
Resource Allocation In Large-Scale Distributed Systems

Mehrnoosh Shafieezade Abade

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

© 2021

Mehrnoosh Shafieezade Abade

All Rights Reserved

Abstract

Resource allocation in large-scale distributed systems

Mehrnoosh Shafieezade Abade

The focus of this dissertation is design and analysis of scheduling algorithms for

distributed computer systems, i.e., data centers. Today’s data centers can contain thousands of

servers and typically use a multi-tier switch network to provide connectivity among the servers.

Data centers are the host for execution of various data-parallel applications. As an abstraction, a

job in a data center can be thought of as a group of interdependent tasks, each with various

requirements which need to be scheduled for execution on the servers and the data flows between

the tasks that need to be scheduled in the switch network. In this thesis, we study both flow and

task scheduling problems under the features of modern parallel computing frameworks.

For the flow scheduling problem, we study three models. The first model considers a general

network topology where flows among the various source-destination pairs of servers are generated

dynamically over time. The goal is to assign the end-to-end data flows among the available paths

in order to efficiently balance the load in the network. We propose a myopic algorithm that is

computationally efficient and prove that it asymptotically minimizes the total network cost using

a convex optimization model, fluid limit and Lyapunov analysis. We further propose randomized

versions of our myopic algorithm. The second model consider the case that there is dependence

among flows. Specifically, a coflow is defined as a collection of parallel flows whose completion

time is determined by the completion time of the last flow in the collection. Our main result is a

5-approximation deterministic algorithm that schedule coflows in polynomial time so as to

minimize the total weighted completion times. The key ingredient of our approach is an improved

linear program formulation for sorting the coflows followed by a simple list scheduling policy.

Lastly, we study scheduling coflows of multi-stage jobs to minimize the jobs’ total weighted

completion times. Each job is represented by a DAG (Directed Acyclic Graph) among its coflows

that captures the dependencies among the coflows. We define g(m) = log(m)/log(log(m)) and

h(m, µ) = log(mµ)/(log(log(mµ)), where m is number of servers, µ is the maximum number of

coflows in a job. We develop two algorithms with approximation ratios O(
√
µg(m)) and

O(
√
µg(m)h(m, µ)) for jobs with general DAGs and rooted trees, respectively. The algorithms rely

on random delaying and merging optimal schedules of the coflows in the jobs’ DAG, followed by

enforcing dependency among coflows and the links’ capacity constraints.

For the task scheduling problem, we study two models. We consider a setting where each job

consists of a set of parallel tasks that need to be processed on different servers, and the job is

completed once all its tasks finish processing. In the first model, each job is associated with a

utility which is a decreasing function of its completion time. The objective is to schedule tasks in

a way that achieves max-min fairness for jobs’ utilities.We first show a strong result regarding

NP-hardness of this problem. We then proceed to define two notions of approximation solutions

and develop scheduling algorithms that provide guarantees under these approximation notions,

using dynamic programming and random perturbation of tasks’ processing times. In the second

model, we further assume that processing times of tasks can be server dependent and a server can

process (pack) multiple tasks at the same time subject to its capacity. We then propose three

algorithms with approximation ratios of 4, (6 + ε), and 24 for different cases where preemption

and migration of tasks among the servers are or are not allowed. Our algorithms use a

combination of linear program relaxation and greedy packing techniques.

To demonstrate the gains in practice, we evaluate all the proposed algorithms and compare their

performances with the prior approaches through extensive simulations using real and synthesized

traffic traces. We hope this work inspires improvements to existing job management and

scheduling in distributed computer systems.

Table of Contents

List of Tables . viii

List of Figures . ix

Acknowledgments . xii

Dedication . xiv

Chapter 1: Introduction . 1

1.1 Flow Scheduling . 2

1.1.1 Load Balancing in A General Network Topology 3

1.1.2 Coflow Scheduling . 3

1.1.3 Scheduling Coflows of Multi-Stage Jobs 4

1.2 Task Scheduling . 5

1.2.1 Max-Min Fairness of Completion Times 5

1.2.2 Minimizing Weighted Average of Completion Times 6

Chapter 2: Load Balancing in A General Network Topology 8

2.1 Introduction . 8

2.1.1 Related Work . 9

2.1.2 Contributions . 12

i

2.1.3 Notations . 13

2.2 Model and Problem Statement . 13

2.2.1 data center Network Model . 13

2.2.2 Traffic Model . 14

2.2.3 Problem Formulation . 15

2.3 Algorithm Description . 16

2.4 Performance Analysis via Fluid Limits . 18

2.4.1 Informal Description of Fluid Limit Process 19

2.4.2 Main Result and Asymptotic Optimality 21

2.4.3 Proof of Proposition 1 . 22

2.5 Simulation Results . 26

2.5.1 Experimental Results for FatTree . 29

2.5.2 Experimental Results for JellyFish . 30

2.6 Randomized Myopic Algorithms . 30

2.6.1 Experimental Results for FatTree . 32

2.6.2 Experimental Results for JellyFish . 32

2.7 Formal Proofs of Fluid Limits and Theorem 1 . 34

2.7.1 Proof of Fluid Limits . 34

2.7.2 Proof of Theorem 1 . 37

Chapter 3: Coflow Scheduling to Minimize The Weighted Average Completion Time . . . 40

3.1 Introduction . 40

3.1.1 Related Work . 41

ii

3.1.2 Main Contributions . 43

3.2 System Model and Problem Formulation . 44

3.3 Motivations and Challenges . 47

3.4 Linear Programing (LP) Relaxation . 51

3.5 Coflow Scheduling Algorithm . 55

3.6 Proof Sketch of Main Results . 56

3.6.1 Bounded Completion Time for The Collection of Coflows 57

3.6.2 Proof of Theorem 2 and Corollary 1 . 59

3.7 Extension to Online Algorithm . 60

3.8 Empirical Evaluations . 60

3.8.1 Workload . 61

3.8.2 Algorithms . 62

3.8.3 Evaluation Results . 64

3.8.4 Incorporating Fairness . 67

3.8.5 Discussion on Algorithm’s Complexity 69

3.9 NP–Completeness And Counter Example . 70

Chapter 4: Scheduling Coflows with Dependency Graph 74

4.1 Introduction . 74

4.1.1 Related Work . 75

4.1.2 Main Contributions . 77

4.2 Model and Problem Statement . 78

4.3 Definitions and Preliminaries . 79

iii

4.3.1 Definitions . 79

4.3.2 Complexity of Minimizing Makespan . 81

4.3.3 Optimal Makespan for A Path Job . 82

4.4 Makespan Minimization for Scheduling Multiple General DAG Jobs 83

4.4.1 DMA (Delay-and-Merge Algorithm) . 83

4.4.2 Performance Guarantee of DMA . 85

4.4.3 De-Randomization . 85

4.5 Makespan Minimization For Scheduling Multiple Rooted Tree Jobs 85

4.5.1 DMA-SRT (Delay-and-Merge Algorithm For A Single Rooted Tree) 85

4.5.2 Multiple Rooted Tree Jobs . 87

4.5.3 Performance Guarantee of DMA-SRT and DMA-RT 87

4.6 Total Weighted Completion Time Minimization 88

4.6.1 Job Ordering . 88

4.6.2 Job Ordering . 89

4.6.3 Grouping Jobs . 90

4.6.4 Scheduling Each Group Jb . 92

4.6.5 Performance Guarantee of G-DM . 92

4.7 Empirical Evaluation . 93

4.7.1 Impact of Random Delays and β . 95

4.7.2 Evaluation Results for General GADs . 96

4.7.3 Evaluation Results for Rooted Trees . 97

4.8 Discussion on Approximation Results . 97

4.9 Proofs of Main Results . 100

iv

4.9.1 Proofs Related To DMA . 100

4.9.2 Proofs Related To DMA-SRT and DMA-RT 103

4.9.3 Proofs Related to G-DM . 106

Chapter 5: Max-Min Fairness of Completion Times for Multi-Task Job Scheduling 109

5.1 Introduction . 109

5.1.1 Related Work . 111

5.1.2 Main Contributions . 112

5.2 Model and problem statement . 113

5.3 Lexicographic Max-Min Fair Schedule and NP-hardness 115

5.3.1 Structure of Optimal Schedule . 115

5.3.2 NP-Hardness . 116

5.4 Defining Approximation Solutions . 118

5.4.1 k-Min-Max Fair Approximation . 119

5.4.2 Single-Objective Approximation . 119

5.5 Approximation Algorithms for Equal Utility Functions 123

5.5.1 k-Max-Min Scheduling Algorithm . 124

5.5.2 Perturbation-Based Scheduling Algorithm 126

5.6 General Utility Functions . 128

5.7 Simulation Results . 129

5.7.1 Offline Setting . 131

5.7.2 Online Setting . 132

Chapter 6: Scheduling Parallel-Task Jobs Subject to Packing and Placement Constraints . . 135

v

6.1 Introduction . 135

6.1.1 Related Work . 137

6.1.2 Main Contributions . 139

6.2 Formal Problem Statement . 140

6.3 Scheduling When Migration is Allowed . 143

6.3.1 Relaxed Linear Program (LP1) . 144

6.3.2 Scheduling Algorithm: SynchPack-1 . 146

6.3.3 Performance Guarantee . 148

6.4 Scheduling When Migration is not Allowed . 153

6.4.1 Relaxed Linear Program (LP2) . 153

6.4.2 Scheduling Algorithm: SynchPack-2 . 154

6.4.3 Performance Guarantee . 158

6.5 Special Case: Preemption and Single-Machine Placement set 161

6.5.1 Relaxed Linear Program (LP3) . 162

6.5.2 Scheduling Algorithm: SynchPack-3 . 163

6.5.3 Performance Guarantee . 164

6.6 Complexity of Algorithms . 164

6.7 Evaluation Results . 165

6.7.1 Results in Offline Setting . 165

6.7.2 Results in Online Setting . 167

6.8 Complexity of Algorithms . 167

6.9 Proofs Related to SynchPack-1 . 169

6.9.1 Proof of Lemma 21 . 169

vi

6.9.2 Proof of Lemma 23 . 169

6.9.3 Proof of Lemma 24 . 170

6.10 De-randomization . 170

6.11 Proofs Related to SynchPack-2 . 172

6.11.1 Proof of Lemma 25 . 172

6.11.2 Proof of corollary 5 . 172

6.11.3 Proof of Lemma 26 . 172

6.11.4 Proof of Lemma 27 . 173

6.11.5 Proof of Lemma 28 . 174

6.11.6 Proof of Lemma 29 . 174

6.11.7 Proof of Lemma 30 . 175

6.12 Proofs Related to SynchPack-3 . 175

6.13 Supplementary Material Related to Simulations 179

6.13.1 Data Set . 179

6.13.2 Algorithms . 180

6.14 Pseudocodes of (6 + ε)-Approximation Algorithm 183

6.15 Pseudocode of 24-Approximation Algorithm . 183

6.16 Pseudocodes of (4)-Approximation Algorithm . 184

Chapter 7: Conclusion and Discussion . 189

7.1 Summary of Results . 189

7.2 Future Directions . 191

References . 193

vii

List of Tables

3.1 Performance guarantees (Approximation ratios) 44

3.2 Performance ratio of Algorithm 3 . 65

6.1 Performance ratio of SynchPack-3 with respect to (LP3), and SynchPack-2 with
respect to (LP2) . 166

viii

List of Figures

1.1 Scheduling problems in data centers. 2

2.1 Connecting 16 servers (rectangles) using 4-port switches (circles). 14

2.2 Experimental Results for FatTree. (a): Convergence of the network cost under
Algorithm 1, normalized with the lower-bound on the optimal solution (CVX), to 1.
The scaling parameter r is 100 here. (b) and (c): Performance ratio of Algorithm 1
and ECMP in FatTree, normalized with the lower-bound (CVX) for exponential
and empirical traffic models. 27

2.3 Experimental Results for JellyFish. (a): Convergence of the network cost under
Algorithm 1 in JellyFish, normalized with the lower-bound on the optimal solution
(CVX), to 1. The scaling parameter r is 100 here. (b) and (c): Performance ratio
of Algorithm 1 and ECMP in JellyFish, normalized with the lower-bound (CVX)
for exponential and empirical traffic models. 29

2.4 Performance of Algorithm 2 with different values of k, in FatTree, normalized with
the Algorithm 1. 32

2.5 Performance of Algorithm 2 with different values of k in JellyFish, normalized
with the Algorithm 1. 33

3.1 A coflow in a 3 × 3 switch architecture. 45

3.2 Inefficiency of Varys in a 2 × 2 switch network with 3 coflows. 50

3.3 4 coflows in a 2× 2 switch architecture, flow (1, 1) is released at time 0, and all the
others are released at time 1. 53

3.4 Performance of Varys, LP-II-GB, LP-OV-GB, and LP-OV-LS for 100 random dense
and combined instances, normalized with the performance of LP-OV-LS 65

ix

3.5 Performance of Varys, LP-II-GB, LP-OV-GB, and LP-OV-LS, normalized with the
performance of LP-OV-LS, under real traffic trace. 66

3.6 CDF of coflow completion time under Varys, LP-II-GB, LP-OV-GB, and LP-OV-
LS for real traffic trace a) when all coflows release at time 0, b) in the case of
release dates. 67

3.8 Two coflows in a 3 × 3 switch architecture. Flow sizes are depicted inside each flow. 72

3.9 Inaccuracy of proposed algorithm in [89] . 72

4.1 A multi-stage job in a 2× 2 switch. Part of the DAG (in the dashed box) consisting
of coflows 1, 2, and 4 is shown in the switch. Coflows 1 and 2 can share the network
resources at the same time because they are independent (see S1). Once all their
flows are transmitted, flows of coflow 4 will be ready to be transmitted (S2 after S1). 75

4.2 Applying DMA on 3 multi-stage jobs. On the left side, a topological ordering and a
random delay for each job are computed. On the right side, the merging procedure
and BNA output is shown for some time t. 84

4.3 A rooted tree with 3 path sub-jobs. 86

4.4 Performance of G-DM-RT for different number of servers and different values of
β, and µ̄ = 5. 93

4.5 Performance of G-DM and O(m)Alg for scheduling general DAGs with and with-
out backfilling. 94

4.6 Performance of G-DM-RT and O(m)Alg for scheduling rooted tree jobs with and
without backfilling. 95

4.7 An example of a DAG with Copt = Ω(
√
µ(∆ + T)). 98

5.1 Job completion times under PBA, SPTF, and FIFO in the offline setting. Lower
average and lower deviation is better. 131

5.2 Job utilities under PBA, LUF, and FIFO, in the offline setting. Higher averages and
lower deviation is better. 131

5.3 Job delays under PBA, SPTF, and FIFO, in the online setting. Lower averages and
lower deviation is better. 133

x

5.4 Job utilities under PBA, LUF, and FIFO, in the online setting. Higher averages and
lower deviation is better. 133

6.1 An example for execution of Step 2 of SynchPack-1 for 3 jobs in a system with
3 machines. Different tasks of a job have the same color and different patterns.
Note that task fraction (1, 2, 2, 1), which is at the head of the list in Figure 6.1a,
cannot get scheduled on machine 2 as task fraction (1, 2, 1, 1) (of the same task
(1, 2)) is already scheduled on machine 1. At time t1, task fraction (1, 2, 1, 1) is
finished processing as shown in Figure 6.1b. At this time, while task fraction
(2, 3, 2, 2) is running on machine 2 (whose corresponding interval is 2), two task
fractions, namely (1, 2, 2, 1) and (1, 1, 1, 1) (whose corresponding intervals are 1),
have remained unscheduled in the list. Therefore, task fraction (2, 3, 2, 2) is pre-
empted and its remaining duration is updated. Then, the algorithm scans the list
and schedules the task fractions as shown in Figure 6.1c. The next time that a com-
pletion occurs is denoted by t2. Figure 6.1d shows the schedule at this time. The
rest of the schedule can be determined in a similar fashion. 147

6.2 An example for execution of Slow-Motion technique in Step 3 of SynchPack-1.
In Figure 6.2a, the final schedule of the example in Figure 6.1 is shown. Fig-
ure 6.2b shows the result after applying Slow-Motion with λ = 1/2. If a machine
has already processed total task fraction of a task completely, it is left idle. For
instance, consider the blue task fraction on machine 2, i.e. (2, 3, 2, 2). Some por-
tion of its schedule in the second part is shadowed and crossed and machine 2 is
left idle, since machine 2 has already processed this task fraction for the total time
that it does originally in Figure 6.2a. Figure 6.2c shows the result after shifting
back future tasks’ schedules while respecting the constraints. For instance, see the
red task fraction (i.e., (1, 2, 2, 1) on machine 2 and part of the green task fraction
(i.e., (1, 1, 1, 1)) on machine 1. The idle times on the machines are left blank in
Figure 6.2c. Note that this last action (shifting back future tasks’ schedules) is
optional. 149

6.3 An illustrative example for construction of graph G in Substeb 3.1. Task (k, j)
requires z̄il

k j = 0.4 and z̄il ′
k j = 0.3. When we reach at task (k, j), the total weight

of the first copy of interval l is 1 and that of its second copy is 0.7. Also, the total
weight of the first copy of interval l′ is 0.9. Hence, the procedure adds 2 edges to
copies of interval l with weights 0.3 and 0.1, and 2 edges to copies of interval l′

with weights 0.1 and 0.2. 157

6.4 Performance of algorithms in the offline setting. 166

6.5 Performance of algorithms in the online setting. 166

xi

Acknowledgements

I would like to thank Columbia University and the Electrical Engineering Department for

providing me the opportunity to pursue my PhD. Particularly, I would like to express my sincere

gratitude to my advisor Prof. Javad Ghaderi for his supervision and support in the course of my

PhD studies. He created a great research environment through his scientific enthusiasm and

discipline. He patiently taught me how to think critically, communicate my ideas, and anything I

needed to become an independent researcher.

I would like to thank the members of my defense committee, Professor Clifford Stein, Professor

Vishal Misra, Professor Ethan Katz-Bassett, and Dr. Vahab Mirrokni for their time and thoughtful

comments. I am also thankful to Mrs. Elsa Sanchez and Mr. Dennis Scott-Torbet for always

being my first points of contact in the Electrical Engineering Department whenever I had a

question or needed any help.

I feel very lucky to have great friends who care about me and make my life more fun and

enjoyable. My special gratitude goes to Jeanne and Kevin for being so supportive and kind to me.

They have been there for me in my hardest times in New York City far away from my family. I

would also like to thank Zahra, Parima, Niloofar, Niloofar, AmirHossein, Christos, and many

more with whom I share a lot of great memories. Further, I am immensely thankful to Golnaz, my

generous and knowledgable friend and physical therapist who gave me hope and saved my life. I

cannot thank her enough.

Foremost, I express my deepest sense of gratitude to my parents, GholamAli and Monireh, for

xii

their unconditional love, care, and dedication. Any accomplishment in my life was not possible

without their willingness to always sacrifice their comfort for me and my brother. I am specially

thankful to them for raising me confident and independent, and for their constant encouragement.

I would also like to thank Soroosh, my kind, thoughtful, and positive brother. I am so lucky to

have someone who is always there to listen to me and support me. This work is dedicated to my

parents and my brother.

xiii

Dedication

To Maman, Baba, and Soroosh...

xiv

Chapter 1: Introduction

Data centers have received significant attention as a cost-effective infrastructure for storing

large volumes of data and supporting large-scale Internet services by Google, Amazon, Facebook,

etc. Data centers also serve numerous number of small and medium sized organizations for their

requirements such as financial operations, data analysis, and scientific computations. The increas-

ing popularity of cloud-computing services such as Microsoft Azure, Amazon Web Services, and

many others has also contributed to the increasing growth of data centers. A key challenge in

the data centers is to efficiently support a wide range of “jobs” (i.e, queries, log analysis, ma-

chine learning, graph processing, stream processing, etc.) on their physical platform. These jobs

routinely process Peta bytes of data on thousands of machines (servers) every day.

As an abstraction, a job can be thought of as a group of interdependent tasks, each with various

requirements of CPU, memory, disk, network bandwidth, etc., which need to be scheduled for

execution on the servers and the data flows between the tasks need to be scheduled in the switch

network. One can view this complex scheduling problem as a joint scheduling of tasks in servers

and scheduling of flows (rate assignment known as congestion control and flow routing inside the

data center network), as depicted in Figure 1.1. Solving this scheduling problem efficiently is very

challenging due to the coupling across server and network resources, and co-existence of variety

of applications with very diverse requirements, from low latency to high throughput, all running in

the same data center cluster. A practical scheduler also needs to be scalable in terms of the size of

the data center [1, 2, 3].

As a first approach toward dealing with this complicated problem, we can consider task schedul-

ing and flow scheduling problems separately. Although this approach can be suboptimal, it helps

with understanding the structure of possible solutions which can be subsequently used in solv-

ing the joint problem. Each of these separated problems still remains very complex, and in fact

1

Task
Scheduler

Flow Scheduler

Flow
Routing

Congestion
Control

Figure 1.1: Scheduling problems in data centers.

even simplified off-line versions of many of them, when all the information is available, are hard

combinatorial problems (e.g. NP-hard).

1.1 Flow Scheduling

Scheduling flows in the data center multi-tier switch network is a challenging and significantly

important problem. This is because while the traffic generated by the servers is growing exponen-

tially over time (it is doubling every 12-15 months [3]), provided bandwidth by the data center

topology is not growing that fast and remains the main bottleneck [2]. Such communications can

account for a large portion of the job completion time, and hence can have a significant impact

on application latency. Moreover, various traffic patterns such as one-to-one, one-to-many, and

many-to-many can arise as a result of running data-parallel computing jobs [4, 5]. Further, data

center traffic is very bursty and unpredictable which makes the problem even harder. To address

this problem, there has been significant research on designing new networks with better topological

features that are scalable and cost efficient. In addition, there has been a parallel line of research

on flow scheduling algorithms that take into account the application requirements and make better

use of network resources.

2

1.1.1 Load Balancing in A General Network Topology

Chapter 2 is dedicated to our work on the design and analysis of algorithms for scheduling

flows among servers. We consider a general network topology where each link has a cost which

is a convex function of the link congestions (e.g. this could be a link latency measure). We

propose a low complexity, congestion-aware algorithm that routes the flows in an online fashion

and without splitting. Our algorithm assigns every arriving flow to an available path with the

minimum marginal cost (congestion). We further prove that it asymptotically minimizes the total

network cost. Further, we use extensive simulations to test the performance of our algorithms under

a wide range of traffic conditions and different data center architectures. This algorithm needs to

consider all the available paths for an arriving flow and finds the shortest path based on the marginal

cost of paths. To address this issue, we describe and empirically evaluate randomized versions

of our algorithm which have less complexity than the original algorithm, while can effectively

provide a large fraction of the performance gain obtained by the original algorithm. Our approach

is motivated by the literature on randomized load balancing for scheduling jobs in servers [6].

1.1.2 Coflow Scheduling

In the next chapter, Chapter 3, we consider scheduling flows in data center networks in pres-

ence of dependence among flows. Many data-parallel applications (e.g. MapReduce [5], Dryad

[6], etc.) consist of multiple computation and communication stages or have machines grouped by

functionality. While computation involves local operations in servers, communication takes place

at the level of machine groups and involves transfer of many pieces of intermediate data across

groups of machines for further processing. A computation stage often cannot start or be completed

unless all the required data pieces from the preceding communication stage are received. There-

fore, the application latency is determined by the transfer of the last flow between the groups.

Hence, to meet application level requirements, this is crucial to take into account the dependence

among flows [7]. Coflow is an abstraction to capture these communication patters [8]. Specifically,

a coflow is defined as a collection of parallel flows whose completion time is determined by the

3

completion time of the last flow in the collection. We study the algorithmic task of determining

when to start serving each flow and at what rate, in order to minimize the weighted average com-

pletion time of coflows in the system. Our main result is a polynomial-time deterministic algorithm

based on a linear program followed by a simple list scheduling policy with approximation ratio of

5, which improves the prior best known ratio of 12. Further, this is currently the best approxi-

mation algorithm for this problem. Extensive simulation results are also presented that verify the

performance of our algorithm and show improvements over the prior approaches.

1.1.3 Scheduling Coflows of Multi-Stage Jobs

Finally, motivated by the fact that applications in data-parallel computing typically consist of

multiple stages, we consider scheduling coflows of multi-stage jobs in Chapter 4. Each multi-stage

job is represented by a DAG (Directed Acyclic Graph) among its coflows that capture their depen-

dencies. For jobs with a single communication stage, minimizing the average completion times

of coflows results in the job’s latency improvement. However, for multi-stage jobs, minimizing

the average coflow completion time might not be the right metric and might even lead to a worse

performance, as it ignores the dependencies between coflows in a job [9, 10]. Our goal is to mini-

mize the total weighted completion time of jobs, where the completion time of a job is determined

by the completion of the last coflow in its DAG. We prove that even for a single multi-stage job

represented by a rooted tree, it is NP-hard to schedule it so as to minimize its completion time.

