Inter-cloud meta-scheduling

    Get PDF
    Inter-cloud is a recently emerging approach that expands cloud elasticity. By facilitating an adaptable setting, it purposes at the realization of a scalable resource provisioning that enables a diversity of cloud user requirements to be handled efficiently. This study’s contribution is in the inter-cloud performance optimization of job executions using metascheduling concepts. This includes the development of the inter-cloud meta-scheduling (ICMS) framework, the ICMS optimal schemes and the SimIC toolkit. The ICMS model is an architectural strategy for managing and scheduling user services in virtualized dynamically inter-linked clouds. This is achieved by the development of a model that includes a set of algorithms, namely the Service-Request, Service-Distribution, Service-Availability and Service-Allocation algorithms. These along with resource management optimal schemes offer the novel functionalities of the ICMS where the message exchanging implements the job distributions method, the VM deployment offers the VM management features and the local resource management system details the management of the local cloud schedulers. The generated system offers great flexibility by facilitating a lightweight resource management methodology while at the same time handling the heterogeneity of different clouds through advanced service level agreement coordination. Experimental results are productive as the proposed ICMS model achieves enhancement of the performance of service distribution for a variety of criteria such as service execution times, makespan, turnaround times, utilization levels and energy consumption rates for various inter-cloud entities, e.g. users, hosts and VMs. For example, ICMS optimizes the performance of a non-meta-brokering inter-cloud by 3%, while ICMS with full optimal schemes achieves 9% optimization for the same configurations. The whole experimental platform is implemented into the inter-cloud Simulation toolkit (SimIC) developed by the author, which is a discrete event simulation framework

    Truthful Online Scheduling with Commitments

    Full text link
    We study online mechanisms for preemptive scheduling with deadlines, with the goal of maximizing the total value of completed jobs. This problem is fundamental to deadline-aware cloud scheduling, but there are strong lower bounds even for the algorithmic problem without incentive constraints. However, these lower bounds can be circumvented under the natural assumption of deadline slackness, i.e., that there is a guaranteed lower bound s>1s > 1 on the ratio between a job's size and the time window in which it can be executed. In this paper, we construct a truthful scheduling mechanism with a constant competitive ratio, given slackness s>1s > 1. Furthermore, we show that if ss is large enough then we can construct a mechanism that also satisfies a commitment property: it can be determined whether or not a job will finish, and the requisite payment if so, well in advance of each job's deadline. This is notable because, in practice, users with strict deadlines may find it unacceptable to discover only very close to their deadline that their job has been rejected

    Algorithms and complexity analyses for some combinational optimization problems

    Get PDF
    The main focus of this dissertation is on classical combinatorial optimization problems in two important areas: scheduling and network design. In the area of scheduling, the main interest is in problems in the master-slave model. In this model, each machine is either a master machine or a slave machine. Each job is associated with a preprocessing task, a slave task and a postprocessing task that must be executed in this order. Each slave task has a dedicated slave machine. All the preprocessing and postprocessing tasks share a single master machine or the same set of master machines. A job may also have an arbitrary release time before which the preprocessing task is not available to be processed. The main objective in this dissertation is to minimize the total completion time or the makespan. Both the complexity and algorithmic issues of these problems are considered. It is shown that the problem of minimizing the total completion time is strongly NP-hard even under severe constraints. Various efficient algorithms are designed to minimize the total completion time under various scenarios. In the area of network design, the survivable network design problems are studied first. The input for this problem is an undirected graph G = (V, E), a non-negative cost for each edge, and a nonnegative connectivity requirement ruv for every (unordered) pair of vertices &ruv. The goal is to find a minimum-cost subgraph in which each pair of vertices u,v is joined by at least ruv edge (vertex)-disjoint paths. A Polynomial Time Approximation Scheme (PTAS) is designed for the problem when the graph is Euclidean and the connectivity requirement of any point is at most 2. PTASs or Quasi-PTASs are also designed for 2-edge-connectivity problem and biconnectivity problem and their variations in unweighted or weighted planar graphs. Next, the problem of constructing geometric fault-tolerant spanners with low cost and bounded maximum degree is considered. The first result shows that there is a greedy algorithm which constructs fault-tolerant spanners having asymptotically optimal bounds for both the maximum degree and the total cost at the same time. Then an efficient algorithm is developed which finds fault-tolerant spanners with asymptotically optimal bound for the maximum degree and almost optimal bound for the total cost

    05031 Abstracts Collection -- Algorithms for Optimization with Incomplete Information

    Get PDF
    From 16.01.05 to 21.01.05, the Dagstuhl Seminar 05031 ``Algorithms for Optimization with Incomplete Information\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Scheduling Self-Suspending Tasks: New and Old Results

    Get PDF
    In computing systems, a job may suspend itself (before it finishes its execution) when it has to wait for certain results from other (usually external) activities. For real-time systems, such self-suspension behavior has been shown to induce performance degradation. Hence, the researchers in the real-time systems community have devoted themselves to the design and analysis of scheduling algorithms that can alleviate the performance penalty due to self-suspension behavior. As self-suspension and delegation of parts of a job to non-bottleneck resources is pretty natural in many applications, researchers in the operations research (OR) community have also explored scheduling algorithms for systems with such suspension behavior, called the master-slave problem in the OR community. This paper first reviews the results for the master-slave problem in the OR literature and explains their impact on several long-standing problems for scheduling self-suspending real-time tasks. For frame-based periodic real-time tasks, in which the periods of all tasks are identical and all jobs related to one frame are released synchronously, we explore different approximation metrics with respect to resource augmentation factors under different scenarios for both uniprocessor and multiprocessor systems, and demonstrate that different approximation metrics can create different levels of difficulty for the approximation. Our experimental results show that such more carefully designed schedules can significantly outperform the state-of-the-art
    • 

    corecore