We then develop an O(µg(m)) approximation algorithm for minimizing the total weighted com-

pletion time of a given set of multi-stage jobs, where m is number of servers in the system, µ is the

maximum number of coflows in a job, and g(m) = log(m)/log(log(m)). When the jobs’ DAGs are

rooted trees, we improve this result and get an O(
√
µg(m)h(m, µ)) approximation algorithm, where

h(m, µ) = log(mµ)/(log(log(mµ)). Our algorithms rely on random delaying and merging optimal

schedules of the coflows in the job’s DAG, followed by enforcing dependency among coflows and

the links’ capacity constraints. These results exponentially improve the previous O(m) algorithm

proposed in [9]. We further show the improvement of our algorithms’ performance in comparison

4

with previous algorithms through extensive simulations.

1.2 Task Scheduling

Next, we focus on the problem of scheduling tasks with heterogeneous resource requirements

in a cluster of servers. Our models are motivated by modern parallel computing frameworks, e.g.

Hadoop and Spark [11, 12] that have enabled large-scale data processing in computing clusters.

In such frameworks, the data is typically distributed across a cluster of servers and is processed

in multiple stages. In each stage, a set of tasks are executed on the machines where each task is

preferred to be scheduled on one of the machines that has its required data block [4, 13] (a.k.a.

data locality). The tasks in a stage can run in parallel, however, the job is finished or the next stage

can start once all the tasks in the preceding stage(s) are completed [4, 5, 14]. We refer to such

constraints as synchronization constraints. Another main feature of parallel computing clusters

is that jobs can have diverse tasks and processing requirements. This has been further amplified

by the increasing complexity of workloads, i.e., from traditional batch jobs, to queries, graph

processing, streaming, and machine learning jobs, that all need to share the same cluster. Despite

the vast scheduling literature, scheduling algorithms with theoretical results (approximation ratios)

are mainly based on simple models that assume each job is only one task (ignoring dependency

among tasks and their collective impact on the job’s completion time), or tasks are processed on

any server arbitrarily (ignoring data locality). Our goal is to design scheduling algorithms, with

theoretical guarantees, under the features of modern parallel computing clusters.

1.2.1 Max-Min Fairness of Completion Times

We first study the max-min fairness of multi-task jobs in distributed computing platforms in

Chapter 5. We consider a setting where each job consists of a set of parallel tasks that need to

be processed on different servers, and the job is completed once all its tasks finish processing.

Each job is associated with a utility which is a decreasing function of its completion time, and

captures how sensitive it is to latency. The objective is to schedule tasks in a way that achieves

5

max-min fairness for jobs’ utilities, i.e., an optimal schedule in which any attempt to improve the

utility of a job necessarily results in hurting the utility of some other job with smaller or equal

utility. We first show a strong result regarding NP-hardness of finding the max-min fair vector

of job utilities. The implication of this result is that achieving max-min fairness in many other

distributed scheduling problems (e.g., coflow scheduling) is NP-hard. We then proceed to define

two notions of approximation solutions: one based on finding a certain number of elements of the

max-min fair vector, and the other based on a single-objective optimization whose solution gives

the max-min fair vector. We develop scheduling algorithms that provide guarantees under these

approximation notions, using dynamic programming and random perturbation of tasks’ processing

times. We verify the performance of our algorithms through extensive simulations, using a real

traffic trace from a large Google cluster.

1.2.2 Minimizing Weighted Average of Completion Times

We consider the objective of minimizing the weighted average of jobs’ completion times in

Chapter 6. Besides the synchronization constraint, we consider a generalized version of the data

locality constraint in this model. More precisely, we assume that assignment of tasks to servers

is subject to placement constraints, i.e., each task can be processed only on a subset of servers,

and processing times can also be server dependent. We further take into the account the fact

that a server can process (pack) multiple tasks at the same time, however the cumulative resource

requirement of the tasks should not exceed the server’s capacity. We consider both preemptive and

non-preemptive scheduling. In a non-preemptive schedule, a task cannot be preempted (and hence

cannot be migrated among servers) once it starts processing on a server until it is completed. In a

preemptive schedule, a task may be preempted and resumed later in the schedule, and we further

consider two cases depending on whether migration of a task among servers is allowed or not. For

the case that migration of tasks among the placement-feasible machines is allowed, we propose

a preemptive algorithm with an approximation ratio of (6 + ε). In the special case that only one

machine can process each task, we design an algorithm with improved approximation ratio of 4.

6

Finally, in the case that migrations (and preemptions) are not allowed, we design an algorithm with

an approximation ratio of 24. Our algorithms use a combination of linear program relaxation and

greedy packing techniques. We present extensive simulation results, using a real traffic trace from

a large Google cluster, that demonstrate that our algorithms yield significant gains over the prior

approaches.

7

Chapter 2: Load Balancing in A General Network Topology

2.1 Introduction

There has been a dramatic shift over the recent decades with search, storage, and computing

moving into large-scale data centers. Today’s data centers can contain thousands of servers and

typically use a multi-tier switch network to provide connectivity among the servers. To maintain

efficiency and quality of service, it is essential that the data flows among the servers are mapped to

the available paths in the network properly in order to balance the load and minimize the cost (e.g.,

delay, congestion, etc.). For example when a large flow is routed poorly, collision with the other

flows can cause some links to become congested, while other less utilized paths are available.

The data center networks rely on path multiplicity to provide scalability, flexibility, and cost

efficiency. Consequently, there has been much research on flow scheduling algorithms that make

better use of the path multiplicity (e.g., [2, 15, 16, 17, 18]) or designing new networks with better

topological features (e.g., FatTree [2], VL2 [19], hypercube [20], hypergrid [21], random graphs

such as JellyFish [22], etc.).

In this chapter, we consider a general network topology where each link is associated with a

cost which is a convex function of the link utilization (e.g., this could be a latency function). The

network cost is defined as the sum of the link costs. Flows among the various source-destination

pairs are generated dynamically over time where each flow is associated with a size (rate) and a

duration. Once a flow is assigned to a path in the network, it consumes resource (bandwidth) equal

to its size (rate) from all the links along its path for its duration. The main question that we ask

is the following. Is it possible to design a low-complexity algorithm, that assigns the flows to the

available paths in an online fashion and without splitting, so as to minimize the average network

cost?

8

In general, multi flow routing in networks has been extensively studied from both networking

systems and theoretical perspective, however multi flow routing considered in this chapter has two

key distinguishing objectives:

1. it does not allow flow splitting because splitting the flow is undesirable due to TCP reordering

effect [23]. Resolving packet reordering requires modification of protocol stack [24], which

might be costly. Without splitting, many versions of multi flow routing in networks become

hard combinatorial problems [25, 26]. In fact, the static version of the problem considered

in this chapter (i.e., given a static list of flows, assigning flows to paths without splitting so

as to balance the load in the network) is known to be NP-hard, through its connection to the

Partition problem [27]1.

2. it allows dynamic routing because it considers the current utilization of links in the network

when making the routing decisions for newly arrived flows unlike static solutions where the

mapping of flows to the paths is fixed and requires the knowledge of the traffic matrix.

2.1.1 Related Work

Seminal solutions for flow routing in data centers (e.g. [19, 28]) rely on Equal Cost Multi Path

(ECMP) load balancing which statically splits the traffic among available shortest paths (via flow

hashing). However, it is well known [16, 15, 18, 17, 29] that ECMP can balance load poorly since

it may map large long-lived flows to the same path, thus causing significant load imbalance. Fur-

ther, ECMP is suited for symmetric architectures such as FatTree and performs poorly in presence

of asymmetry either due to link failures [30] or in recently proposed data center architectures [22].

Theoretical performance of ECMP in Clos networks under a static flow model has been studied

in [31]. There have been recent efforts to address the shortcomings of ECMP. The proposed al-

gorithms range from centralized solutions (e.g., [15, 16]), where a centralized scheduler makes

routing decisions based on global view of the network, to distributed solutions (e.g., [18, 32])
1In the Partition problem, given a set of numbers, we are asked to divide them into two subsets such that the

maximum of the sum of the numbers in the sets is minimized. This can be reformulated as the load balancing in a
simple two-node network with two parallel edges.

9

where routing decisions are made in a distributed manner by the switches. There are also host-

based protocols based on Multi Path TCP (e.g., [17]) where the routing decisions are made by the

end-host transport protocol rather than by the network operator; however, they require significant

changes to Transport layer which might not be feasible in public cloud platforms [24]. Authors

in [33] investigated a more general problem based on a Gibbs sampling technique and proposed a

plausible heuristic that requires re-routing and interruption of flows (which is operationally expen-

sive). There are also algorithms that allow flow splitting and try to resolve the packet reordering

effect in symmetric network topologies [32, 24, 34]. As explained, dealing with packet reordering

involves overhead and modification of protocol stack.

Our work is also related to a large body of literature on traffic engineering and congestion

control. For brevity, we only highlight the most relevant work. The first line of work, e.g. [35,

36, 37], studies the problem of minimizing the cost of carrying traffic in a static multi-commodity

flow model and under a convex cost function for the link rates. Given the knowledge of the traffic

matrix (commodities) among the nodes, routing algorithms are proposed that iteratively update the

fraction of traffic of each flow that should be sent on each outgoing link in the network. They rely

on splitting flows among the least weighted paths where the weight of each link is defined by its

marginal link cost.

The second line of work is atomic and non-atomic congestion games in game theory [38, 39,

40, 41]. In the context of routing, players are the commodities, strategy sets are the set of directed

source-destination paths for the commodities, the edge cost ce(fe) is a function of the amount

of congestion fe over edge e, and the path cost cp(f) is the sum of the cost of the links along

the path p. A player i incurs a cost cp(f) f
(i)
p for sending f (i)p amount of traffic over the path

p. In the atomic games, each player must choose a single path to route its commodity, while in

non-atomic games, player can distribute its commodity fractionally over the set of paths. The

two versions are fundamentally different. While the atomic game in general does not admit a

Nash equilibrium, the nonatomic game always has a Nash equilibrium (Wardrop equilibrium) [42].

In Wardrop equilibrium, all the paths used by a given commodity have equal cost. Moreover,

10

it’s known in non-atomic games that selfish best response moves (selfish routing) by the players

iteratively converge to the Wardrop equilibrium, which is a local minimum of a potential function

(network cost)
∑

e

∫ fe
0 ce(x)dx.

The third line of work is oblivious routing [43, 44, 45] in which routes are computed to optimize

the worst-case performance over the set of traffic matrices. This ensures that the computed routes

are prepared for changes in traffic demands without the need to update the routes, however this is

a pessimistic point of view and may be far from optimal in relatively stable periods of traffic or

stable networks [44].

While the proposed myopic algorithm in this chapter is reminiscent of prior algorithms under

flow splitting and non-atomic games (e.g. [35, 36, 37, 42, 40, 41]), the results in this chapter

are not trivially drawn from these prior work. First, unlike [35, 36, 37, 42, 40, 41] that rely on

splitting flows in any granularity and rerouting them continuously to find the optimal routing, we

do not allow flow splitting and migrations. Second, unlike [35, 36, 37, 42, 40, 41] that consider

a static set of flows with known traffic demand, we are dealing with a dynamic version of the

problem when flows arrive and depart dynamically over time and the traffic demand is not known.

Such constraints arise in practice due to the varying nature of the traffic over time and space in

data centers as well as undesirability of packet reordering in flow splitting. Our technical approach

relies on a careful analysis of the fluid limits of the system under the myopic policy (without flow

splitting) and proof of convergence to an invariant set which is the set of optimal flow assignments

in steady state. Under unsplittable flows, the fluid limits are not continuously differentiable which

poses a significant technical challenge. Intuitively, as the number of flows in the system grows, the

difference between the optimal expected network cost under unsplittable flow assignment and that

under splittable flow assignment should vanish in the performance ratio. We rigorously establish

this intuition, and further, present deterministic and randomized algorithms with low complexity

which perform very well in practice.

Finally, Software Defined Networking (SDN) has enabled network control with quicker and

more flexible adaptation to changes in the network topology or the traffic pattern and can be lever-

11

aged to implement centralized or hybrid algorithms in data centers [2, 46, 47, 48]. The weight

construct in the algorithms proposed in this chapter can provide an approach to optimally accom-

modate dynamic variations in data center network traffic in centralized control platforms such as

OpenFlow [46].

2.1.2 Contributions

The main contributions of this chapter can be summarized as follows.

• Asymptotic optimality of a myopic algorithm. We propose and analyze a simple flow

scheduling algorithm to minimize the average network cost (the sum of convex functions of

link utilizations). Specifically, we propose a myopic algorithm that assigns every arriving

flow to an available path with the minimum marginal cost (i.e., the path which yields the

minimum increase in the network cost after assignment). We prove that this simple myopic

algorithm is asymptotically optimal in any network topology, in the sense that the perfor-

mance ratio between the average network cost under the myopic algorithm and the optimal

cost approaches 1 as the mean number of flows in the system increases. The myopic algo-

rithm does not rely on flow splitting, hence packets of the same flow will travel along the

same path without reordering. Further, it does not require migration/rerouting of the flows

or the knowledge of the traffic pattern.

• A low complexity randomized algorithm. We also propose randomized versions of our

myopic algorithm which have much lower complexity. In the randomized algorithm with

parameter k ≥ 2, instead of considering all the available paths upon arriving of a flow, k

paths are chosen at random and then the flow is assigned to the path with the minimum

marginal cost among these k paths. Similar to the myopic algorithm, randomized versions

do not rely on flow splitting, flow migration/rerouting, or the knowledge of the traffic pattern.

We empirically investigate the effect of parameter k on the algorithm performance.

• Empirical evaluation of the algorithms. We evaluate our myopic algorithm and its ran-

12

domized versions under various workload and network topologies. For the flow generation,

we consider two traffic models: (i) Poisson arrival of flows with exponentially distributed

durations, and (ii) based on data from empirical studies of data center traffic. For the net-

work topology, we consider FatTree (a highly structured topology), and JellyFish (a random

topology). Our empirical results show that the myopic algorithm in fact performs very well

under a wide range of traffic conditions in both data center topologies. Further, the random-

ized algorithms can perform very well by choosing the proper parameter k (the number of

randomly chosen paths), in particular in symmetric network topologies (like FatTree) small

values of k will suffice.

The result presented in this chapter is based on papers [49, 50].

2.1.3 Notations

Given a sequence of random variables {Xn}, Xn ⇒ X indicates convergence in distribution, and

Xn → X indicates the almost sure convergence. Given a Markov process {X(t)}, X(∞) denotes

a random variable whose distribution is the same as the steady-state distribution of X(t) (when it

exists). ‖ · ‖ is the Euclidian norm in Rn. d(x, S) = mins∈S ‖s − x‖ is the distance of x from the set

S. ‘u.o.c.’ means uniformly over compact sets.

2.2 Model and Problem Statement

2.2.1 data center Network Model

We consider a data center (DC) consisting of a set of servers (host machines) connected by

a collection of switches and links. Depending on the DC network topology, all or a subset of

the switches are directly connected to servers; for example, in FatTree [2] (Figure 2.1a) only the

edge (top-of-the-rack) switches are connected to servers, while in JellyFish [22] (Figure 2.1b) all

the switches have some ports connected to servers. Nevertheless, we can model any general DC

network topology (FatTree, JellyFish, etc.) by a graph G(V, E) where V is the set of switches and

13

Core

Edge

Aggregation

(a) FatTree.
(b) JellyFish (random graph).

Figure 2.1: Connecting 16 servers (rectangles) using 4-port switches (circles).

E is the set of communication links. A path between two switches is defined as a set of links that

connects the switches and does not intersect itself. The paths between the same pair of source-

destination switches may intersect with each other or with other paths in DC.

2.2.2 Traffic Model

Each server can generate a flow destined to some other server. We assume that each flow

belongs to a set of flow types J . A flow of type j ∈ J is a triple (a j, d j, s j) where a j ∈ V is its

source switch (i.e., the switch connected to the source server), d j ∈ V is its destination switch (i.e.,

the switch connected to its destination server), and s j is its size (bandwidth requirement). Note that

based on this definition, we only need to find the routing of flows in the switch network G(V, E)

since the routing from the source server to the source switch or from the destination switch to the

destination server is trivial (follows the direct link from the server to the switch). Further, two

switches can have more than one flow type with different sizes. We assume that type- j flows are

generated according to a Poisson process with rate λ j , and each flow remains in the system for an

exponentially distributed amount of time with mean 1/µ j . It is possible to extend our results to a

more general model of flow arrival and service time, e.g., when the arrival process is a “renewal”

process and service time distribution has lower bounded “hazard rate”, using a similar approach as

in [51]. We will also report simulation results in Section 2.5 that show that our myopic algorithm

indeed performs very well under much more general arrival and service time processes.

For any j ∈ J , let Rj denote the set of available paths from a j to d j , then each type- j flow

14

must be accommodated by using only one of the paths from Rj (i.e., the flow cannot be split among

multiple paths). Note that Rj could be the set of all possible paths from a j to d j or a subset of them

as desired by the network operator. We assume that Rj is nonempty for each j ∈ J . Define Y (j)i (t)

to be the number of type- j flows routed along the path i ∈ Rj at time t. The network state is defined

as

Y (t) =
(
Y (j)i (t); i ∈ Rj, j ∈ J

)
. (2.1)

The online (Markov) scheduling algorithm determines the path where an arriving flow at time t is

placed, as a function of the current network state Y (t).

We also define X (j)(t) =
∑

i∈Rj
Y (j)i (t) which is the total number of type- j flows in the network

at time t. Let Zl(t) be the total amount of traffic (congestion) over link l ∈ E . Based on our

notations,

Zl(t) =
∑
j∈J

∑
i:i∈Rj,l∈i

s jY
(j)

i (t), (2.2)

where by l ∈ i we mean that link l belongs to path i. We also define ρ j = λ j/µ j which is the mean

offered load by type- j flows.

Note that under any Markov scheduling algorithm, the network state {Y (t)}t≥0 is a continuous-

time, irreducible Markov chain. It is also positive recurrent, because the total number of type- j

flows X (j)(t) in the system is a Markov chain independent of the scheduling algorithm, and its

stationary distribution is Poisson with mean ρ j . Therefore, the process {Y (t)}t≥0 has a unique

stationary distribution as t →∞.

2.2.3 Problem Formulation

For the purpose of load balancing, the network can attempt to optimize different objectives [52]

such as minimizing the maximum link congestion in the network or minimizing the sum of link

costs where each link cost is a convex function of the link congestion (e.g. this could be a link

15

latency measure [53]). Under both objectives, the traffic needs to be distributed and balanced

among the feasible paths in the network, which is essential for maintaining low end-to-end delay

for different flows. In this chapter, we use the latter objective but by choosing proper cost functions,

an optimal solution to the later objective can be used to also approximate the former objective as

we see below.

We define g(Zl) to be the cost of link l when its congestion is Zl . Our goal is to find a flow

scheduling algorithm that assigns each flow to a single path in the network so as to minimize the

mean network cost in the long run, specifically,

minimize lim
t→∞
E [F(Y (t))]

subject to: serving each flow using one path,
(2.3)

where, F(Y (t)) =
∑

l∈E g(Zl(t)). We consider polynomial cost functions of the form

g(x) =
x1+α

1 + α
, α > 0, (2.4)

where α > 0 is a constant. Thus g is increasing and strictly convex in x. As α → ∞, the optimal

solution to (2.3) approaches the optimal solution of the optimization problem whose objective is

to minimize the maximum link congestion in the network2.

2.3 Algorithm Description

In this section, we describe our myopic algorithm for flow assignment where each flow is

assigned to one path in the network (no splitting) without interrupting/migrating the ongoing flows

in the network. Recall that Y (t) = (Y (j)i (t)) is the network state, Y (j)i (t) is the number of type- j

flows on path i ∈ Rj , and Zl(t) is the total traffic on link l given by (2.2).

First, we define two forms of link marginal cost that measure the increase in the link cost if an

2Here we have considered identical links for simplicity but the analysis is easily extendable to the case that g(·) is
a function of x/cl where cl is the link capacity, or the case that each link has a weight and the goal is to minimize the
weighted summation of the link costs.

16

Algorithm 1 Myopic Flow Scheduling Algorithm
Suppose a type- j flow arrives at time t when the system is in state Y(t). Then,

1: Compute the path marginal costs w(j)i (Y (t)), i ∈ Rj , in either of the forms below:

• Integral form:

w
(j)
i (Y (t)) =

∑
l∈i

∆
(j)
l (Y (t)), (2.5)

• Differential form:

w
(j)
i (Y (t)) =

∑
l∈i

δ
(j)
l (Y (t)). (2.6)

2: Place the flow on a path i such that

i = arg min
k∈Rj

w
(j)
k (Y (t)). (2.7)

Break ties in (2.7) uniformly at random.

arriving type- j flow at time t is routed using a path that uses link l.

Definition 1. (Link marginal cost) For each link l and flow-type j, the link marginal cost is defined

in either of the forms below.

• Integral form:

∆
(j)
l (Y (t)) = g

(
Zl(t) + s j

)
− g

(
Zl(t)

)
. (2.8)

• Differential form:

δ
(j)
l (Y (t)) = s jg

′
(
Zl(t)

)
. (2.9)

Based on the link marginal costs, we can characterize the increase in the network cost if an

arriving type- j flow at time t is routed using path i ∈ Rj . Specifically, let Y (t+) = Y (t)+ e(j)i , where

e(j)i denotes a vector whose corresponding entity to path i and flow type j is one, and its other

entities are zero. Then F(Y (t)) is the network cost before the type- j flow arrival, and F(Y (t+)) is

17

the network cost after assigning the type- j flow to path i. Then, it is easy to see that

F(Y (t+)) − F(Y (t)) =
∑
l∈i

[
g
(
Zl(t) + s j

)
− g

(
Zl(t)

)]
=

∑
l∈i

∆
(j)
l (Y (t)).

(2.10)

Similarly, based on the differential marginal costs, we have

∂F(Y (t))

∂Y (j)i (t)
=

∑
l∈i

s jg
′
(
Zl(t)

)
=

∑
l∈i

δ
(j)
l (Y (t)). (2.11)

Algorithm 1 describes our myopic flow assignment algorithm that places the newly generated

flow on a path that minimizes the increase in the network cost based on either forms (2.10) or

(2.11). Upon arrival of a flow, Algorithm 1 takes the corresponding feasible paths and their link

congestions into the account for computing the path marginal costs w
(j)
i (t) but it does not require

to know any information about the other links in the network. The two forms (2.5) and (2.6) are

essentially identical in our asymptotic performance analysis in the next section, however it seems

slightly easier to work with the differential form (2.6). Algorithm 1 can be implemented either

centrally or in a distributed manner using a distributed shortest path algorithm that uses the link

marginal costs, ∆(j)l (t) or δ(j)l (t), as link weights.

Remark 1. Note that in Algorithm 1 the flow is assigned to a path with the minimum path marginal

cost. The path with the minimum path marginal cost is not necessarily the same as the path with

the minimum end-to-end congestion (sum of link congestions in the path).

2.4 Performance Analysis via Fluid Limits

The system state {Y (t)}t≥0 is a stochastic process which is not easy to analyze, therefore we

analyze the fluid limits of the system instead. Fluid limits can be interpreted as the first order

approximation to the original process {Y (t)}t≥0 and provide valuable qualitative insight into the

operation of Algorithm 1. In this section, we introduce the fluid limits of the process {Y (t)}t≥0

18

and present our main result regarding the convergence of Algorithm 1 to the optimal cost. We

deliberately defer the rigorous claims and proofs about the fluid limits to Section 2.7 and for now

mainly focus on the convergence analysis to the optimal cost, which is the main contribution of

this chapter.

2.4.1 Informal Description of Fluid Limit Process

In order to obtain the fluid limits, we scale the process in rate and space. Specifically, consider

a sequence of systems {Y r(t)}t≥0 indexed by a sequence of positive numbers r , each governed by

the same statistical laws as the original system with the flow arrival rates rλ j , j ∈ J (therefore, a

system with a larger r would experience heavier traffic), and initial state Y r(0) such that Y r(0)/r →

y(0) as r → ∞ for some fixed y(0). The fluid-scale process is defined as yr(t) = Y r(t)/r , t ≥ 0.

We also define yr(∞) = Y r(∞)/r , the random state of the fluid-scale process in steady state. If

the sequence of processes {yr(t)}t≥0 converges to a process {y(t)}t≥0 (uniformly over compact

time intervals, with probability 1 as r → ∞), the process {y(t)}t≥0 is called the fluid limit. Then,

y
(j)
i (t) is the fluid limit number of type- j flows routed through path i. Accordingly, we define

zr
l (t) = Zr

l (t)/r and x(j)
r
(t) = X (j)

r
(t)/r and their corresponding limits as zl(t) and x(j)(t) as

r → ∞. The fluid limits under Algorithm 1 follow possibly random trajectories, and might not be

continuously differentiable; nevertheless, they satisfy the following set of differential equations.

We state the result as the following lemma whose proof can be found in Section 2.7.

Lemma 1. (Fluid equations) Any fluid limit y(t) satisfies the following equations. For any j ∈ J ,

19

and i ∈ Rj ,

d
dt
y
(j)
i (t) = λ j p

(j)
i (y(t)) − µ j y

(j)
i (t) (2.12a)

p(j)i (y(t)) = 0 if i < arg min
k∈Rj

w
(j)
k (y(t)) (2.12b)

p(j)i (y(t)) ≥ 0,
∑
i∈Rj

p(j)i (y(t)) = 1 (2.12c)

w
(j)
i (y(t)) =

∑
l∈i

s jg
′(zl(t)). (2.12d)

Equation (2.12a) is simply an accounting identity for y(j)i (t) stating that, on the fluid-scale, the

number of type- j flows over path i ∈ Rj increases at rate λ j p
(j)
i (y(t)), and decreases at rate y

(j)
i µ j

due to departures of type- j flows on path i. p(j)i (y(t)) is the fraction of type- j flow arrivals placed

on path i. w
(j)
i (y(t)) is the fluid-limit marginal cost of routing type- j flows in path i when the

system is in state y(t). Equation (2.12b) follows from (2.7) and states that the flows can only be

placed on the paths which have the minimum marginal cost mink∈Rj w
(j)
k (y(t)).

It follows from (2.12a) and (2.12c) that the total number of type- j flows in the system, i.e.,

x(j)(t) =
∑

i∈Rj
y
(j)
i (t), follows a deterministic trajectory described by the following equation,

d
dt

x(j)(t) = λ j − µ j x(j)(t), ∀ j ∈ J, (2.13)

which clearly implies that

x(j)(t) = ρ j + (x(j)(0) − ρ j)e−µj t ∀ j ∈ J . (2.14)

Consequently at steady state,

x(j)(∞) = ρ j, ∀ j ∈ J, (2.15)

which means that, in steady state, there is a total of ρ j type- j flows on the fluid scale.

20

2.4.2 Main Result and Asymptotic Optimality

In this section, we state our main result regarding the asymptotic optimality of our myopic

algorithm. First note that by (2.15), the values of y(∞) are confined to a convex compact set Υ

defined below

Υ ≡ {y = (y
(j)
i) : y(j)i ≥ 0,

∑
i∈Rj

y
(j)
i = ρ j, ∀ j ∈ J}. (2.16)

Consider the problem of minimizing the network cost in steady state on the fluid scale (the coun-

terpart of optimization (2.3)),

min F(y)

s. t. y ∈ Υ

(2.17)

Denote by Υ? ⊆ Υ the set of optimal solutions to the optimization (2.17). The following propo-

sition states that the fluid limits of Algorithm 1 indeed converge to an optimal solution of the

optimization (2.17).

Proposition 1. Consider the fluid limits of the system under Algorithm 1 with initial condition

y(0), then as t →∞

d(y(t),Υ?) → 0. (2.18)

Convergence is uniform over initial conditions chosen from a compact set.

The theorem below makes the connection between the fluid limits and the original optimiza-

tion problem (2.3). It states the main result of this chapter which is the asymptotic optimality of

Algorithm 1.

Theorem 1. Let Y r(t) and Y r
opt(t) be respectively the system trajectories under Algorithm 1 and

any optimal algorithm for the optimization (2.3). Then in steady state,

lim
r→∞

E
[
F(Y r(∞))

]
E
[
F(Y r

opt(∞))

] = 1. (2.19)

21

For example, one optimal algorithm that solves (2.3) is the one that every time a flow arrives

or departs, it re-routes the existing flows in the network in order to minimize the network cost at

all times. Of course this requires solving a complex combinatorial problem every time a flow ar-

rives/departs and further it interrupts/migrates the existing flows. Under any algorithm (including

our myopic algorithm and the optimal one), the mean number of flows in the system in steady

state is O(r). Thus by Theorem 1, Algorithm 1 has roughly the same cost as the optimal cost

when the number of flows in the system is large, but at much lower complexity and with no migra-

tions/interruptions.

The rest of this section is devoted to the proof of Proposition 1. The proof of Theorem 1 relies

on Proposition 1 and is provided in Section 2.7.

2.4.3 Proof of Proposition 1

We first characterize the set of optimal solutions Υ? using KKT conditions in the lemma below.

Lemma 2. Let Γj = {i ∈ Rj : y(j)i > 0} ⊆ Rj, j ∈ J . A vector y ∈ Υ? iff y ∈ Υ and there exists a

vector η ≥ 0 such that

w
(j)
i (y) = η j, ∀i ∈ Γj, (2.20a)

w
(j)
i (y) ≥ η j, ∀i ∈ Rj \ Γj, (2.20b)

where w
(j)
i (·) defined in (2.12d).

Proof. Consider the following optimization problem,

min F(y) (2.21a)

s.t.
∑
i∈Rj

y
(j)
i ≥ ρ j, ∀ j ∈ J (2.21b)

y
(j)
i ≥ 0, ∀ j ∈ J, ∀i ∈ Rj . (2.21c)

Since F(y) is an strictly increasing function with respect to y
(j)
i , for all j ∈ J, i ∈ Rj , it is

22

easy to check that the optimization (2.17) has the same set of optimal solutions as the optimization

(2.21). Moreover, both optimizations have the same optimal value. Hence we can use the Lagrange

multipliers η j ≥ 0 and ν(j)i ≥ 0 to characterize the Lagrangian as follows.

L(η, ν, y) =F(y) +
∑
j∈J

η j(ρ j −
∑

i;i∈Rj

y
(j)
i)

−
∑
j∈J

∑
i;i∈Rj

ν
(j)
i y
(j)
i .

(2.22)

From KKT conditions [54], y ∈ Υ?, if and only if there exist vectors η and ν such that the following

holds.

Feasibility:

y ∈ Υ, (2.23a)

η j ≥ 0, ν(j)i ≥ 0 ∀ j ∈ J, i ∈ Rj, (2.23b)

Complementary slackness:

η j(ρ j −
∑

i;i∈Rj

y
(j)
i) = 0, ∀ j ∈ J, (2.24a)

ν
(j)
i y
(j)
i = 0, ∀ j ∈ J, i ∈ Rj, (2.24b)

Stationarity:

∂L(η, ν, y)

∂y
(j)
i

= 0. ∀ j ∈ J, i ∈ Rj . (2.25a)

Note that (2.23a) implies (2.24a). It follows from (2.25a) that

∂F(y)

∂y
(j)
i

= η j + ν
(j)
i , ∀ j ∈ J, i ∈ Rj . (2.26)

23

Define Γj as in the statement of the lemma. Note that Γj is nonempty for all j ∈ J by (2.23a).

Then combining (2.24b) and (2.26), ∀ j ∈ J , and noting that ∂F(y)
∂y
(j)
i

= w
(j)
i (y) by definition, yields

(2.20a)-(2.20b). �

Next, we show that the set of optimal solutions Υ? is an invariant set of the fluid limits, using

the fluid limit equations (2.12a)-(2.12d), and Lemma 2.

Lemma 3. Υ? is an invariant set for the fluid limits, i.e., starting from any initial condition y(0) ∈

Υ?, y(t) ∈ Υ? for all t ≥ 0.

Proof. Consider a type- j flow and let I(j)(t) = arg mini∈Rj
w
(j)
i (y(t)) be the set of paths with the

minimum path marginal cost. Note that
∑

i∈I(j)(t) p
(j)
i (t) = 1, t ≥ 0, by (2.12b), therefore

d
dt

(∑
i∈I(j)i (t)

y
(j)
i (t)

)
= λ j −

(∑
i∈I(j)(t)

y
(j)
i (t)

)
µ j . (2.27)

Since y(0) ∈ Υ?, it follows from Lemma 2 that
∑

i∈I(j)(0) y
(j)
i (0) = ρ j . Hence, Equation (2.27) has

a unique solution for
∑

i∈I(j)(t) y
(j)
i (t) which is

∑
i∈I(j)(t)

y
(j)
i (t) = ρ j, t ≥ 0. (2.28)

On the other hand, since x(j)(0) = ρ j , by (2.14),

x(j)(t) =
∑
i∈Rj

y
(j)
i (t) = ρ j, t ≥ 0. (2.29)

Equations (2.28) and 2.29 imply that, at any time t ≥ 0, y(j)i (t) = 0 for i < I(j)(t), and y
(j)
i (t) ≥ 0

for i ∈ I(j)(t) such that
∑

i∈I(j)(t) y
(j)
i (t) = ρ j . Hence, y(t) =

(
y
(j)
i (t)

)
∈ Υ? by using η j(t) =

mink∈Rj w
(j)
k (y(t)) in Lemma 2. �

Next, we show that the fluid limits indeed converge to the invariant set Υ? starting from an

initial condition in Υ.

24

Lemma 4. (Convergence to the invariant set) Consider the fluid limits of the system under Algo-

rithm 1 with initial condition y(0) ∈ Υ, then

d(y(t),Υ?) → 0. (2.30)

Also convergence is uniform over the set of initial conditions Υ.

Proof. Starting from y(0) ∈ Υ, (2.14) implies that

x(j)(t) =
∑
i∈Rj

y
(j)
i (t) = ρ j ∀ j ∈ J, (2.31)

at any time t ≥ 0. To show convergence of y(t) to the set Υ?, we use a Lyapunov argument.

Specifically, we choose F(.) as the Lyapunov function and show that (d/dt)F(y(t)) < 0 if y(t) < Υ?.

Let η j(y(t)) = mink∈Rj w
(j)
k (y(t)). Then

(d/dt)F(y(t)) =
∑
j∈J

∑
i∈Rj

∂F(y)

∂y
(j)
i

dy(j)i (t)

dt

=
∑
j∈J

µ j
[
ρ j

∑
i∈Rj

w
(j)
i (y(t))p

(j)
i (t) −

∑
i∈Rj

w
(j)
i (y(t))y

(j)
i (t)

]
(a)
=

∑
j∈J

µ j
[
ρ jη j(y(t)) −

∑
i∈Rj

w
(j)
i (y(t))y

(j)
i (t)

]
(2.32)

(b)
<

∑
j∈J

µ j
[
ρ jη j(y(t)) − η j(y(t))

∑
i∈Rj

y
(j)
i (t)

] (c)
= 0.

Equality (a) follows from the fact that p(j)i (t) = 0 if w(j)i (t) > η j(t), and
∑

i∈I(j)(t) p
(j)
i (t) = 1, t ≥ 0,

by (2.12b) and (2.12c). Inequality (b) follows from the fact that y(t) < Υ?, so by Lemma 2, there

exists an i ∈ Rj such that y
(j)
i (t) > 0 but w(j)i (y(t)) > η j(y(t)). Equality (c) holds because of

(2.31). �

Now we are ready to complete the proof of Proposition 1, i.e., to show that starting from any

initial condition in a compact set, uniform convergence to the invariant set Υ? holds.

25

Proof of Proposition 1. First note that (d/dt)F(y(t)) (as given by (2.32)) is a continuous function

with respect to y(t) = (y(j)i (t) ≥ 0). This is because the path marginal costs w(j)i (y(t)) are continu-

ous functions of y(t) and so is their minimum η j(y(t)) = mini∈Rj w
(j)
i (y(t)).

Next, note that by Lemma 4, for any ε1 > 0, and a ∈ Υ, there exists an ε2 > 0 such that if

F(a) − F(Υ?) ≥ ε1 then,

(d/dt)F(y(t))
��
y(t)=a ≤ −ε2 (2.33)

By the continuity of (d/dt)F(y(t)) in y(t), there exists a δ > 0 such that ‖y(t) − a‖ ≤ δ implies,

|(d/dt)F(y(t)) − (d/dt)F(a)| ≤ ε2/2 (2.34)

Combining (2.33) and (2.34), for all y(t) such that ‖y(t) − a‖ ≤ δ,

(d/dt)F(y(t)) ≤ −ε2/2.

By (2.14), for any δ > 0, we can find tδ large enough such that for all t > tδ, ‖y(t) − a‖ ≤ δ for

some a ∈ Υ.

Putting everything together, for any ε1 > 0, there exists ε2 > 0 such that if F(y(t)) − F(Υ?) ≥ ε1

then (d/dt)F(y(t)) ≤ −ε2/2 < 0. Applying Lyapunov argument with F(.) as Lyapunov function

completes the proof of Proposition 1. �

2.5 Simulation Results

In this section, we provide simulation results and evaluate the performance of Algorithm 1

under a wide range of traffic conditions in the following data center architectures:

• FatTree which consists of a collection of edge, aggregation, and core switches and offers

equal length path between the edge switches. Figure 2.1a shows a FatTree with 16 servers

and 8 4-port edge switches. For simulations, we consider a FatTree with 128 servers and 32

8-port edge switches.

26

Time (second)
0 5 10 15 20 25 30 35 40 45 50

N
o
rm

a
li
z
e
d
 N

e
tw

o
rk

 C
o
s
t

0

0.2

0.4

0.6

0.8

1

1.2 CVX

Alg.1

(a) Convergence of network cost

0.2 0.3 0.5 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 C
o

s
t

Traffic Intensity

ECMP

Alg.1

CVX

(b) Exponential traffic model

0.2 0.3 0.5 0.95
0

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 C
o

s
t

Traffic Intensity

ECMP

Alg.1

CVX

(c) Empirical traffic model

Figure 2.2: Experimental Results for FatTree. (a): Convergence of the network cost under Al-
gorithm 1, normalized with the lower-bound on the optimal solution (CVX), to 1. The scaling
parameter r is 100 here. (b) and (c): Performance ratio of Algorithm 1 and ECMP in FatTree,
normalized with the lower-bound (CVX) for exponential and empirical traffic models.

• JellyFish which is a random graph in which each switch i has ki ports out of which ri ports are

used for connection to other switches and the remaining ki − ri ports are used for connection

to servers. Figure 2.1b shows a JellyFish with 4-port switches, and ki = 4, ri = 2 for all the

switches. For simulations, we consider a JellyFish constructed using 20 8-port switches and

100 servers. Each 8-port switch is connected to 5 servers and 3 remaining links are randomly

connected to other switches (this corresponds to ki = 8, ri = 3 for all the switches).

For the 128-server FatTree, when source and destination switches are located in different (same)

racks, our myopic algorithm considers 16 (4) equal length candidate paths. For the case of d-

regular random graphs (where each node has d edges), the number of paths between 2 switches

can be very large which could significantly increase the computational complexity of the algorithm.

To reduce the computation overhead, we can neglect the long paths since such paths will naturally

have large marginal costs and will not be used by Algorithm 1. In our simulations, for the case

of JellyFish, we consider (at most) the first 20 shortest paths (in terms of the number of links) for

each pairs of switches.

Our rationale for selecting these architectures stems from the fact that they are on two opposing

sides of the spectrum of topologies: while FatTree is a highly structured topology, JellyFish is a

random topology; hence they should provide a good estimate for the robustness of Algorithm 1 to

27

different network topologies and possible link failures.

We generate the flows under two different traffic models to which we refer to as exponential

model and empirical model:

• Exponential model: Flows are generated per Poisson processes and exponentially distributed

durations. The parameters of duration distribution is chosen uniformly at random from 0.5

to 1.5 for different flows to simulate a more dynamic range of flow durations. The flow sizes

are chosen according to a log-normal distribution.

• Empirical model: Flows are generated based on recent empirical studies on characterization

of data center traffic. As suggested by these studies, we consider log-normal inter-arrival

times [55], service times based on the empirical result in [23], and log-normal flow sizes

[55]. Particularly, the most periods of congestion tend to be short lived, namely, more than

90% of the flows that are more than 1 second long, are no longer than 2 seconds [23].

In both models, the flow sizes are log-normal with mean 1.2 and standard deviation 0.4. This

generates flow sizes ranging from 1% to 40% of link capacity with high probability to capture the

nature of flow sizes in terms of “mice” and “elephant” flows. Furthermore, we consider a random

traffic pattern, i.e., source and destination of flows are chosen uniformly at random. The link cost

parameter α is chosen to be 1 in these simulations.

Under both models, to change the traffic intensity, we keep the other parameters fixed and scale

the arrival rates (with parameter r).

We report the simulation results in terms of the performance ratio between Algorithm 1 and

a benchmark algorithm (similar to (2.19)). Since the optimal algorithm (e.g. the one that every

time a flow arrives or departs, it re-routes the existing flows in the network in order to minimize

the network cost at all times) is hard to implement (and even unknown), instead we use a convex

relaxation method to find a lower-bound on the optimal cost at each time. We note that, for Fat-

Tree topology, equal splitting of every flow among its candidate paths is optimal. For JellyFish

topology, every time a flow arrives or departs, we use CVX [56], to minimize F(Y (t)), by relaxing

28

Time (second)
0 10 20 30 40 50 60

N
o

rm
a

li
z
e

d
 N

e
tw

o
rk

 C
o

s
t

0

0.2

0.4

0.6

0.8

1

1.2
CVX

Alg.1

(a) Convergence of network cost

0.15 0.3 0.7 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 N

e
tw

o
rk

 C
o
s
t

Traffic Intensity

ECMP

Alg.1

CVX

(b) Exponential traffic model

0.15 0.3 0.7 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a
liz

e
d
 N

e
tw

o
rk

 C
o

s
t

Traffic Intensity

ECMP

Alg.1

CVX

(c) Empirical traffic model

Figure 2.3: Experimental Results for JellyFish. (a): Convergence of the network cost under Algo-
rithm 1 in JellyFish, normalized with the lower-bound on the optimal solution (CVX), to 1. The
scaling parameter r is 100 here. (b) and (c): Performance ratio of Algorithm 1 and ECMP in
JellyFish, normalized with the lower-bound (CVX) for exponential and empirical traffic models.

the combinatorial constraints, i.e., allowing splitting of flows among multiple paths and re-routing

the existing flows. We compare the network cost under Algorithm 1 and traditional ECMP (which

statically assigns flows to the shortest paths (in number of links) via flow hashing.), normalized by

the lower-bound on the optimal solution (to which we refer to as CVX in the plots).

2.5.1 Experimental Results for FatTree

Figure 2.2a shows that the aggregate cost under Algorithm 1 indeed converges to the optimal

solution (normalized cost ratio goes to 1) which verifies Theorem 1. Figures 2.2b and 2.2c show the

cost performance under Algorithm1 and ECMP, normalized by the CVX lower-bound, under the

exponential and the empirical traffic models respectively. The traffic intensity is measured in terms

of the ratio between the steady state offered load and the bisection bandwidth. For FatTree, the

bisection bandwidth depends on the number of core switches and their number of ports. As we can

see, our myopic algorithm is very close to the lower-bound on the optimal value (CVX) for light,

medium, and high traffic intensities. As it is shown, the performance improves at higher traffic

intensities which correspond to larger values of r in Theorem 1. They also suggest that Theorem 1

holds under more general arrival and service time processes. In this simulations, Algorithm 1

gave a performance improvement ranging form 50% to more than 100%, compared to ECMP,

depending on the traffic intensity, under the empirical traffic model. The standard deviation (SD)

29

of performance ratio for 30 different runs ranges from 0.14 to 0.01 for Algorithm 1, and from 0.3

to 0.03 for ECMP as traffic intensity grows.

2.5.2 Experimental Results for JellyFish

Figure 2.3a shows that the aggregate cost under Algorithm 1 indeed converges to the optimal

solution which again verifies Theorem 1. Figures 2.3b and 2.3c compare the performance of Al-

gorithm 1 and ECMP, normalized with the lower-boud on the optimal solution (CVX), under both

the exponential and empirical traffic models. As before, the traffic intensity is measured by the

ratio between the steady state offered load and the bisection bandwidth. To determine the bisection

bandwidth, we have used the bounds reported in [57, 58] for regular random graphs. Again we

see that our myopic algorithm performs very well in all light, medium, and high traffics. In Jelly-

Fish, Algorithm 1 yields performance gains ranging from 60% to 70%, compared to ECMP, under

the empirical traffic model. Corresponding SD for 30 different runs ranges from 0.04 to 0.01 for

Algorithm 1, and from 0.1 to 0.05 for ECMP as traffic intensity grows.

2.6 Randomized Myopic Algorithms

Algorithm 1 needs to consider all the available paths for an arriving flow and finds the shortest

path based on the (integral (2.5) or differential (2.6)) marginal cost of paths. In this section, we

describe and empirically evaluate randomized versions of our myopic algorithm which have less

complexity than Algorithm 1, while can effectively provide a large fraction of the performance

gain obtained by Algorithm 1. Our approach is motivated by the literature on randomized load

balancing for scheduling jobs in servers, where a widely used idea is that, instead of considering

all the servers and assigning the arriving job to the least-loaded server, k servers are first chosen at

random (for some k ≥ 2) and then the job is assigned to the least-loaded server among them. This

idea was originally proposed in [6], where it was shown that having k = 2 leads to exponential

improvement in the expected time a job spends in the system over k = 1 which is basically the

totally random assignment.

30

In our setting, a counterpart of this approach can be used for scheduling of flows in paths as

follows. Fix k, when a flow is generated, the algorithm chooses k paths at random out of the

available paths for the flow, then calculates the marginal costs of these k paths according to the

integral or the differential form formulas, and assigns the flow to the path with the minimum path

marginal cost among these k paths. See Algorithm 2 for the full description.

Algorithm 2 Randomized Myopic Algorithm with Parameter k
Suppose a type- j flow arrives at time t when the system is in state Y(t). Then,

1: Choose k paths from the set |Rj |, uniformly at random, let R(k)j denotes this subset of paths.

2: Compute the path marginal costs w(j)i (Y (t)), i ∈ R(k)j , in either of the forms below:

• Integral form:

w
(j)
i (Y (t)) =

∑
l∈i

∆
(j)
l (Y (t)), (2.35)

• Differential form:

w
(j)
i (Y (t)) =

∑
l∈i

δ
(j)
l (Y (t)). (2.36)

3: Place the flow on a path i such that

i = arg min
k∈R(k)j

w
(j)
k (Y (t)). (2.37)

Break ties in (2.37) uniformly at random.

We notice that ECMP in structured topologies like FatTree, where all candidate paths for an

arriving flow have the same number of links (same length), is basically the random assignment of

flows to the paths which is identical to setting k = 1 in Algorithm 2.

Next, we empirically evaluate the performance of Algorithm 2 for different values of k. We

present the results for two different topologies and two traffic model as in Section 2.5. For Jelly-

Fish, we consider (at most) the first 20 shortest paths (in terms of the number of links) for each

pairs of switches to be consistent with Section 2.5.

31

Traffic Intensity

0.3 0.6 0.9

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 C
o

s
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
k=1

k=2

k=4

k=8

k=12

Alg.1

(a) Exponential traffic model.

Traffic Intensity

0.3 0.6 0.9

N
o
rm

a
liz

e
d
 N

e
tw

o
rk

 C
o
s
t

0

0.5

1

1.5

2

2.5
k=1

k=2

k=4

k=8

k=12

Alg.1

(b) Empirical traffic model.

Figure 2.4: Performance of Algorithm 2 with different values of k, in FatTree, normalized with the
Algorithm 1.

2.6.1 Experimental Results for FatTree

Figures 2.4a and 2.4b show the cost performance under Algorithm 2 with different values of

k, normalized by the cost of Algorithm 1, under the exponential and the empirical traffic models

respectively. Note that Algorithm 2 with k = 16 is equivalent to Algorithm 1, as there are at most

16 available paths for an arriving flow in the FatTree topology we described in Section 2.5. Error

bars in all plots correspond to standard deviation of normalized mean network cost computed from

results of 30 runs.

In these two plots, we can see that the maximum improvement in network cost we get by increasing

k happens at k = 2 compared with random assignment of flows, k = 1. Furthermore, as we increase

value of k we get smaller improvement in performance. For instance, normalized cost improves

about 0.4 by increasing k from 1 to 2, while the improvement from k = 2 to k = 4 is about 0.1, for

traffic intensity equal to 0.3 under exponential model (Figure 2.4a). This behavior is seen in both

figures, and is more profound for higher traffic intensity.

2.6.2 Experimental Results for JellyFish

Figures 2.5a and 2.5b show the network cost under Algorithm 2 with different values of k,

normalized by the cost of Algorithm 1, under the exponential and the empirical traffic models

32

Traffic Intensity

0.3 0.6 0.9

N
o
rm

a
liz

e
d
 N

e
tw

o
rk

 C
o
s
t

0

0.5

1

1.5

2

2.5

3

3.5

4
k=1

k=2

k=4

k=8

k=12

Alg.1

(a) Exponential traffic model

Traffic Intensity

0.3 0.6 0.9

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 C
o

s
t

0

0.5

1

1.5

2

2.5

3

3.5

4
k=1

k=2

k=4

k=8

k=12

Alg.1

(b) Empirical traffic model

Figure 2.5: Performance of Algorithm 2 with different values of k in JellyFish, normalized with
the Algorithm 1.

respectively. Note that Algorithm 2 with k = 20 is equivalent to Algorithm 1, as there are at most

20 available paths considered between any two switches in the JellyFish topology we described in

Section 2.5.

In these figures, we observe the same behavior as what discussed for FatTree: the performance

improvement obtained by increasing k by one is larger for smaller k. Also, comparing Figures 2.5a

and 2.5b with Figures 2.3b and 2.3c, in order for Algorithm 2 to beat ECMP–which only considers

shortest paths (in the terms of the number of links)–we need to choose k ≥ 12.

We also note that in JellyFish, for small k (e.g., k = 1, 2), the normalized cost under the

randomized algorithm increases as traffic intensity grows, unlike the results for FatTree. This can

be justified by noting that the symmetric structure of FatTree allows random assignment of flows to

balance the load better as traffic intensity increases (higher flow arrival rates) because the number of

flow-to-path assignment decisions increases. However, in JellyFish the structure is asymmetric and

long paths are used more frequently by the randomized algorithm as traffic intensity increases. As

a result, the convexity of the link cost function, and the fact that the network cost is the summation

of all links’ costs, will cause a larger network cost in higher traffic intensities.

Based on the simulations, we conclude that to get a reasonably good performance, we need

smaller values of k in FatTree compared to JellyFish. This can be attributed to the fact that all

the candidate paths for a flow in the FatTree topology have the same number of links, while in

33

the JellyFish topology, paths can be very different in terms of their number of links. So selection

of k paths completely at random, as used in Algorithm 2, might lead to using long paths which

contribute more to the network cost. Thus, uniform sampling seems more suitable for symmetric

topologies like FatTree.

2.7 Formal Proofs of Fluid Limits and Theorem 1

2.7.1 Proof of Fluid Limits

We prove the existence of fluid limits under Algorithm 1 and derive the corresponding fluid

equations (2.12a)-(2.12d). Arguments in this section are quite standard [51], [59], [60]. Recall that

Y r(t) is the system state with the flow arrival rate rλ j , j ∈ J , and initial state Y r(0). The fluid-

scale process is yr(t) = Y r(t)/r , t ∈ [0,∞). Similarly, zr
l (t) = Zr

l (t)/r and x(j)
r
(t) = X (j)

r
(t)/r are

defined. We assume that yr(0) → y(0) as r →∞ for some fixed y(0).

We first show that, under Algorithm 1, the limit of the process {yr(t)}t≥0 exists along a subse-

quence of r as we show next. The process Y r(t) can be constructed as follows

Y (j)i
r
(t) =Y (j)i

r
(0) + Πa

i, j(

∫ t

0
P(j)i (Y

r(s))rλ j ds)

− Πd
i, j(

∫ t

0
µ jY

(j)
i

r
(s)ds), ∀ j ∈ J, i ∈ Rj

(2.38)

where Πa
i, j(.) and Πd

i, j(.) are independent unit-rate Poisson processes, and P(j)i (Y
r(t)) is the proba-

bility of assigning a type- j flow to path i when the system state is Y r(t). Note that by the Functional

Strong Law of Large Numbers [61], almost surely,

1
r
Π

a
i, j(rt) → t, u.o.c.;

1
r
Π

d
i, j(rt) → t, u.o.c. (2.39)

where u.o.c. means uniformly over compact time intervals. Define the fluid-scale arrival and

34

departure processes as

ar
i, j(t) =

1
r
Π

a
i, j(

∫ t

0
P(j)i (Y

r(s))rλ j ds),

dr
i, j(t) =

1
r
Π

d
i, j(

∫ t

0
µ jY

(j)
i

r
(s)ds).

(2.40)

Lemma 5. (Convergence to fluid limit sample paths) If yr(0) → y(0), then almost surely, every

subsequence (yrn, arn, drn) has a further subsequence (yrnk , arnk , drnk) such that (yrnk , arnk , drnk) →

(y, a, d). The sample paths y, a, d are Lipschitz continuous and the convergence is u.o.c.

Proof. The proof is standard and follows from the fact that ar
i, j(.) and dr

i, j(.) are asymptotically Lip-

schitz continuous (see e.g., [51], [59], [62] for similar arguments), namely, there exists a constant

C > 0 such that for 0 ≤ t1 ≤ t2 < ∞,

lim sup
r
(ar

i, j(t2) − ar
i, j(t1)) ≤ C(t2 − t1), (2.41)

and similarly for dr
i, j(.). More precisely, for arrival process ar

i, j(.), we argue that,

lim sup
r
(ar

i, j(t2) − ar
i, j(t1))

= lim sup
r

1
r
Π

a
i, j(

∫ t2

t1
P(j)i (Y

r(s))rλ j ds)

(a)
≤ lim sup

r

1
r
Π

a
i, j

(∫ t2

t1
rλ j ds

)
= lim sup

r
(
1
r
Π

a
i, j(rλ j(t2 − t1)))

where inequality (a) follows from the fact that P(j)i (Y
r(s)) ≤ 1. Using (2.39), we obtain (2.41). The

argument is similar for dr
i, j(.), noting that (yr(.)) is uniformly bounded over any finite time interval

for large r . So the limit (y, a, d) exists along the subsequence. �

Proof of Lemma 1. It follows from (2.38), (2.40), (2.39), and the existence of the fluid limits

(Lemma 5), that

y
(j)
i (t) = y

(j)
i (0) + a(j)i (t) − d(j)i (t),

35

where d(j)i (t) =
∫ t

0 y
(j)
i (s)µ j ds, and

∑
i∈Rj

a(j)i (t) = λ j t, a(j)i (t) is nondecreasing. The fluid equa-

tions (2.12a) and (2.12c) are the diffrential form of these equations (the fluid sample paths are

Lipschitz continuous so the derivatives exist almost everywhere), where

p(j)i (t) :=
1
λ j

da(j)i (t)

dt
. (2.42)

For any type j, and for w(j)i (y(t)) defined in (2.12d), let

w?j (y(t)) = min
i∈Rj

w
(j)
i (y(t)).

Consider any regular time t and a path i < arg mini∈Rj
w
(j)
i (y(t)). By the continuity of w(j)i (y(t)),

there must exist a small time interval (t1, t2) containing t such that

w
(j)
i (y(τ)) > w?j (τ) ∀τ ∈ (t1, t2).

Consequently, for all r large enough along the subsequence,

w
(j)
i (y

r(τ)) > w?j (y
r(τ)) ∀τ ∈ (t1, t2).

Multiplying both sides by rα, it follows that

w
(j)
i (Y

r(τ)) > w?j (Y
r(τ)), ∀τ ∈ (t1, t2).

Hence P(j)i (Y
r(τ)) = 0, τ ∈ (t1, t2), and ar(j)

i (t1, t2) = 0, for all r large enough along the subse-

quence. Therefore a(j)i (t1, t2) = 0 which shows that (d/dt)a(j)i (t) = 0 at t ∈ (t1, t2). This estab-

lishes (2.12b). �

36

2.7.2 Proof of Theorem 1

We first show that

F(yr(∞)) =⇒ F?, (2.43)

where F? = F(Υ?) is the optimal cost. By Proposition 1 and the continuity of F(·), for any

fluid sample path y(t) with initial condition y(0), we can choose tε1 large enough such that given

any small ε1 > 0, |F(y(tε1)) − F?| ≤ ε1. With probability 1, every subsequence yrn has a further

subsequence yrnk such that yrnk (t) → y(t) u.o.c. (see Lemma 5), hence, by the continuous mapping

theorem [61], we also have F(yrnk (t)) → F(y(t)), u.o.c. For any ε2 > 0, for rnk large enough, we

can choose an ε3 > 0 such that, uniformly over all initial states yrnk (0) such that ‖yrnk (0) − y(0)‖ ≤

ε3,

P{|F(yrnk (tε1) − F(y(tε1))| < ε1} > 1 − ε2 (2.44)

This claim is true, since otherwise for a sequence of initial states yrnk (0) → y(0) we have

P{|F(yrnk (tε1) − F(y(tε1))| < ε1} ≤ 1 − ε2,

which is impossible because, almost surely, we can choose a subsequence of rnk along which

uniform convergence F(yrnk (t)) → F(y(t)), with initial condition y(0) holds. Hence,

P{|F(yrnk (tε1)) − F?| < 2ε1}

≥ P{|F(yrnk (tε1) − F(y(tε1))| + |F(y(tε1)) − F?| < 2ε1}

≥ P{|F(yrnk (tε1) − F(y(tε1))| < ε1} > 1 − ε2

which in particular implies

F(yrnk (∞)) =⇒ F?,

37

because ε1 and ε2 can be made arbitrarily small. Hence, we have shown that every sequence

F(yrn(∞)) has a further subsequence F(yrnk (∞)) that converges to the same limit F? (the unique

optimal cost). Therefore in view of Theorem 2.6 of [61], we can conclude that F(yr(∞)) =⇒ F?.

Next, we show (2.19). Under any algorithm (including Algorithm 1 and the optimal one),

∑
i∈Rj

Y (j)i
r
(∞)/r = X (j)

r
(∞)/r,

where X (j)
r
(∞) has Poisson distribution with mean rρ j , and X (j)

r
(∞), j ∈ J , are independent.

Let,

s̄ = max
j∈J

s j < ∞.

The traffic over each link l is clearly bounded as

Zr
l /r < s̄

∑
j

X (j)
r
(∞)/r = s̄Xr(∞)/r,

where Xr(∞) has Poisson distribution with mean r
∑

j ρ j . Hence, F(yr(∞)) is stochastically dom-

inated by |E |g
(
s̄Xr(∞)/r

)
, and g is polynomial. It then follows that the sequence of random

variables {F(yr(∞))} (and also {yr(∞)}) are uniformly integrable under any algorithm. Then, in

view of (2.43), by Theorem 3.5 of [61], under our Algorithm 1.

E
[
F(Y r(∞)/r)

]
→ F?. (2.45)

Now consider any optimal algorithm for the optimization (2.3). It holds that

F(E
[
yr

opt(∞)

]
) ≤ E

[
F(yr

opt(∞))

]
≤ E

[
F(yr(∞))

]
,

where the first inequality is by Jensen’s inequality, and the second follows from definition of opti-

38

mality. Taking the limit as r →∞, it follows by an squeeze argument that

E
[
F(Y r

opt(∞)/r)
]
→ F?. (2.46)

Finally, (2.45) and (2.46) will imply (2.19) in view of the polynomial structure of F.

39

Chapter 3: Coflow Scheduling to Minimize The Weighted Average

Completion Time

3.1 Introduction

Many data-parallel computing applications (e.g. MapReduce [4], Hadoop [63, 64], Dryad [5],

etc.) consist of multiple computation and communication stages or have machines grouped by

functionality. While computation involves local operations in servers, communication takes place

at the level of machine groups and involves transfer of many pieces of intermediate data (flows)

across groups of machines for further processing. In such applications, the collective effect of

all the flows between the two machine groups is more important than that of any of the individual

flows. A computation stage often cannot start unless all the required data pieces from the preceding

stage are received, or the application latency is determined by the transfer of the last flow between

the groups [8, 65].

As an example, consider a MapReduce application. Each mapper performs local computa-

tions and writes intermediate data to the disk, then each reducer pulls intermediate data from

different mappers, merges them, and computes its output. The job will not finish until its last

reducer is completed. Consequently, the job completion time depends on the time that the last

flow of the communication phase (called shuffle) is finished. Such intermediate communication

stages in a data-parallel application can account on average for about 56% of the job’s runtime

(see Appendix A in [66] for more detail), and hence can have a significant impact on application

performance. Optimizing flow-level performance metrics (e.g. the average flow completion time)

have been extensively studied before from both networking systems and theoretical perspective

(see, e.g., [48, 34, 49] and references there.), however, these metrics ignore the dependence among

the flows of an application which is critical for the application-level performance in data-parallel

40

computing applications.

Recently Chowdhury and Stoica [7] have introduced the coflow abstraction to capture these

communication patters. A coflow is defined as a collection of parallel flows whose completion time

is determined by the completion time of the last flow in the collection. Coflows can represent most

communication patterns between successive computation stages of data-parallel applications [8].

Clearly the traditional flow communication is still a coflow with a single flow. Jobs from one or

more data-parallel applications create multiple coflows in a shared data center network. These

coflows could vary widely in terms of the total size of the parallel flows, the number of the parallel

flows, and the size of the individual flows in the coflows (e.g., see the analysis of production

traces in [8]). Classical flow/job scheduling algorithms do not perform well in this environment [8]

because each coflow consists of multiple flows– whose completion time is dominated by its slowest

flow– and further, the progress of each flow depends on its assigned rate at both its source and its

destination. This coupling of rate assignments between the flows in a coflow and across the source-

destination pairs in the network is what makes the coflow scheduling problem considerably harder

than the classical flow/job scheduling problems.

In this chapter, we study the coflow scheduling problem, namely, the algorithmic task of deter-

mining when to start serving each flow and at what rate, in order to minimize the weighted sum

of completion times of coflows in the system. In the case of equal weights, this is equivalent to

minimizing the average completion time of coflows.

3.1.1 Related Work

Several scheduling heuristics have been already proposed in the literature for scheduling coflows,

e.g. [65, 8, 67, 10]. A FIFO-based solution was proposed in [65] which also uses multiplex-

ing of coflows to avoid starvation of small flows which are blocked by large head-of-line flows. A

Smallest-Effective-Bottleneck-First heuristic was ierriorntroduced in Varys [8]: it sorts the coflows

in an ascending order in a list based on their maximum loads on the servers, and then assigns rates

to the flows of the first coflow in the list such that all its flows finish at the same time. The re-

41

maining capacity is distributed among the rest of the coflows in the list in a similar fashion to

avoid under-utilization of the network. Similar heuristics without prior knowledge of coflows were

introduced in Aalo [10]. A joint scheduling and routing of coflows in data center networks was

introduced in [67] where similar heuristics based on a Minimum-Remaining-Time-First policy are

developed. In a more recent work [68], a randomized algorithm with theoretical guarantee is pro-

posed for coflow scheduling problem when flows can be transmitted at arbitrary small granularity

in a general graphs (i.e., rate allocation model, see Section 3.2). This model considers two cases. In

the first case, the flow can completely split over multiple paths between its source and destination

in the network. In the second model, a single path is specified by the model for each flow along

which the flow is transmitted upon scheduling.

Here, we would like to highlight three papers [69, 70, 71] that are more relevant to our work.

These papers consider the problem of minimizing the total weighted completion time of coflows

with release dates (i.e., coflows arrive over time.) and provide algorithms with provable guaran-

tees. This problem is shown to be NP-complete through its connection with the concurrent open

shop problem [8, 69], and then approximation algorithms are proposed which run in polynomial

time and return a solution whose value is guaranteed to be within a constant fraction of the optimal

(a.k.a., approximation ratio). These papers rely on linear programming relaxation techniques from

combinatorial scheduling literature (see, e.g., [72, 73, 74]). In [69], the authors utilize an interval-

indexed linear program formulation which helps partitioning the coflows into disjoint groups. All

coflows that fall into one partition are then viewed as a single coflow, where a polynomial-time

algorithm is used to optimize its completion time. Authors in [70] have recently constructed an in-

stance of the concurrent open shop problem (see [75] for the problem definition) from the original

coflow scheduling problem. Then applying the well-known approximation algorithms for the con-

current open shop problem to the constructed instance, an ordering of coflows is obtained which

is then used in a similar fashion as in [69] to obtain an approximation algorithm. The determinis-

tic algorithm in [70] has better approximation ratio compared to [69], for both cases of with and

without release dates. In [71], a linear program approach based on ordering variables is utilized

42

to develop two algorithms, one deterministic and the other randomized. The deterministic algo-

rithm gives the same bounds as in [70], while the randomized algorithm has better performance

approximation ratios compared to [69, 70], for both cases of with and without release dates.

3.1.2 Main Contributions

In this chapter, we consider the problem of minimizing the total weighted coflow completion

time. Our main contributions can be summarized as follows.

• Coflow Scheduling Algorithm. We use a Linear Program (LP) approach based on ordering

variables followed by a simple list scheduling policy to develop a deterministic algorithm. Our

approach improves the prior algorithms in both cases of with and without release dates. Even if

we consider equal weights for all coflows (i.e., minimizing the average completion time), our algo-

rithm has the best known performance guarantee. Table 3.1 summarizes our results in comparison

with the prior best-known performance bounds. Performance of a deterministic (randomized) al-

gorithm is defined based on approximation ratio, i.e., the ratio between the (expected) weighted

sum of coflow completion times obtained by the algorithm and the optimal value. When coflows

have release dates (which is often the case in practice as coflows are generated at different times),

our deterministic algorithm improves the approximation ratio of 12 [70, 71] to 5, which is also

better than the best known randomized algorithm proposed in [71] with approximation ratio of

3e (≈ 8.16). When all coflows have release dates equal to zero, our deterministic algorithm has

approximation ratio of 4 while the best prior known result is 8 [70, 71] for deterministic and 2e

(≈ 5.436) [71] for randomized algorithms 1. We would like to mention that, although the ran-

domized algorithm in [68], has a better approximation ratio of 2 + ε compared to this work, the

algorithm in this chapter still provides the best approximation ratio when the rate allocation is

restricted to data units (i.e., matching constraint). See Section 3.2 for more details on the model.

• Empirical Evaluations. We evaluate the performance of our algorithm, compared to the prior

1The paper [76] proposes an algorithm with the same approximation guarantee, however, it uses a different linear
programming, and our scheduling policy is much simpler than the policy they proposed. Moreover, we also study
the performance of our algorithm through extensive simulations with synthetic and real traffic traces and compare its
performance with other coflow scheduling algorithms.

43

Table 3.1: Performance guarantees (Approximation ratios)

Case Best known This work
deterministic randomized deterministic

Without release dates 8 [70, 71] 2e [71] 4
With release dates 12 [70, 71] 3e [71] 5

approaches, using both syntectic traffic as well as real traffic based on a Hive/MapReduce trace

from a large production cluster at Facebook. Both synthetic and empirical evaluations show that

our deterministic algorithm indeed outperforms the prior approaches. For instance, for the Face-

book trace with general release dates, our algorithm outperforms Varys [8], the algorithm proposed

in [69], and the algorithm proposed in [71] by 24%, 40%, and 19%, respectively. Finally, we com-

pare the fairness of various algorithms and propose couple of ideas to improve the fairness. The

result presented in this chapter is based on papers [71, 77, 78].

3.2 System Model and Problem Formulation

Datecenter Network: Similar to [8, 69], we abstract out the data center network as one giant

N × N non-blocking switch, with N input links connected to N source servers and N output links

connected to N destination servers. Thus the network can be viewed as a bipartite graph with

source nodes denoted by set I on one side and destination nodes denoted by set J on the other

side (therefore, I∩J = ∅.). Moreover, there are capacity constraints on the input and output links.

For simplicity, we assume all links have equal capacity (as in [69]); nevertheless, our method can

be easily extended to the general case where the links have unequal capacities. Without loss of

generality, we assume that all the link capacities are normalized to one. Scheduling Constraints:

We allow a general class of scheduling algorithms where the rate allocation can be performed

continuously over time, i.e., for each flow, fractional data units can be transferred from its input

link to its corresponding output link over time as long as link capacity constraints are respected.

In the special case that the rate allocation is restricted to data units (packets), each source node

can send at most one packet in every time unit (time slot) and each destination node can receive

44

1

2

3

2

2

2

1

1

1

3

3

3

Source Servers (I) Destination Servers (J)

Coflow
1

2

3

Figure 3.1: A coflow in a 3 × 3 switch architecture.

at most one packet in every time slot, and the feasible schedule has to form a matching of the

switch’s bipartite graph (matching constraint). In this case, our model reduces to the model in [69]

and, as it is shown later, our proposed algorithm will respect the matching constraints, therefore, it

is compatible with both models.

Coflow: A coflow is a collection of flows whose completion time is determined by the comple-

tion time of the latest flow in the collection. The coflow k can be denoted as an N × N demand

matrix D(k). Every flow is a triple (i, j, k), where i ∈ I is its source node, j ∈ J is its destination

node, and k is the coflow to which it belongs. The size of flow (i, j, k) is denoted by dk
i j , which is

the (i, j)-th element of the matrix D(k). For simplicity, we assume that all flows within a coflow

arrive to the system at the same time (as in [69]); however, our results still hold for the case that

flows of a coflow are released at different times (which could indeed happen in practice [10]). A

3 × 3 switch architecture is shown in Figure 3.1 as an example, where a coflow is illustrated by

means of input queues, e.g., the file in the j-th queue at the source link i indicates that the coflow

has a flow from source server i to destination server j. For instance, in Figure 3.1, the illustrated

coflow has 7 flows in total, while two of its flows have source server 1, one goes to destination

server 1 and the other to destination server 3.

Total Weighted Coflow Complettion Time: We consider the coflow scheduling problem with

release dates. There is a set of K coflows denoted by K. Coflow k ∈ K is released (arrives) at

time rk which means it can only be scheduled after time rk . We use fk to denote the finishing

(completion) time of coflow k, which, by definition of coflow, is the time when all its flows have

45

finished processing. In other words, for every coflow k ∈ K,

fk = max
i∈I, j∈J

f k
i j , (3.1)

where f k
i j is the completion time of flow (i, j, k).

For given positive weights wk , k ∈ K, the goal is to minimize the weighted sum of coflow

completion times:
∑K

k=1 wk fk . The weights can capture different priority for different coflows. In

the special case that all the weights are equal, the problem is equivalent to minimizing the average

coflow completion time.

Define

T = max
k∈K

rk +
∑
k∈K

∑
i∈I

∑
j∈J

dk
i j . (3.2)

Note that T is clearly an upper bound on the minimum time required for processing of all the

coflows. We denote by xk
i j(t) the transmission rate assigned to flow (i, j, k) at time t ∈ [0,T]. Then

the optimal rate control must solve the following optimal control problem

minimize
K∑

k=1
wk fk (3.3a)

subject to: fk ≥ f k
i j , i ∈ I, j ∈ J, k ∈ K (3.3b)

dk
i j =

∫ f ki j

0
xk

i j(t)dt, i ∈ I, j ∈ J, k ∈ K (3.3c)∑
j

∑
k

xk
i j(t) ≤ 1, i ∈ I, t ∈ [0,T] (3.3d)∑

i

∑
k

xk
i j(t) ≤ 1, j ∈ J, t ∈ [0,T] (3.3e)

xk
i j(t) = 0, ∀t < rk, i ∈ I, j ∈ J, k ∈ K (3.3f)

xk
i j(t) ≥ 0, i ∈ I, j ∈ J, k ∈ K, t ∈ [0,T] (3.3g)

In the above, the constraint (3.3b) indicates that each coflow k is completed when all its flows

46

have been completed. Note that since the optimization (3.3) is a minimization problem, a coflow

completion time is equal to the completion time of its latest flow, in agreement with (3.1). The

constraint (3.3c) ensures that the demand (file size) of every flow, dk
i j , is transmitted by its com-

pletion time, f k
i j . Constraints (3.3d) and (3.3e) state the capacity constraints on source links and

destination links, respectively. The fact that a flow cannot be transmitted before its release date

(which is equal to release date of its corresponding coflow) is captured by the constraint (3.3f).

Finally, the constraint (3.3g) simply states that the rates are non-negative.

Remark 2. An alternative formulation of (3.3) could be minimizing the weighted sum of delays,

where delay of coflow k is defined as fk − rk . The two minimizations are equivalent as only

the objectives differ in a constant term
∑

k rkwk , however in terms of approximation results they

could be very different. In the case of zero release dates, the two formulations are trivially the

same, and our algorithms yield the same approximation results for both formulations. However,

for the general release dates, there is no constant ratio approximation algorithm for minimizing

the weighted sum of delays. This can be shown through its connection to the single machine

scheduling for which finding a constant approximation algorithm for the delay-based formulation

is NP-complete [79].

3.3 Motivations and Challenges

The coflows can be widely different in terms of the number of parallel flows, the size of individ-

ual flows, the groups of servers involved, etc. Heuristics from traditional flow/task scheduling, such

as shortest- or smallest-first policies [80, 81], do not have a clear equivalence in coflow scheduling.

One can define a shortest or smallest-first policy based on the number of parallel flows in a coflow,

or the aggregate flow sizes in a coflow, however these policies perform poorly [8], as they do not

completely take all the characteristics of coflows into consideration.

Recall that the completion time of a coflow is dominated by its slowest flow (as described by

(3.1) or (3.3b)). Hence, it makes sense to slow down all the flows in a coflow to match the com-

pletion time of the flow that will take the longest to finish. The unused capacity then can be used

47

to allow other coexisting coflows to make progress and the total (or average) coflow completion

time decreases. Varys [8] is the first heuristic that effectively implements this intuition by combin-

ing Smallest-Effective-Bottleneck-First and Minimum-Allocation-for-Desired-Duration policies.

Before describing Varys, we present a few definitions that are used in the rest of this chapter.

Definition 2 (Aggregate Size and Effective Size of a Coflow). Let

dk
i =

∑
j∈J

dk
i j ; dk

j =
∑
i∈I

dk
i j, (3.4)

be respectively the aggregate flow size that coflow k needs to send from source node i and receive

at destination node j. The effective size of coflow k is defined as

W(k) = max{max
i∈I

dk
i ,max

j∈J
dk

j }. (3.5)

Thus W(k) is the maximum amount of data that needs to be sent or received by a node for

coflow k. Note that, due to normalized capacity constraints on links, when coflow k is released, we

need at least W(k) amount of time to process all its flows.

Overview of Varys. Varys [8] orders coflows in a list based on their effective size in an

increasing order. Transmission rates of individual flows of the first coflow in the list are set such

that all its flows complete at the same time. The remaining capacity of links are updated and

iteratively distributed among other coflows in the list in a similar fashion. Formally, the completion

time of coflow k, k = 1, ...,K , is calculated as follows

Γ
k = max{max

i∈I

dk
i

Rem(i)
,max

j∈J

dk
j

Rem(j)
},

where Rem(i) (similarly, Rem(j)) is the remaining capacity of input link i (output link j) after

transmission rates of all coflows k′ < k are set. Then for flow (i, j, k), Varys assigns transmission

rate xk
i j = dk

i j/Γ
k . In case that there is still idle capacity, for each input link i ∈ I, the remaining

capacity is allocated to the flows of coflows subject to capacity constraints in corresponding output

48

links. Once the first coflow completes, all the flow sizes and the scheduling list are updated and the

iterative procedure is repeated to complete the second coflow and distribute the unused capacity.

The procedure is stopped when all the coflows are processed.

While Varys performs better than traditional flow scheduling algorithms, it could still be inef-

ficient. The main reason is that Varys is oblivious to the dependency among coflows that share a

(source or destination) node. To further expose this issue, we present a simple example.

Example 1 (Inefficiency of Varys). Consider the 2 × 2 switch network illustrated in Figure 3.2

where there are 3 coflows in the system. In Figure 3.2a, the effective coflow sizes are W(1) =

W(2) = W(3) = 1, therefore, Varys cannot differentiate among coflows. Scheduling coflows in the

order {1, 2, 3} or {2, 3, 1} are both possible under Varys but they result in different total completion

times, 1 + 2 + 2 = 5 and 1 + 1 + 2 = 4, respectively (assuming the weights are all one for all

the coflows). Next, consider a slight modification of flow sizes, as shown in Figure 3.2b. In this

example W(1) = 2 and W(2) = W(3) = 3. Based on Varys algorithm, coflow 1 is scheduled first

during time interval (0, 2] at rate 1. When coflow 1 completes, coflows 2 and 3 are scheduled

in time interval (2, 5]; hence, the total completion time will be 2 + 5 + 5 = 12. However, if we

schedule coflows 2 and 3 first, the total completion times will reduce to 3 + 3 + 5 = 11. Note that

in both examples, coflow 1 completely blocks coflows 2 and 3, which is not captured by Varys. In

fact, the negative impact of ignoring configuration of coflows and their shared nodes is much more

profound in large networks with a large number of coflows (see simulations in Section 3.8).

Overview of LP-based algorithms. The papers [69] and [71] use Linear Programs (LPs)

(based on interval-indexed variables or ordering variables) that capture more information about

coflows and provide a better ordering of coflows for scheduling compared to Varys [8]. At the high

level, the technical approach in these papers is based on partitioning jobs (coflows) into polynomial

number of groups based on solution to a polynomial-sized relaxed linear program, and minimizing

the completion time of each group by treating the group as a single coflow. Grouping can have a

significant impact on decreasing the completion time of coflows. For instance, in view of examples

in Figure 3.2, grouping coflows 2 and 3, and scheduling them first, decreases the total completion

49

1

1

2

2

1

1

1

2
Coflow 1

Coflow 2

Coflow 3

1

1

1
2

1

1

1

1 1

1

1

11
2

time time

Ordering: {1,2,3} Ordering: {2,3,1}

(a) All coflows have equal effective size. Both orderings are possible under Varys, with the total completion
time of 1 + 2 + 2 = 5 and 1 + 1 + 2 = 4, for the left and right ordering respectively.

2

2

1

1

1

2
Coflow 1

Coflow 2

Coflow 3

1
2

2

2

3

3

time

Ordering: {1,2,3}

3

2

2

3

1
2

2

2

3

3

time

Ordering: {2,3,1}

(b) Varys schedules coflow 1 first, according to the ordering {1, 2, 3}, which gives a total completion time of
2+ 5+ 5 = 12. The optimal schedule is the ordering {2, 3, 1} with a total completion time of 3+ 3+ 5 = 11.

Figure 3.2: Inefficiency of Varys in a 2 × 2 switch network with 3 coflows.

time as explained.

NP-hardness and connection to the concurrent open shop problem. The concurrent open

shop problem [75] can be essentially viewed as a special case of the coflow scheduling problem

when demand matrices are diagonal (in the jargon of concurrent open shop problem, the coflows

are jobs, the flows in each coflow are tasks for that job, and the destination nodes are machines

with unit capacities). It is known that it is NP-complete to approximate the concurrent open shop

problem, when jobs are released at time zero, within a factor better than 2 − ε for any ε > 0 [82].

Although the model we consider for coflow scheduling is different from the model used in [69],

similar reduction as proposed in [69] can be leveraged to show NP-completness of the coflow

scheduling problem. More precisely, every instance of the concurrent open shop problem can be

reduced to an instance of coflow scheduling problem (see Section 3.9 for the details), hence it is

50

NP-complete to approximate the coflow scheduling problem (without release dates) within 2 − ε ,

for any ε > 0. There are 2-approximation algorithms for the concurrent open shop (e.g., [75]),

however, these algorithms cannot be ported to the coflow scheduling problem due to the coupling of

source and destination link capacity constraints in the coflow scheduling problem (see Section 3.9

for a counter example that shows the 2-approximation algorithm from concurrent open shop cannot

be ported to the coflow scheduling problem).

Next, we describe our coflow scheduling algorithm. The algorithm is based on a linear program

formulation for sorting the coflows followed by a simple list scheduling policy

3.4 Linear Programing (LP) Relaxation

In this section, we use linear ordering variables (see, e.g., [83, 74, 84, 75]) to present a relaxed

integer program of the original scheduling problem (3.3). We then relax these variables to obtain a

linear program (LP). In the next section, we use the optimal solution to this LP as a subroutine in

our scheduling algorithm.

Ordering variables. For each pair of coflows, if both coflows have some flows incident at some

node (either originated from or destined at that node), we define a binary variable which indicates

which coflow finishes all its flows before the other coflow does so in the schedule. Formally, for

any two coflows k, k′ with aggregate flow sizes dk
m , 0 and dk′

m , 0 on some node m ∈ I ∪ J

(recall definition (3.4)), we introduce a binary variable δkk ′ ∈ {0, 1} such that δkk ′ = 1 if coflow

k finishes all its flows before coflow k′ finishes all its flows, and it is 0 otherwise. If both coflows

finish their flows at the same time (which is possible in the case of continuous-time rate control),

we set either one of δkk ′ or δk ′k to 1 and the other one to 0, arbitrarily.

51

Relaxed Integer Program (IP). We formulate the following Integer Program (IP):

(IP) min
K∑

k=1
wk fk (3.6a)

fk ≥ dk
i +

∑
k ′∈K

dk ′
i δk ′k i ∈ I, k ∈ K (3.6b)

fk ≥ dk
j +

∑
k ′∈K

dk ′
j δk ′k j ∈ J, k ∈ K (3.6c)

fk ≥ W(k) + rk k ∈ K (3.6d)

δkk ′ + δk ′k = 1 k, k′ ∈ K (3.6e)

δkk ′ ∈ {0, 1} k, k′ ∈ K (3.6f)

In the above, to simplify the formulation, we have defined δkk ′, for all pairs of coflows, by defining

dk
m = 0 if coflow k has no flow originated from or destined to node m.

The constraint (3.6b) (similarly (3.6c)) follows from the definition of ordering variables and

the fact that flows incident to a source node i (a destination node j) are processed by a single link

of unit capacity. To better see this, note that the total amount of traffic can be sent in the time

period (0, fk] over the i-th link is at most fk . This traffic is given by the right-hand-side of (3.6b)

(similarly (3.6c)) which basically sums the aggregate size of coflows incident to node i that finish

their flows before coflow k finishes its corresponding flows, plus the aggregate size of coflow k at

node i itself, dk
i . This implies constraint (3.6b) and (3.6c). The fact that each coflow cannot be

completed before its release date plus its effective size is captured by constraint (3.6d). The next

constraint (3.6e) indicates that for each two incident coflows, one precedes the other.

Note that this optimization problem is a relaxed integer program for the problem (3.3), since

the set of constraints are not capturing all the requirements we need to meet for a feasible sched-

ule. For example, we cannot start scheduling flows of a coflow when it is not released yet, while

constraint (3.6d) does not necessarily avoid this, thus leading to a smaller value of finishing time

compared to the optimal solution to (3.3). Further, release dates and scheduling constraints in op-

timization (3.3) might cause idle times in flow transmission of a node, therefore yielding a larger

52

1

2

2

2

1

1

Coflows
1

2

Coflow 1
Coflow 2

Coflow 3
Coflow 4

Figure 3.3: 4 coflows in a 2 × 2 switch architecture, flow (1, 1) is released at time 0, and all the
others are released at time 1.

value of finishing time for a coflow than what is restricted by (3.6b), (3.6c), (3.6d). To further

illustrate this issue, we present a simple example.

Example 2. Consider a 2 × 2 switch network as in Figure 3.3. Assume there are 4 coflows, each

has one flow. Flow (1, 1, 1) is released at time 0 with size 1, and the other three flows are released

at time 1 with size 2. It is easy to check that the following values for the ordering variables

and flow completion times satisfy all the constraints (3.6b)−(3.6f). For brevity, we only report

the ordering variables for coflows that actually share a node. For example, it is redundant to

consider ordering variables corresponding to coflow 1 and coflow 4 as they are not incident at

any (source/destination) node and any value for their associated pairwise ordering variables does

not have any impact on the optimal value for IP (3.6). Below, the ordering variables and coflow

completion times are presented, and all the ordering variables which are not specified can be taken

as zero.

δ12 = 1, δ34 = 1,

δ13 = 1, δ24 = 1,

f1 = 1, f2 = 3,

f3 = 3, f4 = 4.

While these values satisfy (3.6b)−(3.6f), this is not a valid schedule since it requires transmission

of flow (2, 2, 4) starting at time 0, while it is not released yet. To see this, note that f1 = 1, so to

finish processing of coflow 1 or equivalently flow (1, 1, 1) by time 1, we need to start its transmission

at maximum rate at time 0. Then, due to the capacity constraints, the first time flows (1, 2, 2) and

(2, 1, 3) can start transmission is at time 1, when flow (1, 1, 1) has been completed. Since we require

53

to complete both of these flows at time 3, they need to be transmitted at maximum rate in the time

interval (1, 3]. Therefore, the only way to finish flow (2, 2, 4) at time 4 is to send one unit of its data

in time interval (0, 1] and its remaining unit of data in time interval (3, 4], but this flow has not

been released before time 1. So the proposed IP does not address all the scheduling constraints.

Relaxed Linear Program (LP). In the linear program relaxation, we allow the ordering vari-

ables to be fractional. Specifically, we replace the constraints (3.6f) with the constraints (3.7b)

below. We refer to the obtained linear problem by (LP).

(LP) min
K∑

k=1
wk fk (3.7a)

subject to: (3.6b) – (3.6e),

δkk ′ ∈ [0, 1] k, k′ ∈ K (3.7b)

We use f̃k to denote the optimal solution to this LP for the completion time of coflow k. Also we

use ÕPT =
∑

k wk f̃k to denote the corresponding objective value. Similarly we use f?k to denote

the optimal completion time of coflow k in the original coflow scheduling problem (3.3), and use

OPT =
∑

k wk f?k to denote its optimal objective value. The following lemma establishes a relation

between ÕPT and OPT.

Lemma 6. The optimal value of the LP, ÕPT, is a lower bound on the optimal total weighted

completion time OPT of coflow scheduling problem.

Proof. Consider an optimal solution to the optimization problem (3.3). We set ordering variables

so as δkk ′ = 1 if coflow k precedes coflow k′ in this solution, and δkk ′ = 0, otherwise. If both

coflows finish their corresponding flows at the same time, we set either one to 1 and the other

one to 0. We note that this set of ordering variables and coflow completion times satisfies con-

straints (3.6b) and (3.6c) (by taking integral from both side of constraint (3.3d) and (3.3e) from

time 0 to fk) and also constraint (3.6d) (by combining constraints (3.3c) and (3.3f)). Furthermore,

the rest of (LP) constraints are satisfied by the construction of ordering variables. Therefore, opti-

54

mal solution of problem (3.3) can be converted to a feasible solution to (LP). Hence, the optimal

value of LP, ÕPT, is at most equal to OPT. �

3.5 Coflow Scheduling Algorithm

In this section, we describe our polynomial-time coflow scheduling algorithm and state the

main results about its performance guarantees.

The scheduling algorithm is presented in Algorithm 3. It has three main steps:

1. solve the relaxed LP (3.7),

2. use the solution of the relaxed LP to order flows of coflows,

3. apply a simple list scheduling algorithm based on the ordering.

The relaxed LP (3.7) has O(K2) variables and O(K2 + KN)) constraints and can be solved

efficiently in polynomial time, e.g. using interior point method [85] (see Section 3.8.5 for more

details about the complexity).

Then, the algorithm orders the coflows based on values of f̃k (optimal solution to LP) in non-

decreasing order. More precisely, we re-index coflows such that,

f̃1 ≤ f̃2 ≤ ... ≤ f̃K . (3.8)

Ties are broken arbitrarily. We emphasize that we do not need to round the values of the ordering

variables in LP to obtain the ordering of coflows, instead we use the values of f̃k (optimal solution

to LP) which do not need to be integer.

At any time, the algorithm maintains a list for the flows in the system such that for every two

flows (i, j, k) and (i′, j′, k′) with k < k′ (based on ordering (3.8)), flow (i, j, k) is placed before

flow (i′, j′, k′) in the list. Flows of the same coflow are listed in an arbitrary order. The algorithm

scans the list starting from the first flow and schedules a flow if both its corresponding source

and destination links are idle at that time. Upon completion of a flow or arrival of a coflow, the

55

algorithm preempts the schedule, updates the list, and starts scheduling the flows based on the

updated list.

Algorithm 3 Deterministic Coflow Scheduling Algorithm

Suppose coflows
[
dk

i j, 1 ≤ i, j ≤ N
]
, k ∈ K, with release dates rk , k ∈ K, and weights wk ,

k ∈ K, are given.
1: Solve the linear program (LP) and denote its optimal solution by { f̃k ; k ∈ K}.
2: Order and re-index the coflows such that:

f̃1 ≤ f̃2 ≤ ... ≤ f̃K, (3.9)

where ties are broken arbitrarily.
3: Wait until the first coflow is released.
4: while There is some incomplete flow, do
5: List the released and incomplete flows respecting the ordering in (3.9). Let L be the

total number of flows in the list.
6: for l = 1 to L do
7: Denote the l-th flow in the list by (il, jl, kl),
8: if Both the links il and jl are idle, then
9: Schedule flow (il, jl, kl).

10: end if
11: end for
12: while No new flow is completed or released do
13: Transmit the flows that get scheduled in line 9 at maximum rate 1.
14: end while
15: end while

The main result regarding the performance of Algorithm 3 is stated in Theorem 2.

Theorem 2. Algorithm 3 is a polynomial-time 5-approximation algorithm for the problem of min-

imizing total weighted completion time of coflows with release dates.

When all coflows are released at time 0, we can improve the algorithm’s performance ratio.

Corollary 1. If all coflows are released at time 0, then Algorithm 3 is a 4-approximation algorithm.

3.6 Proof Sketch of Main Results

In this section, we present the sketch of proofs of the main results for our polynomial-time

coflow scheduling algorithm. Before proceeding with the proofs, we make the following defini-

56

tions.

Definition 3 (Aggregate Size and Effective Size of a List of Coflows). For a list of K coflows and

for a node s ∈ I∪J , we define W(1, · · · , k; s) to be the amount of data needs to be sent or received

by node s in the network considering only the first k coflows. We also denote by W(1, · · · , k) the

effective size of the aggregate coflow constructed by the first k coflows, k ≤ K . Specifically,

W(1, · · · , k; s) =
k∑

l=1
dl

s (3.10)

W(1, · · · , k) = max
s∈I∪J

W(1, · · · , k; s) (3.11)

3.6.1 Bounded Completion Time for The Collection of Coflows

Consider the list of coflows according to the ordering in (3.8) and define W(1, · · · , k) based on

Definition 3. The following lemma demonstrates a relationship between completion time of coflow

k obtained from (LP) and W(1, · · · , k) which is used later in the proofs.

Lemma 7. f̃k ≥
W(1,··· ,k)

2 .

Proof. The proof uses similar ideas as in Gandhi, et al. [84] and Kim [73]. Using constraint (3.6b),

for any source node i ∈ I, we have

dl
i f̃l ≥ (dl

i)
2 +

∑
l ′∈K

dl
i dl ′

i δl ′l (3.12)

which implies that,
k∑

l=1
dl

i f̃l ≥
k∑

l=1
(dl

i)
2 +

k∑
l=1

k∑
l ′=1

dl ′
i dl

i δl ′l

=
1
2

(
2 ×

k∑
l=1
(dl

i)
2

+

k∑
l=1

k∑
l ′=1

(
dl ′

i dl
i δl ′l + dl ′

i dl
i δll ′

))
(3.13)

57

We simplify the right-hand side of (3.13), using constraint (3.6e), combined with the following

equality
k∑

l=1
(dl

i)
2 +

k∑
l=1

k∑
l ′=1

dl ′
i dl

i = (

k∑
l=1

dl
i)

2, (3.14)

and conclude that
k∑

l=1
dl

i f̃l ≥
1
2

k∑
l=1
(dl

i)
2 +

1
2
(

k∑
l=1

dl
i)

2

≥
1
2
(

k∑
l=1

dl
i)

2 =
1
2
(W(1, · · · , k; i))2

(3.15)

Where the last equality follows from Definition 3.10. Similar argument results in the following

inequality for any destination node j ∈ J , i.e.,

k∑
l=1

dl
j f̃l ≥

1
2
(W(1, · · · , k; j))2.

Now consider the node s? which has the maximum load induced by the first k coflows, namely,

W(1, · · · , k) = W(1, · · · , k; s?).

f̃kW(1, · · · , k; s?) = f̃k
k∑

l=1
dl

s?

≥

k∑
l=1

dl
s? f̃l

≥
1
2
(W(1, · · · , k; s?))2

(3.16)

This implies that,

f̃k ≥
1
2

W(1, · · · , k; s?) =
1
2

W(1, · · · , k). (3.17)

This completes the proof. �

Note that W(1, · · · , k) is a lower bound on the time that it takes for all the first k coflows to

be completed (as a result of the capacity constraints in the optimization (3.3)). Hence, Lemma 7

states that by allowing ordering variables to be fractional, completion time of coflow k obtained

58

from (LP) is still lower bounded by half of W(1, · · · , k).

3.6.2 Proof of Theorem 2 and Corollary 1

Proof of Theorem 2. We use { f̂k}Kk=1 to denote the actual coflow completion times under our deter-

ministic algorithm. Suppose flow (i, j, k) is the last flow of coflow k that is completed. In general,

Algorithm 3 may preempt a flow several times during its execution. For now, suppose flow (i, j, k)

is not preempted and use tk to denote the time when its transmission is started (the arguments can

be easily extended to the preemption case as we show at the end of the proof). Therefore

f̂k = f̂ k
i j = tk + dk

i j (3.18)

From the algorithm description, tk is the first time that both links i and j are idle and there are no

higher priority flows to be scheduled (i.e., there is no flow (i, j, k′) from i to j with k′ < k in the

list). By definition of W(1, · · · , k; s), node s, s ∈ {i, j}, has W(1, · · · , k; s) − dk
i j data units to send

or receive by time tk . Since the capacity of all links are normalized to 1, it should hold that

tk ≤ rk +W(1, · · · , k; i) − dk
i j +W(1, · · · , k; j) − dk

i j

≤ rk + 2W(1, · · · , k) − 2di j,

where the last inequality is by Definition 3.11. Combining this inequality with equality (3.18)

yields the following bound on f̂k .

f̂k ≤ rk + 2W(1, · · · , k)

Using Lemma 7 and constraint (3.6d), we can conclude that

f̂k ≤ 5 f̃k,

59

which implies that
K∑

k=1
wk f̂k ≤ 5

K∑
k=1

wk f̃k .

This shows an approximation ratio of 5 for Algorithm 3 using Lemma 6. Finally, if flow (i, j, k) is

preempted, the above argument can still be used by letting tk to be the starting time of its last piece

and dk
i j to be the remaining size of its last piece at time tk . This completes the proof. �

Proof of Corollary 1. When all coflows are released at time 0, tk ≤ W(1, · · · , k)−dk
i j+W(1, · · · , k)−

dk
i j . The rest of the argument is similar to the proof of Theorem 2. Therefore, the algorithm has

approximation ratio of 4 when all coflows are release at time 0. �

3.7 Extension to Online Algorithm

Similar to previous work [69, 70], Algorithm 3 is an offline algorithm, and requires the com-

plete knowledge of the flow sizes and release dates. While this knowledge can be learned in long

running services, developing online algorithms that deal with the dynamic nature and unavailability

of this information is of practical importance. One natural extension of our algorithm to an online

setting, assuming that the coflow information revealed at its release date, is as follows: Upon each

coflow arrival, we re-order the coflows by re-solving the (LP) using the remaining coflow sizes and

the newly arrived coflow, and update the list. Given the updated list, the scheduling is done as in

Algorithm 3. To reduce complexity of the online algorithm, we may re-solve the LP once in every

T seconds, for some T that can be tuned, and update the list accordingly. We leave theoretical and

experimental study of this online algorithm as a future work.

3.8 Empirical Evaluations

In this section, we present our simulation results and evaluate the performance of our algorithm

for both cases of with and without release dates, under both synthetic and real traffic traces. We

also simulate the deterministic algorithms proposed in [71, 69] and Varys [8] and compare their

performance with the performance of our algorithm. Finally, we comment on the fairness issues of

60

the algorithm.

3.8.1 Workload

We evaluate algorithms under both synthetic and real traffic traces.

Synthetic traffic: To generate synthetic traces we slightly modify the model used in [86]. We

consider the problem of size K = 160 coflows in a switch network with N = 16 input and output

links. We denote by M the number of non-zero flows in each coflow. We consider two cases:

• Dense instance: For each coflow, M is chosen uniformly from the set {N, N + 1, ..., N2}. There-

fore, coflows have O(N2) non-zero flows on average.

• Combined instance: Each coflow is sparse or dense with probability 1/2. For each sparse coflow,

M is chosen uniformly from the set {1, 2, ..., N}, and for each dense coflow M is chosen uni-

formly from the set {N, N + 1, ..., N2}.

Given the number M of flows in each coflow, M pairs of input and output links are chosen ran-

domly. For each pair that is selected, an integer flow size (processing requirement) di j is randomly

selected from the uniform distribution on {1, 2, ..., 100}. For the case of scheduling with release

dates, we generate the coflow inter-arrival times uniformly from [1, 100]. We generate 100 in-

stances for each case and report the average algorithms’ performance.

Real traffic: This workload was also used in [8, 69, 71]. The workload is based on a Hive/MapReduce

trace at Facebook that was collected from a 3000-machine cluster with 150 racks. In this trace,

the following information is provided for each coflow: arrival time of the coflow in millisecond,

locations of mappers (rack number to which they belong), locations of reducers (rack number to

which they belong), and the amount of shuffle data in Megabytes for each reducer. We assume

that shuffle data of each reducer in a coflow is evenly generated from all mappers specified for

that coflow. The data trace consists of 526 coflows in total from very sparse coflows (the most

sparse coflow has only 1 flow) to very dense coflows (the most dense coflow has 21170 flows.).

Similar to [69], we filter the coflows based on the number of their non-zero flows, M . Apart from

61

considering all coflows (M ≥ 1), we consider three coflow collections filtered by the conditions

M ≥ 10, M ≥ 30, and M ≥ 50. In other words, we use the following 4 collections:

• All coflows,

• Coflows with M ≥ 10,

• Coflows with M ≥ 30,

• Coflows with M ≥ 50.

Furthermore, the original cluster had a 10:1 core-to-rack oversubscription ratio with a total bi-

section bandwidth of 300 Gbps. Hence, each link has a capacity of 128 MBps. To obtain the

same traffic intensity offered to our network (without oversubscription), for the case of scheduling

coflows with release dates, we need to scale down the arrival times of coflows by 10. For the case

of without release dates, we assume that all coflows arrive at time 0.

3.8.2 Algorithms

We simulate four algorithms: the algorithm proposed in this chapter, Varys [8], the determinis-

tic algorithm in [69], and the deterministic algorithm in [71]. We briefly overview these algorithms

and also elaborate on the backfilling strategy that has been combined with the deterministic algo-

rithms in [69, 71] to avoid under utilization of network resources.

1. Varys [8]: Scheduling and rate assignments under Varys were explained in detail in Sec-

tion 3.3. There is a parameter δ in the original design of Varys that controls the tradeoff between

fairness and completion time. Since we focus on minimizing the total completion time of coflows,

we set δ to 0 which yields the best performance of Varys. In this case, upon arrival or completion

of a coflow, the coflow ordering is updated and the rate assignment is done iteratively as described

in Section 3.3.

2. Interval-Indexed-Grouping (LP-II-GB) [69]: The algorithm requires discrete time (i.e.,

time slots) and is based on an interval-indexed formulation of a polynomial-time linear program

62

(LP) as follows. The time is divided into geometrically increasing intervals. The binary decision

variables xlk are introduced which indicate whether coflow k is scheduled to complete within

the l-th interval (tl, tl+1]. Using these binary variables, a lower bound on the objective function

is formulated subject to link capacity constraints and the release date constraints. The binary

variables are then relaxed leading to an LP whose solution is used for ordering coflows. More

precisely, the relaxed completion time of coflow k is defined as fk =
∑

l tl xlk, where tl is the left

point of the l-th interval and xlk ∈ [0, 1] is the relaxed decision variable. Based on the optimal

solution to this LP, coflows are listed in an increasing order of their relaxed completion time. For

each coflow k in the list, k = 1, ...,K , we compute effective size of the cumulated first k coflows

in the list, W(1, · · · , k). All coflows that fall within the same time interval according to value of

W(1, · · · , k) are grouped together and treated as a single coflow and scheduled so as to minimize its

completion time. Scheduling of coflows within a group makes use of the Birkhoff-von Neumann

decomposition. If two data units from coflows k and k′ within the same group use the same pair

of input and output, and k is ordered before k′, then we always process the data unit from coflow

k first. For backfilling, when we use a schedule that matches input i to output j, if there is no more

service requirement on the pair of input i and output j for some coflow in the current partition, we

backfill in order from the flows on the same pair of ports in the subsequent coflows. We would like

to emphasize that this algorithm needs to discretize time and is based on matching source nodes to

destination nodes. We select the time unit to be 1/128 second as suggested in [69] so that each port

has a capacity of 1 MB per time unit. We refer to this algorithm as ‘LP-II-GB’, where II stands for

Interval-Indexed, and GB stands for Grouping and Backfilling.

3. Ordering-Variable-Grouping (LP-OV-GB) [71]: We implement the deterministic algo-

rithm in [71]. Linear programming formulation is the same as LP in (3.7). Coflows are then

grouped based on the optimal solution to the LP. To schedule coflows of each group, we construct

a single aggregate coflow denote by D and schedule its flows to optimize its completion time.

We assign transmission rate xi j = di j/W(D) to the flow from source node i to destination node

j until its completion. Moreover, the continuous backfilling is done as follows: After assigning

63

rates to aggregate coflow, we increase xi j until either capacity of link i or link j is fully utilized.

We continue until for any node, either source or destination node, the summation of rates sum to

one. We also transmit flows respecting coflow order inside of each partition. When there is no

more service requirement on the pair of input i and output j for coflows of current partition, we

backfill (transmit) in order from the flows on the same pair of ports from the subsequent coflows.

We refer to this algorithm as ‘LP-OV-GB’, where OV stands for ordering variables, and GB stands

for Grouping and Backfilling.

4. Algorithm 3 (LP-OV-LS): We implement our algorithm as described in Algorithm 3, and

refer to it as ‘LP-OV-LS’, where OV stands for ordering variables, and LS stands for list scheduling.

3.8.3 Evaluation Results

Performance of Our Algorithm. We report the ratios of total weighted completion time ob-

tained from Algorithm 3 and the optimal value of relaxed linear program (3.7) (which is a lower

bound on the optimal value of the coflow scheduling problem) to verify Theorem 2 and Corol-

lary 1. We only present results of the simulations using the real traffic trace, with equal weights

and random weights. For the case of random weights, the weight of each coflow is chosen uni-

formly at random from the interval [0, 1]. The results are more or less similar for other collections

and for synthetic traffic traces and all are consistent with our theoretical results.

Table 3.2 shows the performance ratio of the deterministic algorithm for the cases of with and

without release dates. All performances are within our theoretical results indicating the approx-

imation ratio of at most 4 when all coflows release at time 0 and at most 5 when coflows have

general release dates. In fact, the approximation ratios for the real traffic trace are much smaller

than 4 and 5 and very close to 1.

Performance Comparison with Other Algorithms. Now, we compare the performance of

Algorithm 3 (LP-OV-LS) with LP-II-GB, LP-OV-GB, and Varys. We set all the weights of coflows

to be equal to one.

64

Table 3.2: Performance ratio of Algorithm 3

Case Equal weights Random weights
Without release dates 1.05 1.06

With release dates 1.034 1.038

Coflow Instance

 Dense Combined

N
o

rm
al

iz
ed

 T
o

ta
l C

o
m

p
le

ti
o

n
 T

im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Varys

LP-II-GB

LP-OV-GB

LP-OV-LS

(a) All coflows release at time 0.
Coflow Instance

 Dense Combined

N
o

rm
a
li
ze

d
 T

o
ta

l
C

o
m

p
le

ti
o

n
 T

im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Varys

LP-II-GB

LP-OV-GB

LP-OV-LS

(b) General release dates.

Figure 3.4: Performance of Varys, LP-II-GB, LP-OV-GB, and LP-OV-LS for 100 random dense
and combined instances, normalized with the performance of LP-OV-LS

1. Performance evaluation under synthetic traffic: For each of the two instances explained in

Section 3.8.1, we randomly generate 100 different traffic traces and compute the average perfor-

mance of algorithms over the traffic traces.

Figure 3.4a and 3.4b depict the average result of our simulations (over 100 dense and 100

combined instances) for the zero release dates and general release dates, respectively. As we see,

Algorithm 3 (LP-OV-LS) outperforms Varys and LP-II-GB by almost 30%, and LP-OV-GB by

almost 11% in dense instance for both general and zero release dates. In combined instance, the

improvements are 35%, 30%, and 17% when all coflows are released at time 0, and 28%, 29%,

and 17% for the case of general release dates over Varys, LP-II-GB, and LP-OV-GB, respectively.

This workload is more intensive in the number of non-zero flows; however, more uniform in

the flow sizes and source-destination pairs in comparison to the real traffic trace. The real traffic

trace (described in Section 3.8.1) contains a large number of sparse coflows; namely, about 50% of

coflows have less than 10 flows. Also, it widely varies in terms of flow sizes and source-destination

pairs in the network. We now present evaluation results under this traffic.

2. Performance evaluation under real traffic: We ran simulations for the four collections of

65

Coflow Collection

All Coflows M ≥ 10 M ≥ 30 M ≥ 50

N
o

rm
a

li
ze

d
 T

o
ta

l
C

o
m

p
le

ti
o

n
 T

im
e

0

0.5

1

1.5

2

2.5
Varys

LP-II-GB

LP-OV-GB

LP-OV-LS

(a) All coflows release at time 0.
Coflow Collection

All Coflows M ≥ 10 M ≥ 30 M ≥ 50

N
o

rm
a
li
ze

d
 T

o
ta

l
C

o
m

p
le

ti
o

n
 T

im
e

0

0.5

1

1.5

2

Varys

LP-II-GB

LP-OV-GB

LP-OV-LS

(b) General release dates.

Figure 3.5: Performance of Varys, LP-II-GB, LP-OV-GB, and LP-OV-LS, normalized with the
performance of LP-OV-LS, under real traffic trace.

coflows described in Section 3.8.1. We normalize the total completion time under each algorithm

by the total completion time under Algorithm 3 (LP-OV-LS).

Figure 3.5a shows the performance of different algorithms for different collections of coflows

when all coflows are released at time 0. LP-OV-LS outperforms Varys by almost 112 − 117% in

different collections. It also constantly outperforms LP-II-GB and LP-OV-GB by almost 74− 78%

and 63 − 68%, respectively.

Figure 3.5b shows the performance of different algorithms for different collections of coflows

for the case of release dates. LP-OV-LS outperforms Varys by almost 24%, 65%, 91%, and 99%

for all coflows, M ≥ 10, M ≥ 30, M ≥ 50, respectively. It also outperforms LP-II-GB for 40%,

62%, 71%, and 82%, and LP-OV-GB by 19%, 54%, 64%, and 73%, respectively.

Figure 3.6 depicts the CDF plots of coflow completion time for all four algorithms when all

coflows are considered, for both cases of with and without release dates. Based on the plots, 95%

of all coflows have completion time less than 100 seconds under our algorithm, while this is 220

seconds for Varys, when all release dates are zero. Also the CDF plots under our algorithm are

quite sharp which means that the variance of completion times under our algorithm is smaller than

the other algorithms.

66

Completion Time (second)

0 500 1000 1500 2000 2500 3000

C
D

F

0.8

0.85

0.9

0.95

1
Empirical CDF

Varys

LP-II-GB

LP-OV-GB

LP-OV-LS

(a) All release dates are 0.

Completion Time (second)

0 500 1000 1500 2000 2500 3000

C
D

F

0.8

0.85

0.9

0.95

1
Empirical CDF

Varys

LP-II-GB

LP-OV-GB

LP-OV-LS

(b) General release dates.

Figure 3.6: CDF of coflow completion time under Varys, LP-II-GB, LP-OV-GB, and LP-OV-LS
for real traffic trace a) when all coflows release at time 0, b) in the case of release dates.

3.8.4 Incorporating Fairness

So far, we focused on minimizing the total weighted completion time of coflows, without

considering any fairness among the rates allocated to different coflows. In this section, we propose

a simple adjustment to our algorithm to provide a trade-off between fairness and optimality, and

provide simulation results to study the effect of the fairness adjustment.

We use a simple metric to quantify fairness (or equivalently unfairness) among coflows. Define

pt(k), the progress of coflow k by time t, to be the amount of decrease in its effective size by time

t, formally,

pt(k) = W(k) −Wt(k), (3.19)

where W(k) is the original effective size of coflow k (its effective size at its release date) and Wt(k)

is its effective size at time t after possibly partial transmission of some of its flows (recall (3.5)

for the definition of coflow’s effective size). Ideally, for fairness issues, we might want to have an

equal progress among the coflows in the system.2

Hence, we use the standard deviation among progress of coflows that are in the system as our

unfairness metric in rate allocation to the current coflows, i.e., the larger the standard deviation of

2There are other notions of fairness such as max-min fair, proportional fair, and alpha-utility fair, proposed in
rate allocation for flow scheduling, e.g., see [87, 88]. The situation is more complicated in coflow scheduling, since
coflows have different number of flows with different overlapping structures. Extending such notions of fairness to
coflow scheduling could be an interesting future research.

67

progresses is, the more unfair the algorithm is. Formally, the unfairness at time t is defined as

SDt =

√∑
k∈Kt
(pt(k))2

Kt
−

(∑k∈Kt
pt(k)

Kt

)2
, (3.20)

where Kt is the set of coflows in the network at time t and Kt denotes its cardinality.

To measure unfairness throughout the entire schedule, we compute the progress of remaining

coflows in the system upon departure of a coflow at time t and calculate the corresponding standard

deviation according to (3.20). We then take the average of all computed standard deviations as

a measure for unfairness. Based on this definition, note that a coflow that is completed earlier

contributes less in the described unfairness metric because its progress is not counted in future

standard deviations. Such a coflow probably has smaller effective size and its flows block less

number of flows of other coflows; therefore, scheduling this coflow does not cause severe starvation

for other coflows. Given this intuition, the metric captures unfairness reasonably well.

To incorporate fairness in our algorithm, we introduce two tunable parameters τ and δ (τ ≥ δ)

and alternate between time intervals of length τ and δ as follows. The algorithm maintains two

lists, one is the original list in which coflows are sorted respecting inequality (3.8) and is updated

upon arrival and departure of flows, and the other sorts the coflows in non-decreasing order of their

progresses, as defined in (3.19). We refer to the latter list as the progress list. For a time period

of length τ, we use our algorithm to schedule flows of coflows; namely, we list schedule flows

according to the original list (i.e., based on optimal solution to LP). At the end of this time interval,

we compute progress of coflows and update the progress list. Denote by p̄t the average progress

over the progress list at time t and assume that coflow k is the first coflow in the progress list. The

goal of scheduling over the period δ is to decrease the gap between the progress of starved coflows

and the average progress. Toward this end, we schedule the flows for a time period of length

∆ = min{Wt(k), p̄t − pt(k)}, where Wt(k), current effective size of coflow k, is the time needed

to complete coflow k ignoring other coflows in the system, and p̄t − pt(k) is the gap between its

progress and the average progress. Keeping the scheduling policy simple, we use the list scheduling

68

using the progress list for ∆ amount of time. We then update the progress list, compute the average

progress, current effective size of the first coflow in the progress list, and ∆, and continue in the

same manner until either the total amount of time spent in this scheduling phase reaches δ or the

progress of all coflows becomes equal. Afterwards, we preempt the schedule, update the original

coflow list, and resume our list scheduling for another τ amount of time, and so on. Setting the

parameter δ to 0 will produce our original scheduling algorithm. By choosing δ > 0, we can avoid

coflow starvations at the cost of an increased total completion time. Varys [8] also uses a two

phase procedure, however the way that we compensate for fairness, by list scheduling based on the

progress list, is different from Varys.

To examine the performance of the proposed scheme, we consider all coflows of the real traffic

trace when they release at time zero and look at the total completion time of coflows and the

unfairness metric (average of standard deviations measured upon departure of coflows) for different

values of τ and δ. For practical consideration, as suggested by Varys [8], we set δ to be O(100)

milliseconds and T to be O(1) second.

Figure 3.7a shows the total completion time for different values of δ and τ, normalized with the

performance of LP-OV-LS (our original algorithm) which is when δ = 0 for any value of τ. For a

fixed δ, total completion time decreases as τ increases because the algorithm schedules flows based

on the list that is formed to optimize total completion time for larger fraction of time. Also, fixing

τ, total completion time increases as δ increases. Figure 3.7b depicts the corresponding unfairness

metric for different values of δ and τ. We can see that, as δ increases, average of progress standard

deviations decreases, which means that the scheduling algorithm allocates rates in a more fair

manner. Moreover, fixing δ, unfairness increases as we increase τ, as expected.

3.8.5 Discussion on Algorithm’s Complexity

In this section, we provide a discussion on complexity of our algorithm which is mainly de-

termined by the step of finding appropriate ordering of coflows. The scheduling step is the simple

list scheduling policy where complexity of computing the schedule– upon arrival or departure of

69

τ (second)

0.5 1 2

N
o

rm
al

iz
ed

 T
o

ta
l C

o
m

p
le

ti
o

n
 T

im
e

0

0.5

1

1.5
δ=0

δ=0.1

δ=0.2

δ=0.5

(a) Total coflow completion time for different val-
ues of δ and τ (both in second), normalized with
the performance of LP-OV-LS (δ = 0 for any τ).

τ (second)

0.5 1 2

M
e
a
n

 o
f

S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n
s
 (

s
e
c
o

n
d

)

0

1

2

3

4

5

6

7

8

δ=0

δ=0.1

δ=0.2

δ=0.5

(b) Average standard deviation for the progress of
coflows, for different values of δ and τ (both in
second).

a flow– is at most the length of the list, which is equal to the number of incomplete flows. The

relaxed LP (3.7) that is used to obtain ordering of coflows has O(K2) variables and O(K2 + KN))

constraints and can be solved in polynomial time, e.g. using interior point method [85]. On a

desktop PC, with 8 Intel CPU core i7 − 4790 processors @ 3.60 GHz and 32.00 GB RAM, it took

101.93 seconds to solve the LP for the Facebook trace, when all coflows are considered for the case

of general release dates. In this case, the maximum coflow completion time under our algorithm is

3492 seconds and the average completion time is 183.7 seconds. For the collection with M ≥ 50,

it took 24.40 seconds to solve the LP for the case of general release dates. In this case, the max-

imum coflow completion time under our algorithm is 3447 seconds and the average completion

time is 194.23 seconds. We note that solving the LP can be done much faster using the powerful

computing resources in today’s data centers. The computation overhead as well as communication

overhead (i.e., sending the rates to servers) might still be an issue for smaller coflows– the same

issue as in other algorithms such as Varys [8].

3.9 NP–Completeness And Counter Example

NP-Completeness of Optimization (3.3): We first show NP-completeness of the coflow schedul-

ing problem as formulated in optimization (3.3). This is done through reduction from the concur-

rent open shop problem, in which a set of K jobs and a set of N machines are given. Each job

consists of some tasks where each task is associated with a size and a specific machine in which

70

it should be processed. We convert each job to a coflow by constructing a diagonal demand ma-

trix [69]. By this construction, the constraints (3.3d) and (3.3e) are equivalent. The optimal solu-

tion to optimization (3.3) consists of non-negative transmission rates xk
j, j
?
(t) that sum to at most

one on destination node j at each time t ∈ [0,T]. However, in the concurrent open shop problem

each machine can work on one task at a time which can be translated to zero and one transmission

rates in the jargon of the coflow scheduling problem. Now, we show that given an optimal solu-

tion with rates xk
j, j
?
(t) to optimization (3.3) for the converted coflow scheduling problem, we can

always transform it to a feasible solution for the original concurrent open shop problem. To do so,

we consider destination node j (machine j) and start from the last flow (task) that completes on

this node. If there are multiple last flows, we choose one arbitrarily. We denote by f k
j, j
? its optimal

finishing time and by dk
j, j its size. We then set all transmission (processing) rates of this flow (task)

to zero from time 0 to f k
j, j
?
− dk

j, j , and to one from time f k
j, j
?
− dk

j, j to f k
j, j
?. We adjust rates of

other flows such that transmission rates sum to at most one at every time while all the flows are

guaranteed to be processed before their completion time (which is given by the optimal solution).

This can be easily done by increasing xk ′
j, j
?
(t) for t ∈ [0, f k

j, j
?
− dk

j, j] by ∆xk ′
j, j(t) determined as

follows

∆xk ′
j, j(t) =

∫ f kj, j
?

f kj, j
?
−dk

j, j

xk ′
j, j
?
(τ)dτ

dk
j, j

× xk
j, j
?
(t)

By doing so, finishing time of the last flow does not change, and finishing time of other flows may

decrease. The iterative procedure is repeated until processing rates of all flows converted to zero

or one on node j. Therefore, we end up with possibly better solution in terms of total completion

times of flows for node j with zero-one rates. We apply this mechanism to all nodes; hence, the

total completion time of the transformed solution is as good as the optimal solution. Thus, if an

algorithm can solve the coflow scheduling problem in polynomial time, it can do so for concurrent

open shop problem which contradicts with its NP-completeness. This completes the argument and

NP-completeness of coflow scheduling problem is concluded.

2-approximation algorithms from the concurrent open shop cannot be directly applied

71

1

2

1

1

2

1

2

3

2

2

2

1

1

1

3

3

3

Coflows
1

2

3

1

1

Figure 3.8: Two coflows in a 3 × 3 switch architecture. Flow sizes are depicted inside each flow.

1

2

3

1

2

3

2

2

2

1

1

1

3

3

3

Coflows
1/2

1/2

1/2

1/2

1/2

(a) Transmission rates so as to complete orange
coflow at time 2.

1

2

3

1

2

3

2

2

2

1

1

1

3

3

3

Coflows

1/2

1/2

1/2

1/2

(b) Remaining flows of green coflow at time 2 and
rate assignment to complete its flows at time 4.

Figure 3.9: Inaccuracy of proposed algorithm in [89] .

to coflow scheduling: As we discussed in Section 3.3, the 2-approximation algorithms for the

concurrent open shop problem cannot be directly applied to achieve 2-approximation algorithms

for the coflow scheduling problem. This is because given an ordering of K coflows, there does

not always exist a schedule in which the first coflow completes at time W(1), the second coflow

completes at time W(1, 2), and so on, until the last coflow completes at time W(1, · · · ,K) (recall

Definition 3 for definition of W(1, · · · , k)). We provide a counter example to show this.

Example 3 (Counter Example). Consider a 3 × 3 network with 2 coflows as shown in Figure 3.8.

One can force the ordering algorithm to output orange coflow as the first coflow and the green

coflow as the second one in the list (e.g., by means of assigning appropriate weight to coflows). To

finish the first coflow (orange coflow) in W(1), transmission rates are assigned as shown in Fig-

ure 3.9a. To avoid under-utilization of network resources, the remaining capacities are dedicated

to flows of coflow 2 (green coflow). After W(1) = 2 units of time, coflow 1 completes and the

remaining flows of coflow 2 is as shown in Figure 3.9b, therefore, one needs 2 more units of time

72

to complete remaining flows of coflow 2. Hence, coflow 2 completes at time 4 > W(1, 2) = 3.

In fact, the 2-approximation algorithm in [89], for coflow scheduling when all the release dates

are zero, relies on the assumption that such a schedule exists which, as we showed by the counter

example, is not always true and hence the 4-approximation algorithm proposed in this chapter is

the best known approximation algorithm in this case.

73

Chapter 4: Scheduling Coflows with Dependency Graph

4.1 Introduction

Modern parallel computing platforms (e.g. Hadoop [90], Spark [14], Dryad [5]) have enabled

processing of big data sets in data centers. Processing is typically done through multiple computa-

tion and communication stages. While a computation stage involves local operations in servers, a

communication stage involves data transfer among the servers in the data center network to enable

the next computation stage. Such intermediate communication stages can have a significant im-

pact on the application latency [7]. Coflow is an abstraction that has been proposed to model such

communication patterns [7]. Formally, a coflow is defined as a collection of flows whose comple-

tion time is determined by the last flow in the collection. For jobs with a single communication

stage, minimizing the average completion times of coflows results in the job’s latency improve-

ment. However, for multi-stage jobs, minimizing the average coflow completion time might not

be the right metric and might even lead to a worse performance, as it ignores the dependencies

between coflows in a job [91, 9, 10].

There are two types of dependency between coflows of a multi-stage job: Starts-After and

Finishes-Before [10]. A Starts-After constraint between two coflows represents an explicit barrier

that the second coflow can start only after the first coflow has been completed [92]. A Finishes-

Before constraint is common when pipelining is used between successive stages [5], where two

dependent coflows can coexist but the second coflow cannot finish until the first coflow finishes.

In this chapter we focus on scheduling coflows of multi-stage jobs with Starts-After dependency,

however, our techniques and results can be easily extended to the other case. Each job is rep-

resented by a DAG (Directed Acyclic Graph) among its coflows that capture the (Starts-After)

dependencies among the coflows. As in [78, 8, 69, 9, 91], the data center network is modeled as an

74

c1 c2 c3

c4 c5

c6

c7

S1

S2

(a) A multi-stage job with 7
coflows.

1

1
1

2

2 4
4

4

...

S1 S2

(b) Flows of coflows 1, 2, and 4 and their dependencies in a 2 × 2 switch.

Figure 4.1: A multi-stage job in a 2 × 2 switch. Part of the DAG (in the dashed box) consisting
of coflows 1, 2, and 4 is shown in the switch. Coflows 1 and 2 can share the network resources at
the same time because they are independent (see S1). Once all their flows are transmitted, flows of
coflow 4 will be ready to be transmitted (S2 after S1).

m × m switch where m is the number of servers (see Section 4.2 for the formal job and data center

network model). As an illustration, Figure 4.1 shows one multi-stage job in a 2 × 2 switch. Given

a set of weights, one for each job, our goal is to minimize the total weighted completion time of

jobs, where the completion time of a job is determined by the completion of the last coflow in its

DAG. The weights can capture priorities for different jobs. We state the results as approximation

ratios in terms of m (the number of servers), and µ (the maximum number of coflows in a job).

4.1.1 Related Work

The problem considered in this chapter can be thought of as a generalization of coflow schedul-

ing that has been widely studied from both theory and system perspectives [8, 67, 10, 69, 76, 78,

93, 68, 94, 95]. However, there are only a few works [91, 9, 10, 96] that consider the multi-stage

generalization, with only one algorithm with theoretical performance guarantee [91, 9]. Among

the heuristics, Aalo [10] mainly focused on coflow scheduling problem and only provides a brief

heuristic to incorporate the multi-stage case. The paper [96] proposed a two-level scheduling

method based on the most-bottleneck-first heuristic to find the jobs to schedule at each round, and

a weighted fair scheduling scheme for intra-job coflow scheduling.

The recent papers [91, 9] are the most relevant to our work. They consider the problem of

75

scheduling multi-stage job (with Starts-After dependency) to minimize the total weighted job com-

pletion times and provide an LP (Linear Program)-based algorithm with O(m) approximation ratio.

This algorithm utilizes the technique based on ordering variables, that was also used for coflow

scheduling. Their analysis for this algorithm relies on aggregating the load on all the m servers

which results in the loss of O(m) in the approximation ratio. In this work, we exponentially improve

this result by proposing an algorithm that achieves an approximation ratio of O(µg(m)), where µ

is the maximum number of coflows in a job, and g(m) = log(m)/log(log(m)). Moreover, in the

case that the multi-stage job’s dependency graph is a rooted tree, we propose an algorithm that

achieves an approximation ratio of O(
√
µg(m)h(m, µ)), where h(m, µ) = log(mµ)/(log(log(mµ)).

We would like to emphasize that the O(m) approximation in [91, 9] will not improve if the graph

is a rooted tree rather than a general DAG. Note that in practice, the number of coflows in a job is

some constant which is much smaller than the number of servers in real-world data centers with

hundreds of thousands of servers, i.e., µ � m. Also, unlike the O(m) algorithm [91, 9], both of

our algorithms are completely combinatorial and do not need to solve a linear program explic-

itly, hence reducing the complexity. A key reason behind the performance improvement in our

algorithms is that they utilize the network resources more efficiently by interleaving schedules of

coflows of different jobs, unlike the O(m) algorithm [91, 9] that schedules coflows one at a time.

Since we represent the dependencies between coflows of a multi-stage job with a Directed

Acyclic Graph (DAG), DAG scheduling problem is a related line of work. In traditional DAG

scheduling, each node represents a task with some processing time and an edge between two nodes

indicates the tasks’ dependency. There has been extensive results on DAG scheduling problem

(DAG-SP) where the goal is to assign tasks to machines in order to minimize the DAG’s completion

time [97, 98, 99, 100, 101, 102].

There are also results on DAG-shop scheduling problem (DAG-SSP) [103, 104, 105, 106] in

which, unlike the DAG-SP, the machine on which each task has to be processed is fixed and no two

tasks of the same job can be processed simultaneously. Our problem of scheduling coflow DAGs is

different from the aforementioned problems in several aspects: First, a node in our DAG represent

76

a coflow which itself is a collection of data flows, each with a given pair of source-destination

servers. Such couplings are fundamentally different from DAG-SP. Second, flows of the same

coflow and different unrelated coflows can be scheduled at the same time, which is fundamentally

different from DAG-SSP. Hence, algorithms from DAG-SP and DAG-SSP cannot be applied to our

problem.

4.1.2 Main Contributions

Define g(m) := log(m)/log(log(m)), and h(m, µ) := log(mµ)/log(log(mµ)). Our main results

in this chapter can be summarized as follows.

1. We first prove that even scheduling a multi-stage job to minimize its completion time (makespan)

is NP-hard. We then propose an algorithm for minimizing the time to schedule a given set of

multi-stage jobs. Our algorithm runs in polynomial time and constructs a schedule in which

the makespan is within O(µg(m)) of the optimal solution for the case that jobs have general

DAGs, and O(
√
µg(m)h(m, µ)) when each job is represented as a rooted tree. The algorithms

rely on random delaying and merging the greedy schedules of jobs, followed by enforcing the

bandwidth constraints.

2. We propose two approximation algorithms for minimizing the total weighted completion time

of a given set of multi-stage jobs. For general DAGs, the approximation ratio of our algorithm

is O(µg(m)). For the case of rooted trees, the ratio is improved to O(
√
µg(m)h(m, µ)). Our

algorithms are completely combinatorial and do not rely on an explicit solution of a linear

program (LP), thus reducing the complexity dramatically. Our approximation algorithms are

significant improvements over the LP-based O(m)-algorithm of [91, 9].

3. To demonstrate the gains in practice, we present extensive simulation results using real traffic

traces. The results indicate that our algorithms outperform the O(m)-algorithm [91, 9] by up to

36% and 53% for general DAGs and rooted trees, respectively, in the same settings.

77

4. We illustrate the existence of instances for which the optimal makespan for a single job with a

general DAG is Ω(
√
µ) factor larger than two lower bounds for the problem.

The result presented in this chapter is based on paper [107].

4.2 Model and Problem Statement

Network Model: We consider a cluster of m servers, denoted by the setM. Each server has

2 communication links, one input and one output link with capacity (bandwidth) constraints. For

simplicity, we assume all links have equal capacity and without loss of generality, we assume that

all the link capacities are normalized to one. Similar to the models in [78, 8, 69, 9], we abstract out

the data center network as one giant non-blocking switch. Each server in the setM is represented

by one sender server and one receiver server. Therefore, we have an m × m switch, where the

m sender (source) servers on one side, denoted by setMS, connected to m receiver (destination)

servers on the other side, denoted by setMR.

Job Model: There is a collection of n multi-stage jobs, denoted by the set N . Each job j ∈ N

consists of µ j coflows that need to be processed in a given (partial) order. Each coflow c of job

j is a collection of flows denoted by an m × m demand matrix D(c j). Every flow is a quadruple

(s, r, c, j), where s ∈ MS is its source server, r ∈ MR is its destination server, and c and j are the

coflow and the job to which it belongs. The size of flow (s, r, c, j), denoted by dc j
sr , is the (s, r)-th

element of the matrix D(c j). For two coflows c1, c2 ∈ j, we say coflow c1 precedes coflow c2, and

denote it by c1 ≺ c2, if all flows ofD(c1 j) should complete before we can start scheduling any flow

of D(c2 j) (i.e., Starts-After dependency). We use a DAG G j to represent the dependency (partial

ordering) among the coflows in job j, i.e., nodes in G j represent the coflows of job j and directed

edges represent the dependency (precedence constraint) between them. We use µ = max j∈N µ j to

denote the maximum number of coflows in any job. Figure 4.1 illustrates a multi-stage job in a

2 × 2 switch network.

Scheduling Constraints: Without loss of generality, we assume file sizes of flows are integers

and the smallest file size is at least one which is referred to as a packet. Scheduling decisions are

78

restricted to such data units (packets), i.e., each sender server can send at most one packet in every

time unit (time slot) and each receiver server can receive at most one packet in every time slot,

and the feasible schedule at any time slot has to form a matching of the switch’s bipartite graph.

Note that the links’ capacity constraints are captured by matching constraints, similarly to models

in [91, 78, 69, 9]. Further, in a valid schedule, all the precedence constraints in any DAG Gi have

to be respected.

Optimization Objective: A job is called completed only when all of its coflows finish their

processing. Define Cc j to be the completion time of coflow (c, j). Then, the completion time of job

j, denoted by Cj , is equal to completion time of its last coflow, i.e., Cj = maxc∈ j Cc j . The total time

that it takes to complete all the jobs in the set N is called makespan which we denote it by T (N).

Note that by definition T (N) = max j∈N Cj . Given a set of jobs, our first objective is to minimize

T (N). Next, given positive weights w j , j ∈ N , we consider the problem of minimizing the sum of

weighted job completion times defined by
∑

j∈N w jCj . The weights can capture different priority

for different jobs. In the special case that all the weights are equal, the problem is equivalent to

minimizing the average job completion time.

4.3 Definitions and Preliminaries

We first present a few definitions and preliminaries regarding complexity of the scheduling

problem, and how to optimally schedule a single job whose graph is a path using known results.

4.3.1 Definitions

Definition 4 (Server Load and Effective Size of a Coflow). Suppose a coflow D =
(
dsr

)m
s,r=1 is

given. Define

ds =
∑

r∈MR

dsr ; dr =
∑

s∈MS

dsr, (4.1)

79

then ds (dr) is called the load that needs to be sent from sender server s (received at receiver server

r) for coflow D. Further, the effective size of the coflow is defined as

D = max{max
s∈MS

ds, max
r∈MR

dr}. (4.2)

Thus D is the maximum load that needs to be sent or received by a server for the coflow. Note

that, due to normalized capacity constraints on links, we need at least D time slots to process all

its flows.

Definition 5 (Aggregate Size of a Set of Coflows). Given a set of coflows, consider an aggregate

coflow D =
∑

cD
c for c’s in the set. Then, aggregate size of the set is defined as the effective size

of D based on Definition 4. Similarly, aggregate size of job j is defined as the aggregate size of its

set of coflows and is denoted by ∆ j .

Definition 6 (Size of a Directed Path and Critical Path in a Job). Given a job j ∈ N and its rooted

tree G j , size of a directed path p in G j is defined as Tp, j =
∑

c∈p D(c j), where D(c j) is the effective

size of coflow c of job j, and c ∈ p denotes that coflow c appears in path p.

Critical path of job j is a directed path that has the maximum size among all the directed paths

in G j . We use Tj = maxp Tp, j to denote its size.

Definition 7 (A Path Job). We say a job is a path job if its corresponding dependency graph is a

path, i.e., there is a total ordering of its coflows according to which they should get scheduled.

Definition 8 (A Rooted-Tree Job). We say a job is a rooted-tree job if its corresponding dependency

graph is a rooted tree, i.e., it is a tree and there is a unique node called the root and either all the

directed edges point away from this node (fan-out tree) or point toward this node (fan-in tree). For

each rooted-tree job G j , we use Rj to denote its root.

Definition 9 (Height and Coflow Sets for a Job). Given a job j ∈ N and its graph G j , we define Hj

to be the height of G j , i.e., the length of the longest path in G j (in terms of number of coflows). Fur-

ther, we define S0 to denote the set of coflows with no in-edge. Similarly, define Si, i = 1, . . . ,Hj −1

80

to denote the set of coflows whose longest path to some coflow of set S0 has length i. Note that

coflows in G j are partitioned by Sis, i.e., ∪Hj−1
i=0 Si = G j and Si ∩ Si′ = �, for i, i′ = 0, . . . ,Hj − 1,

i , i′. We refer to Sis as coflow sets of job j.

4.3.2 Complexity of Minimizing Makespan

Scheduling a multi-stage job to minimize its completion time (makespan) is NP-hard. To show

this, we consider a single multi-stage job whose DAG is a rooted tree. The proof is through a

reduction from preemptive makespan minimization for Flow Shop Problem (FSP) which is known

to be NP-complete [108, 109, 110]. This is in contrast to traditional coflow scheduling where a

single coflow can be scheduled optimally as we see in Section 4.3.3. This also shows that the

known complexity results for preemptive FSP holds for single multi-stage job scheduling. For

FSP, there is no algorithm with an approximation ratio less than 5/4, unless P = NP [111].

Theorem 3. Given a single multi-stage job represented by a rooted tree, scheduling its coflows to

minimize makespan over an m × m switch is NP-hard.

Proof. We prove the theorem using a reduction from preemptive makespan minimization for Flow

Shop Problem (FSP). In FSP, there is a set of n jobs each of which consists of m tasks that need

to be processed in a given order on m machines. Task i of job j must be scheduled on machine i

for pi j amount of time (all the jobs require the same order on their tasks.). Preemptive makespan

minimization of FSP is known to be NP-complete [108, 110].

Consider an instance I of FSP with n jobs and m machines. We convert the makespan min-

imization for I to makespan minimization of an instance I′ of a single multi-coflow job with a

rooted tree topology. The instance I′ consists of m source and m destination servers and n × m + 1

coflows where each has a single flow. Further, the corresponding dependency graph of I′ is a tree

with a root node and n branches. The root node is a dummy coflow which has one flow of size one

from source server 2 (or any other source server) to destination server 1. Each of the n branches

of the tree represents a job in I and consists of m coflows. The nodes in the l-th level of the tree,

l = 1, . . . ,m − 1 (the level of root node is zero) represent coflows that each has a single flow from

81

source server l to destination server l + 1 with sizes pl j , j = 1, . . . , n. Similarly, the nodes at

level m are coflows with a single flow from source node m to destination server 1 with sizes pmj ,

j = 1, . . . , n.

If one can find the optimal makespan for the instance I′ of a single multi-coflow job, the

solution gives an optimal scheduling for the instance I by ignoring the first time unit that is used

to schedule the dummy coflow in I′. Therefore, the theorem is proved. �

Using Theorem 3 it is easy to see that minimizing makespan for multiple jobs and total weighted

completion time of jobs are NP-hard.

4.3.3 Optimal Makespan for A Path Job

In this section, we first show how one can schedule a single coflow optimally and in a polyno-

mial time using the previous results. As a result of Birkhoff-von Neumann Theorem [112], given

a coflow D =
(
dsr

)m
s,r=1 there exists a polynomial-time algorithm which finishes processing of all

the flows in an interval whose length is equal to the coflow effective size D (see Equation (4.2)).

We present one example of such an algorithm in Algorithm 4, which was proposed originally

in [113], and refer to it as BNA that stands for Birkhoff-von Neumann Algorithm. BNA returns a

list of matchings L and a list of times τ. To schedule flows of D, we use each matching L(k) for

τ(k + 1) − τ(k) time units, for k = 1, . . . , |L |.

It is immediate that the optimal makespan for a path job can be found in polynomial time, by

optimally scheduling its coflows successively using BNA.

Lemma 8. Optimal makespan for a path job j is equal to
∑µj

c=1 D(c j) where D(c j) is the effective

size of coflow c of job j and the corresponding schedule can be constructed in polynomial time by

successively using BNA.

We will use BNA in our algorithms in the rest of the paper.

82

Algorithm 4 BNA for Single Coflow Scheduling
Given a coflow D =

(
dsr

)m
s,r=1:

1. Let L be the list of matchings and τ be the list of starting times for each matching. Initially,
L = �, τ = [0].

2. For any s ∈ MS and r ∈ MR, compute ds, dr , and D according to Definition 4.

3. Find the set of tight nodes as Ω = (arg maxs∈Ms
ds) ∪ (arg maxr∈MR

dr).

4. Find a matching M among the source and destination nodes such that all the nodes in Ω are
involved.

5. Find

t = min
{

min(s,r)∈M dsr,mins:(s,r)<M(D − ds),

minr:(s,r)<M(D − dr)

}
6. Add M and t + τ[end] to the lists L and τ, respectively.

7. Update the flow sizes as dsr ← dsr − t, ∀(s, r) ∈ M .

8. While D , 0, repeat Steps 2 − 7.

9. Return L and τ.

4.4 Makespan Minimization for Scheduling Multiple General DAG Jobs

4.4.1 DMA (Delay-and-Merge Algorithm)

For each job j, we consider a topological sorting of nodes in G j , i.e., we sort its coflows (nodes)

such that for every precedence constraint c1 ≺ c2 (directed edge c1 → c2), coflow c1 appears before

c2 in the ordering. This ordering is not unique and can be found in polynomial time [114]. For

example, for the job in Figure 4.1a, the orderings c1, c2, c3, c4, c5, c6, c7 and c2, c3, c1, c5, c4, c6, c7 are

both valid topological sorts. We then re-index coflows from 1 to µ j according to this ordering.

Further, we use ∆ j to denote the maximum load that a server should send or receive considering

all of job j’s coflows. Formally, for job j, consider an aggregate coflow D j =
∑µj

c=1D
(c j). Then,

∆ j is the effective size of D j based on Definition 4. We also use ∆ to denote the maximum load a

node has to send or receive considering all the jobs.

83

+ +

+

Merge

BNA

c1

c2

c3

c4

c5

c1

c2

c3

c4

c1

c2

c3

c4

c5

t=0
time t1 t2 t3

t

Matching of c3 at t Matching of c2 at t Matching of c4 at t

Figure 4.2: Applying DMA on 3 multi-stage jobs. On the left side, a topological ordering and a
random delay for each job are computed. On the right side, the merging procedure and BNA output
is shown for some time t.

Algorithm 5 (DMA) describes our algorithm for scheduling multiple general DAG jobs.

Algorithm 5 DMA for Scheduling a General DAG G j

1. For each job j, compute a topological sorting of nodes in G j . Then, find a feasible schedule
by optimally scheduling its coflows successively using BNA, i.e., Lc j, τc j = BNA(D(c j)), for
coflow c = 1, . . . , µ j . We refer to these schedules as isolated schedules of jobs.

2. Delay each isolated schedule by a random integer time chosen uniformly in [0,∆/β], for a
constant β > 1/e, independently of other isolated schedules, i.e., τc j ← τc j + t j where t j is the
random delay of job j.

3. Greedily merge the delayed isolated schedules. I.e., for any time slot t, add corresponding
matchings of different jobs.

4. Construct a feasible merged schedule. Let αt ≥ 1 denote the maximum number of packets that
a server needs to send or receive at time slot t in the merged schedule in Step 3. For each time
slot t, consider an interval of length αt , and use BNA to feasibly schedule all its packets.

Note that in DMA, in each of the isolated schedules in Step 1 all the precedence constraints

among coflows are respected. However, in Step 3, the link capacity constraints may be violated.

In Step 4, in the final schedule, both link capacity constraints and precedence constraints among

coflows are satisfied. The parameter β > 1/e in DMA is a constant and has no effect on the

theoretical result. However, it can be used to control the range of delays in practice.

As an illustration, Figure 4.2 shows the procedure of DMA on 3 multi-stage jobs in a 3 × 3

switch network. On the left side, DMA computes a topological ordering for the coflows of each

84

job and chooses a random delay for each job. The diameter of each node is proportional to the

effective size of its corresponding coflow. Consider time slot t, DMA merges the matchings of

coflow 3 of the red job, coflow 2 of the green job, and coflow 4 of the blue job, and inputs the

result to BNA. Then, BNA computes two matchings, where each should be used for one time slot.

4.4.2 Performance Guarantee of DMA

The following theorem states the main result regarding the performance of DMA. The proof

can be found in Section 4.9.1.

Theorem 4. Given a setN of jobs with general DAGs, DMA runs in polynomial time and provides

a feasible solution whose makespan T (N) is at most O(µg(m)) of the optimal makespan with high

probability, where g(m) = log(m)/log(log(m)).

4.4.3 De-Randomization

Step 2 of DMA involves random choices of delays. There exist well-established techniques

that one can utilize to de-randomized this step and convert the algorithms to deterministic ones.

For instance, one approach for selecting good delays is to cast the problem as a vector selection

problem and then apply techniques developed in [115, 116, 104].

4.5 Makespan Minimization For Scheduling Multiple Rooted Tree Jobs

Now we consider the case where each job is represented by a rooted tree (Definition 8). We

propose an algorithm with an improved performance guarantee compared to the case of general

DAGs. We would like to emphasize that the O(m) approximation algorithm [91, 9] will not be

improved if the graph is a rooted tree rather than a general DAG.

4.5.1 DMA-SRT (Delay-and-Merge Algorithm For A Single Rooted Tree)

In this section, we develop an approximation algorithm for minimizing makespan of a single

rooted-tree job and show that its solution is at most O(
√
µ log(mµ)/log(log(mµ))) of the optimal

85

c3

c5

c6

c7

c2c1

c4

Figure 4.3: A rooted tree with 3 path sub-jobs.

makespan. Recall Definitions 8 and 9. In what follows, we assume that the rooted tree G j has an

orientation towards the root Rj (i.e. fan-in tree). For the case that edge orientations points away

from the root (i.e. fan-out tree), the algorithm is similar. Recall that S0 is the set of coflows with

no in-edge in rooted tree G j . For each coflow c ∈ S0, we can find a directed path starting from c

and ending at coflow (node) Rj . We call each of these paths a path sub-job of job j. We use Pj

to denote the set of all path sub-jobs of job j. Recall that Tp, j is the size of directed path p ∈ Pj

and Tj is the size of the critical path (see Definition 6). Figure 4.3 shows a rooted tree with 3 path

sub-jobs.

Algorithm 6 provides description of DMA-SRT.

Algorithm 6 DMA-SRT for Scheduling a Rooted Tree G j

1. Find the set of path sub-jobs Pj of job j. For each path sub-job p ∈ Pj , Choose a random
integer time dp uniformly in [0,∆ j/β], for a constant β > 1/e, independent of other isolated
schedules. Next, for each coflow c ∈ p, p ∈ Pj , calculate the starting time of coflow c according
to p, tc,p = dp +

∑
c′≺c,c′∈p Dc′ j .

2. Find the coflow sets Si, i = 0, . . . ,Hj−1 of job j according to Definition 9. For i = 0, . . . ,Hj−1,
and for each coflow c in Si, find starting time of coflow c as tc = min{tc,p |tc,p ≥ maxc′∈πc (tc′ +
D(c

′ j))}.

3. For each coflow c in G j , find an optimal schedule for each coflow c using BNA, i.e.,
Lc, τc =BNA(D(c j)). We refer to these schedules as isolated schedules. Then, delay the schedul-
ing times by tc, τc ← τc + tc.

4. Follow Step 3 of DMA.

5. Follow Step 4 of DMA.

86

Note that the algorithm calculates the starting time of each coflow, tc, such that all the prece-

dence constraints of the coflow are satisfied. In other words, tc is equal to the smallest time tc,p

(starting time of c based on path p) that all its preceding coflows in G j are completed. We say

that c is scheduled according to p if tc = tc,p. Therefore, the merged schedule satisfies all the

precedence constraints among coflows, although the link capacity constraints may be violated.

DMA-SRT constructs a feasible merged schedule using BNA. Note that in Step 5, D is multiplied

by lI since each matching Lc(i) runs for lI time units in its corresponding isolated schedule. In

the final schedule, both link capacity constraints and precedence constraints among coflows are

satisfied.

4.5.2 Multiple Rooted Tree Jobs

Now consider the case where we have multiple jobs where each job is a rooted tree. We seek

to find a feasible schedule that minimizes the time to process all the jobs (makespan). Recall that

µ is the maximum number of coflows in any job. We use ∆ to denote the aggregate size of coflows

of all the jobs (Definition 5).

The scheduling algorithm is based on DMA-SRT described in Section 4.5.1. Specifically, we

apply DMA-SRT to find a feasible schedule for each job in the set. Then we apply Steps 2, 3 and 4

of DMA, namely, we choose a random delay in [0,∆/β] for a constant β > 1/e for each individual

schedule and delay it. Next, we merge the delayed schedules. Finally we use BNA algorithm to

resolve any collisions in the merged schedule. We refer to this algorithm as DMA-RT.

4.5.3 Performance Guarantee of DMA-SRT and DMA-RT

Theorem 5. Given a single job j with rooted tree G j , DMA-SRT runs in polynomial time and pro-

vides a feasible schedule whose makespan Cj is at most O(√µ j h(m, µ j)) of the optimal makespan

with high probability, where h(m, µ) = log(mµ)/log(log(mµ)).

Theorem 6. Given a setN of jobs, each represented as a rooted tree, DMA-RT runs in polynomial

time, and achieves a solution whose makespan T (N) is at most O(
√
µg(m)h(m, µ)) of the optimal

87

makespan with high probability.

The proofs of Theorems 5 and 6 are presented in Section 4.9.2.

4.6 Total Weighted Completion Time Minimization

We are now ready to present our combinatorial approximation algorithm for minimizing the

total weighted completion time of multi-stage jobs with release times. In this section, we assume

that the jobs have general DAGs, however, the results can be customized for the case that all the

jobs are represented by rooted trees. We use ρ j to denote the release time of job j, which implies

that job j is available for scheduling only after time ρ j .

4.6.1 Job Ordering

To formulate a relaxed linear program for our problem, we note that if we ignore the precedence

constraints among coflows of a job and aggregate all its coflows, we obtain a single-stage job (a

coflow), and our problem is reduced to traditional coflow scheduling problem [69, 76, 78, 71].

Here, we use an LP formulation for such constructed single-stage jobs, but with an extra con-

straint for each job which roughly captures the barrier constraints among its coflows. Formally,

for each job j, consider the aggregate coflow D j =
∑µj

c=1D
(c j). LetM := MS ∪ MR. We use

d j
i , i ∈ M to denote the load of coflow D j on server i (see Definition 4). Recall Definition 6 and

note that Tj is the lower bound on the required time to schedule multi-stage job j (in the original

problem). Let J be any subset of jobs in N . We formulate the following LP (Linear Program):

min
∑
j∈N

w jCj (LP) (4.3a)∑
j∈J

d j
i Cj ≥

1
2
(∑

j∈J

(d j
i)

2 + (
∑
j∈J

d j
i)

2), i ∈ M,J ⊆ N (4.3b)

Cj ≥ Tj + ρ j, j ∈ N . (4.3c)

Constraints (4.3b) capture the links’ capacity constraints and are used to lower-bound the comple-

88

tion time variables. To see this, consider a (source or destination) server i and a subset of jobs

J . For each j in J , the completion time Cj of its aggregate coflow D j , has to be at least the

summation of loads of coflows D j ′ on server i that finish before j plus its own load on server

i. Also note that for every two coflows in the set J , one finishes before the other one. There-

fore,
∑

j∈J d j
i Cj ≥

∑
j∈J d j

i (d
j
i +

∑
j ′∈J, j ′≺ j d j ′

i), where j′ ≺ j means Cj ′ ≤ Cj . From this,

Constraint (4.3b) is derived easily.

Note that this LP has exponentially many constraints, since we need to consider all the subsets

of N . However, we do not need to explicitly solve this LP and we only need to find an efficient

ordering of jobs. To do so, we utilize the combinatorial primal-dual algorithm that first proposed

in [75] and later generalized in [76] to capture constraints of the form (4.3c) for parallel scheduling

problems. The algorithm builds up a permutation of the jobs in the reverse order iteratively by

changing the corresponding dual variables to satisfy some dual constraint. Next, we provide the

detailed explanation of the combinatorial algorithm for completeness. We then show how we use

this ordering to find the actual schedule of jobs’ coflows.

4.6.2 Job Ordering

In this section, we provide the detailed explanation of the combinatorial algorithm used in

G-DM to find a good permutation of jobs.

Recall LP (4.3). Define fi(J) to be the right-hand side of Constraints (4.3b) for server i and

subset of jobs J , i.e.,

fi(J) =
1
2
(∑

j∈J

(d j
i)

2 + (
∑
j∈J

d j
i)

2) . (4.4)

89

We now formulate dual of LP (4.3) as follows:

max
∑
i∈M

∑
J⊆N

λi,J fi(J) +
∑
j∈N

η j(Tj + ρ j) (Dual LP) (4.5a)

∑
i∈M

∑
J : j∈J

d j
i λi,J + η j ≤ w j, j ∈ N (4.5b)

η j ≥ 0, j ∈ N (4.5c)

λi,J ≥ 0, i ∈ M, J ⊆ N . (4.5d)

The algorithm is presented in Algorithm 7. LetN ′ be the set of unscheduled jobs, initiallyN ′ = N .

Also, set η j = 0 for j ∈ N . Define Λ to be the set of λi,J ’s that get specified in the algorithm, and

initialize Λ = � (to avoid initializing all the λi,J = 0, which takes exponential amount of time)

(line 1). In any iteration, let j be the unscheduled job with the greatest Tj + ρ j , let φ be the server

with the highest load and let dφ be the load on server φ (lines 3 and 4). Now, if Tj + ρ j > dφ, we

raise the dual variable η j until the corresponding dual constraint is tight and place job j to be the

last job in the permutation (lines 5-7). However, if Tj + ρ j ≤ dφ, we choose job j′ as in line 9.

Then we define the dual variable λφ,N ′, set it so that the dual constraint for job j′ becomes tight,

and place job j′ to be the last in the permutation (lines 10-12).

Remark 3. Algorithm 7 runs in O(n(log(n) + m)) time where n is the number of jobs and m is the

number of servers. However, the time complexity of the best known algorithm for solving the LP

used in [91, 9] is O((n2 + m)ω log((n2 + m)/ε)), where ω is the exponent of matrix multiplication

and ε is the relative accuracy [117, 118]. For current value of ω = 2.38 [119, 120], the time

complexity of Algorithm 7 is dramatically lower than the time complexity for solving the LP used

in [91, 9].

4.6.3 Grouping Jobs

Let D j denote the maximum load that a server has to send or receive considering all coflows

of the jobs up to and including job j according to the computed ordering. In other words, D j is

90

Algorithm 7 Combinatorial Algorithm for Job Ordering
Given a set of multi-stage jobs N :

1: N ′ = N , η j = 0 for j ∈ N , Λ = �.
2: for k = n, n − 1, ..., 1 do
3: φ(k) = arg maxi∈M di
4: j = arg maxl∈N ′ Tl + ρl
5: if Tj + ρ j > dφ(k) then
6: η j = w j −

∑
i∈M

∑
J, j∈J d j

i λi,J .
7: σ(k) = j.
8: else
9: j′ = arg min j∈N ′

(wj−
∑

i∈M

∑
J, j∈Jd j

i λi,J

d j

φ(k)

)
.

10: λφ(k),N ′ =
(wj ′−

∑
i∈M

∑
J, j ′∈Jd j ′

i λi,J

d j ′

φ(k)

)
11: Λ← Λ ∪ {λφ(k),N ′}.
12: σ(k) = j′.
13: end if
14: N ′← N ′/σ(k).
15: di ← di − dσ(k)i , ∀i ∈ M.
16: end for
17: Output permutation σ.

the effective size of an aggregate coflow constructed from coflows of the first j jobs. Recall that Tj

is size of the critical path in job j (Definition 6). Define γ = mins,r,c, j dc j
sr which is a lower bound

on the time required to process any job. Also let T = max j ρ j +
∑

j∈N
∑

c∈ j
∑

s∈MS

∑
r∈MR

dc j
sr . The

algorithm groups jobs into B groups as follows.

Choose B to be the smallest integer such that γ2B ≥ T , and consequently define

ab = γ2b, for b = −1, 0, 1, ..., B. (4.6)

Then the b-th interval is defined as the interval (ab−1, ab] and the group Jb is defined as the subset

of jobs whose Tj + ρ j + D j fall within the b-th group, i.e.,

Jb = { j ∈ N : Tj + ρ j + D j ∈ (ab−1, ab]}; 0 ≤ b ≤ B. (4.7)

This partition rule ensures that every job falls in some group.

91

4.6.4 Scheduling Each Group Jb

To schedule jobs of each group Jb, b ∈ {1, · · · , B}, (defined by (4.7)), we use the DMA

algorithm. We refer to this algorithm as G-DM algorithm which stands for Grouping jobs, followed

by Delay-and-Merge algorithms. We summarize G-DM in Algorithm 8.

Algorithm 8 G-DM for Scheduling Multi-Stage Jobs

1. Find an efficient permutation of jobs using Algorithm 7 and re-index them.

2. Let D j be effective size of the aggregate coflow constructed from coflows of the jobs up to and
including job j. Also, let Tj be size of the critical path in job j.

3. Partition jobs into disjoint subsets Jb, b = 0, ..., B as in (4.7).

4. For each group b = 1, . . . , B, wait until all jobs in Jb arrive, then apply the makespan mini-
mization algorithm DMA to schedule them.

4.6.5 Performance Guarantee of G-DM

Recall that g(m) = log(m)/log(log(m)), and h(m, µ) = log(mµ)/(log(log(mµ)). The following

theorem states the main result regarding the performance of G-DM.

Theorem 7. G-DM is a polynomial-time O(µg(m))-approximation algorithm for the problem of

total weighted completion time minimization of multi-coflow jobs with release dates.

For the case that we are given a set N of jobs, each represented as a rooted tree, we modify

G-DM by using DMA-RT as the subroutine in the last step of G-DM. We denote the modified

version as G-DM-RT. We then have the following Corollary.

Corollary 2. G-DM-RT is a polynomial-time algorithm with approximation ratio O(
√
µg(m)h(m, µ))

for minimizing the total weighted completion time of rooted-tree jobs with release times.

The proofs can be found in Section 4.9.3.

92

 1 2 10 100 500

Value of

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

N
o
rm

a
liz

e
d
 T

o
ta

l C
o
m

p
le

tio
n
 T

im
e M=10

M=50

M=150

Figure 4.4: Performance of G-DM-RT for different number of servers and different values of β,
and µ̄ = 5.

4.7 Empirical Evaluation

To demonstrate the gains in practice, we conducted extensive evaluations using a real workload.

This workload has been widely used in coflow related research [8, 69, 9, 78]. We compared the

performance of our algorithm G-DM-RT with the O(m)-algorithm in [91, 9] which is the previous

state-of-the-art algorithm and compare its performance with that of our algorithm. In [91, 9], the

authors have shown that their algorithm outperforms single-stage coflow scheduling algorithms by

around 83%, and Aalo [10] by up to 33% for the case of equal weights for job (as Aalo cannot

handle the weighted scenario). Hence, we only report comparison with this algorithm. The results

indicate that our algorithm outperforms the O(m)-algorithm [91, 9] by up to 53% in the same

settings. We also investigate the performance of the algorithms for different values of delaying

parameter β, and problem size µ and m.

Workload: The workload is based on a Hive/MapReduce trace at a Facebook cluster with

150 racks, and only contains coflows information. The data set contains 267 coflows with µ j

ranging from 10 to 21170. Further, size of the smallest flow is equal to γ = 1, size of the largest

flow is equal to 2472, and effective size of coflows, ∆ j , is between 5 and 232145. Finally, the

maximum load a server should send or receive considering all the coflows, i.e., the effective size

of the aggregate coflow, is equal to ∆ = 440419.

To assess performance of algorithms under different traffic intensity, we generate workloads

with different number of machines (servers) by mapping flows of the original 150 racks to m

93

 10 30 50 75 150

Number of Servers

0

0.5

1

1.5

2

2.5

3

T
o
ta

l
C

o
m

p
le

ti
o
n
 T

im
e

10
7

G-DM-BF

G-DM

O(m)Alg-BF

O(m)Alg

(a) Performance of G-DM
and O(m)Alg with and with-
out backfilling for different
numbers of servers, and µ̄ = 5.

5 10 20

Average Number of Coflows

0

1

2

3

4

5

6

7

T
o

ta
l
C

o
m

p
le

ti
o

n
 T

im
e

10
6

G-DM-BF

G-DM

O(m)Alg-BF

O(m)Alg

(b) Performance of G-DM and
O(m)Alg with and without
backfilling for different average
numbers of coflows per job, and
m = 150.

 1 2 10 25 100

Rate of Job Arrival

0

1

2

3

4

5

6

7

T
o

ta
l
C

o
m

p
le

ti
o

n
 T

im
e

10
6

G-DM-BF

G-DM

O(m)Alg-BF

O(m)Alg

0

(c) Performance of G-DM and
O(m)Alg with and without back-
filling for different arrival rates,
and µ̄ = 5, m = 150.

Figure 4.5: Performance of G-DM and O(m)Alg for scheduling general DAGs with and without
backfilling.

machines with various values of m. To generate multi-stage jobs, we randomly partition the coflows

into multi-stage jobs that each has µ coflows on average. To generate the corresponding rooted tree,

we first generate a random graph in which probability of picking each of the edges is 0.5, and then

converting it to a tree by removing its cycles. We ran the algorithms for two cases of equal weights

for all jobs and randomly selected weights from interval [0, 1]. We also consider the online scenario

where multi-stage jobs arrive over time and their release (arrival) times follow a Poisson process

with a parameter θ.

Algorithms: We simulate our multi-stage job algorithms (referred to as G-DM and G-DM-

RT) and the algorithm in [91, 9] (referred to as O(m)Alg). For each algorithm, we present two

versions, one with no backfilling and one with backfilling. Backfilling is a common technique in

scheduling to increase utilization of system resources by allocating the underutilized link capacities

(or servers, depending on the problem) to other jobs. We apply the same backfilling strategy to

both algorithms for a fair comparison. We use G-DM-BF, G-DM-RT-BF, and O(m)Alg-BF to

refer to the versions of algorithms with backfilling.

Metrics: We compare the total weighted completion times of jobs under the two algorithms

for various workloads and scenarios. We present results for offline and online scenarios with equal

94

 10 30 50 75 150

Number of Servers

0

0.5

1

1.5

2

2.5

3

T
o
ta

l
C

o
m

p
le

ti
o
n
 T

im
e

10
7

G-DM-RT-BF

G-DM-RT

O(m)-Alg-BF

O(m)Alg

(a) Performance of G-DM-RT
and O(m)Alg with and without
backfilling for different num-
bers of servers, and µ̄ = 5.

5 10 20

Average Number of Coflows

0

1

2

3

4

5

6

7

T
o
ta

l
C

o
m

p
le

ti
o
n
 T

im
e

10
6

G-DM-RT-BT

G-DM-RT

O(m)Alg-BT

O(m)Alg

(b) Performance of G-DM-RT
and O(m)Alg with and without
backfilling for different average
numbers of coflows per job, and
m = 150.

 1 2 10 25 100

Rate of Job Arrival

0

1

2

3

4

5

6

7

T
o
ta

l
C

o
m

p
le

ti
o
n
 T

im
e

10
6

G-DM-RT-BF

G-DM-RT

O(m)Alg-BF

O(m)Alg

0

(c) Performance of G-DM-RT
and O(m)Alg with and without
backfilling for different arrival
rates, and µ̄ = 5, m = 150.

Figure 4.6: Performance of G-DM-RT and O(m)Alg for scheduling rooted tree jobs with and
without backfilling.

and random job weights. We also investigate the performance of the algorithms for different values

of m, µ̄, θ.

4.7.1 Impact of Random Delays and β

The current implementations of G-DM and G-DM-RT have a random component as it uses

DMA and DMA-SRT as a subroutine. To show that in practice running the algorithm once is

sufficient to achieve a satisfactory solution, we need to show that its relative standard deviation

(RSD) is small. RSD is defined as standard deviation divided by the mean (average). Hence,

to analyze the effect of random delays in the performance of our algorithm, we ran it on some

instances, each for 10 times. Based on our experiments, RSDs of G-DM and G-DM-RT are always

less than 0.5% and RSDs of G-DM-BF and G-DM-RT-BF are always less than 0.9%, which both

are very small. In the rest of simulations, we run our algorithms only once on each instance.

Furthermore, we studied the effect of parameter β (see Sections 4.4 and 4.5) on the performance

of our algorithms. For each algorithm, we ran the algorithm using a wide range of β values. Based

on our experiments, for smaller m (higher traffic intensity) it is better to choose a small value

of β (1 or 2) to reduce the collision probability (4.15), while choosing larger β (100 or 500) for

95

larger m helps the algorithm to use the unused capacity to schedule flows of other coflows in the

system. Moreover, the amount of improvement by optimizing over β was less than 16% in all the

experiments. Figure 4.4 shows the results for different values of β and m when µ̄ is set to 5 for

G-DM-RT.

4.7.2 Evaluation Results for General GADs

Offline Setting

In the offline scenario, all the jobs are available at time 0. For each set of parameters (m, µ̄),

we generate 10 different instances randomly and report the average and standard deviation of each

algorithm’s performance.

Figure 4.5a and 4.5b depict some of the results for the case that jobs have general DAGs and

equal weights. Figure 4.5a shows the performance of G-DM and O(m)Alg for the case that average

number of coflows per job, µ̄, is 5 and different number of servers. G-DM performs as well as

O(m)Alg for m = 10. It outperforms O(m)Alg from 9% for m = 30 to about 36% for m = 150.

Moreover, Figure 4.5b shows that our algorithm outperforms O(m)Alg for all values of average

coflows per job, by 36% to 11%. The results for the case of random job weights are very similar

and omitted.

Online Setting

For the online scenario, jobs arrives to the system according to a Poisson process with rate

θ. Every time that a job arrives both G-DM (G-DM-RT) and O(m)Alg suspend the previously

active jobs, update the list of jobs and their remaining demands, and reschedule them. Moreover,

completion time of a job in the online scenario is measured from the time that the job arrives to the

system. The job arrival rate is determined as follows: θ = a × θ0 for a = {1, 2, 10, 25, 100}, and

θ0 =
∑

j µj∑
j

∑
c Dc j , in which

∑
j µ j is the total number of coflows among all jobs. The denominator,∑

j
∑

c Dc j , is summation of coflows’ effective sizes and an upper bound on the jobs’ makespan.

Figure 4.5c shows the results under G-DM and O(m)Alg for the case that m = 150 (original

96

data set), µ̄ = 5, and all the jobs have equal weights. G-DM always outperforms O(m)Alg, from

20% to 36%. Furthermore, G-DM-RT-BF always outperforms O(m)Alg-BF, by 30% to 37%.

4.7.3 Evaluation Results for Rooted Trees

Now we provide the simulation results for the case that all the jobs are rooted trees.

Offline Setting

Figure 4.6a shows the performance of two algorithms for different number of servers, µ̄ = 5,

and equal weights for jobs. As we can see, G-DM-RT always outperforms O(m)Alg, for about

53% for m = 10 to about 46% for m = 150. For all values of average coflows per jobs, our

algorithm outperforms O(m)Alg , by 46% to 18% as depicted in Figure 4.6b.

Online Setting

Figure 4.6c shows the results with and without backfilling for the case that m = 150 (original

data set), µ̄ = 5, and all the jobs have equal weights. G-DM-RT always outperforms O(m)Alg,

from 10% to 46%. Furthermore, G-DM-RT-BF always outperforms O(m)Alg-BF, by 22% to 36%.

We would like to point out that, as we expect, the gain under G-DM-RT is greater than G-DM,

as the former algorithm utilizes the network resources more efficiently by interleaving schedules

of different coflows of the same job as well as interleaving schedules of coflows of different jobs.

Furthermore, backfilling strategy generally yields a larger improvement when combined by G-DM

and O(m)Alg compared to G-DM-RT, as they leave more resources unused.

4.8 Discussion on Approximation Results

An interesting research direction is to improve the approximation ratios for the algorithms.

As we showed in the previous sections, once we have an algorithm for scheduling a single job

whose solution is a factor η of the simple lower bounds ∆ j and Tj (Definitions 5 and 6), we can

directly utilize the rest of our approach and get approximation algorithms with approximation ratio

97

c1 c2 c3

c6

c4

c5 c7 c8

c9 c10 c11

c14

c12

c13 c15 c16

(a) A DAG job with 16 coflows.

c1 c2 c3

c6

c4

c5 c7 c8

c9 c10 c11

c14

c12

c13 c15 c16

(b) Scheduling of coflows.

Figure 4.7: An example of a DAG with Copt = Ω(
√
µ(∆ + T)).

O(η log(m)/log log(m)) for the problems of makespan minimization and total weighted completion

time minimization for multiple jobs.

To improve the result for the case of general DAGs, one approach is to first consider scheduling

a single job (with a general DAG), and try to generalize DMA-SRT to a general DAG by careful

construction of paths in the algorithm, so that we do not need to consider all the paths in the DAG

which could be exponentially many. However, even if one could show that O(µ j) paths is sufficient

to construct a feasible schedule, it is challenging to analyze the performance through computing

the probability of collisions or the average number of collisions in the merged schedule as we did

in proof of Lemma 11. This is due to the underlying dependency among the unrelated coflows in

G j (these are coflows among which there is no directed path in G j , thus they can collide) which

appears in the probability that a given coflow is assigned to start scheduling at a given time given

that a specific O(µ j) set of paths is generated by the algorithm.

Besides these challenges for scheduling a job with a general DAG, we can illustrate the ex-

istence of instances for which the optimal makespan is Ω(√µ j) factor larger than the two simple

lower bounds, ∆ j and Tj . We state this in the following lemma.

Lemma 9. There exist arbitrary sized instances of DAG job scheduling such that its optimal

makespan is Ω(√µ j(∆ j + Tj)).

Proof. Consider a DAG job with µ j coflows to be scheduled in an m × m switch, with µ j = (2K)2

98

for some K and m > 2K . Recall that Tj and ∆ j denote the size of its critical path and its aggregate

size, respectively. For simplicity, we drop the subscript j. We construct the job as follows.

First, we describe the demand matrix of each coflow. For coflows c = 1, . . . , 2K , each coflow

has a single flow of size d from server 1 to server 2, where 2K =
√
µ by assumption. These coflows

are the root nodes in the job’s DAG. For coflows c = i(2K)+1, . . . , (i+1)(2K), i = 1, . . . , (2K)−1,

each coflow has a single flow of size d from server i + 1 to server i + 2.

Now we specify the precedence constraints among coflows. We construct G j such that its

height is
√
µ = 2K and each of its coflow set has

√
µ = 2K coflows (see Definition 9). Consider

coflow c ∈ Si for i = 1, . . . ,Hj − 1. If i(2K) + 1 ≤ c ≤ (i + 1/2)(2K), then the parent set of coflow

c is πc = {c′|c − 2K ≤ c′ ≤ c − K − 1}. If (i + 1/2)(2K) + 1 ≤ c ≤ (i + 1)(2K), then the parent set

of coflow c is πc = {c′|c − 3K + 1 ≤ c′ ≤ c − 2K}. Figure 4.7a shows an example with µ = 16.

For the constructed DAG, it is easy to see that T = ∆ = 2Kd =
√
µd.

Next, we specify an optimal schedule for the constructed DAG, and compute its makespan

denoted by Copt . We first schedule coflows 1, . . .K , which takes Kd amount of time. We then

schedule coflows K + 1 and 2K + 1 simultaneously. This is feasible since there is no precedence

constraint between these two coflows, all the parents of coflow 2K + 1 has been scheduled, and the

two coflows do not share a server. Similarly, we schedule coflows 2(i − 1/2)K + c and 2iK + c,

for i = 1, . . . , 2K − 1 and c = 1, . . . ,K at the same time. Finally, we schedule the last K coflows,

c = 4K2 − K + 1, . . . , 4K2 back to back which takes Kd amount of time. For instance, consider

the example of Figure 4.7. Coflow c1 and c2 are scheduled back to back from time 0 to 2d. Then

coflow c3 and c5 get scheduled from 2d to 3d and so on. Figure 4.7b shows the instance at which

the first ten coflows (the coflows with dashed lines) are scheduled. The coflows with the same

color (that are also linked by an arrow) have been scheduled at the same time.

By scheduling coflows in this fashion, all the precedence constraints and capacity constraints

are respected. Moreover, the length of the schedule is Copt = (2K + 1)K × d = Ω(µd). Therefore,

Copt = Ω(
√
µ(∆ + T)). �

99

4.9 Proofs of Main Results

In this section, we provide detailed proofs of the theorems stating performance guarantees for

the proposed algorithms. Recall that g(m) = log(m)/log(log(m)), and h(m, µ) = log(mµ)/(log(log(mµ)).

4.9.1 Proofs Related To DMA

To prove Theorem 4 we need the following lemmas.

Lemma 10. The length of the infeasible merged schedule (Step 3) is at most (µ + 1/β)∆.

Proof. First note that the isolated schedule for job j in Step 1 spans from 0 to at most µ j∆ j , since

the effective size of each of its coflows is at most ∆ j . By delaying the isolated schedules by at most

∆/β, length of the infeasible merged schedule is at most max j(µ j∆ j)+∆/β which is bounded from

above by (µ + 1/β)∆. �

Lemma 11. Let αt ≥ 1 denote the maximum number of packets that a server needs to send or

receive at time slot t in the merged schedule (Step 3). For any t ∈ [0, (µ+1/β)∆], E[αt] = O(g(m)).

Proof. LetM :=MS ∪MR. To prove the lemma, we define random variable zi jt to be 1 if some

flow of job j with an end point on server i is scheduled at time slot t. Then αt = maxi∈M
∑

j∈N zi jt .

Further, note that due to the random delay of jobs’ isolated schedules, variables zi jt , j ∈ N are

mutually independent. Let δ = ag(m) for some constant a such that δ > 1. Therefore,

E[δαt] = E[δmax
i∈M

∑
j∈N zi jt] ≤ E

[∑
i∈M

δ
∑

j∈N zi jt
]
. (4.8)

Define pi jt to be the probability that zi jt = 1. By the independent property of z variables, we can

100

write

E
[
δ
∑

j∈N zi jt
]
= Π j∈NE

[
δzi jt

]
= Π j∈N (pi jtδ + (1 − pi jt))

≤ Π j∈Nepi jt (δ−1) = e(δ−1)
∑

j∈N pi jt

= e(δ−1)E[
∑

j∈N zi jt] ≤ eβ(δ−1),

(4.9)

where the last inequality is due to E
[∑

j∈N zi jt

]
≤ β. This is because by choosing delays uniformly

at random, E[zi jt] is at most the load of job j on server i divided by ∆/β, i.e., βd j
i /∆, where d j

i is

the load of job j (or equivalently the aggregate coflow D j) on server i (see Definition 4). Thus,

E
[∑

j∈N

zi jt

]
=

∑
j∈N

E[zi jt] ≤ β,

as
∑

j∈N d j
i ≤ ∆ by definition.

Combining Inequality (4.8) and (4.9), and by Jensen’s inequality we can write,

δE[αt] ≤ E[δαt] ≤
∑
i∈M

eβ(δ−1) = 2meβ(δ−1) (4.10)

Now, note that if we choose a sufficiently large, then 2meβ(δ−1) ≤ δδ, by definition of g(m).

Therefore, we can conclude that E[αt] ≤ δ, and the proof is complete. �

Lemma 12. For any ε > 0, the probability that the length of the final schedule (Step 4) is greater

than O(g(m))(µ + 1/β)∆, is less than ε .

Proof. Recall that the constructed merged schedule (Step 3) spans from time 0 to at most (µ+1/β)∆

due to Lemma 10. Note that, the length of the final schedule is at most
∑

t∈[0,(µ+1/β)∆) αt . Using

Lemma 11 and Markov inequality, for any ε > 0,

P
©«

∑
t∈[0,(µ+1/β)∆)

αt ≥ (a/ε)g(m)(µ + 1/β)∆ª®¬ ≤ ε (4.11)

101

Therefore, the proof is complete.

�

Lemma 13. Steps 3 and 4 in DMA can be executed in polynomial time.

Proof. In view of Steps 3 and 4 in DMA algorithm, we may need to run BNA for (µ+1/β)∆ times.

However, in the case that ∆ is not polynomially bounded in m, n, and µ, we can modify the last

step of DMA to ensure that it runs in polynomial time. To do so, define H = {τc j |c ∈ G j, j ∈

N} and L = {Lc j |c ∈ G j, j ∈ N}, to be the set of all scheduling times and matchings. we sort H,

and let I be the set of time intervals created from elements of B, I = {[hk, hk+1)|k = 1, . . . |H |−1}.

Thus, I consists of the time intervals during which the corresponding matching of every coflow is

fixed.

For each interval I in I, we merge the matchings of coflows, namely Lc j(k)’s, for which the

interval I is entirely in the corresponding time interval [τc j(k), τc j(k + 1)). In other words, we

compute

D =
∑

c, j,k:I⊆[τc j (k),τc j (k+1))
Lc j(k).

Finally, for each merged matchingD, we find an optimal schedule using BNA, i.e., L, τ =BNA(lI×

D), where lI is length of the interval I of merged matching D. Then we schedule demand matrix

lI × D according to L and τ.

Note that whenever we run BNA, the number of elements in the list L, output of BNA, is at

most m2. This is because according to line 5 in BNA, at each iteration, t is computed such that at

least one node becomes tight (i.e., it appears in the set Ω of line 3 in the next iteration) or a flow

completes. Further, |τ | = |L | + 1 and the last element of τ is D. Hence, in view of Steps 3 and 4

in DMA algorithm, we need to run BNA for at most O(µnm2) times as the number of intervals in

the set I is O(µnm2). Combining this with the fact that BNA runs in polynomial time, the proof is

complete. �

We are now ready to prove Theorem 4.

102

Proof of Theorem 4. Steps 1 and 2 in DMA can be executed in polynomial time. Combining this

with Lemma 13, we can easily conclude that DMA runs in polynomial time.

Moreover, given that ∆ is a lower bound for the optimal makespan, β is a constant, and

Lemma 12, we conclude that makespan of the final schedule is at most O(µg(m)) of the optimal

makespan with high probability. �

4.9.2 Proofs Related To DMA-SRT and DMA-RT

Consider DMA-SRT. Let αt ≥ 1 denote the maximum number of packets that a server needs

to send or receive at time slot t in the infeasible merged schedule (Step 5 in DMA-SRT). To prove

Theorem 5, we first state the following lemma that provides a high-probability bound on αt .

Lemma 14. For any ε > 0, maxt αt ≤ kε
√
µ j h(m, µ j), with probability greater than (1 − ε), for a

constant kε depending on ε , for t ∈ [0,∆ j/β + Tj].

Proof. To prove the lemma, let P denote the probability that any server at any time is assigned

more that α packets (to be specified shortly). In what follows we first bound P0 the probability that

at least α packets are scheduled to be sent or received by a server i at time t. Note that there are

at most
(
∆j
α

)
ways to choose α packets from those that have an end point (source or destination)

on server i. For packet u, the probability that it is scheduled at time t is at most β |Pu, j |/∆ j ,

where, Pu, j ⊆ Pj is the set of path-jobs containing packet u (or equivalently, the coflow to which

packet u belongs.). That is because of the random uniform delay for scheduling coflows in S0.

More precisely, let Eu,t be the event that a specific packet u is scheduled at time t and Pu be the

probability that Eu,t happens. Furthermore, let Eu∈p denote the event that scheduling of u in the

final schedule is according to the schedule of path-job p. Then,

Pu =
∑

p∈Pu, j

P{Eu,t, Eu∈p}
(1?)
=

∑
p∈Pu, j

P{dp = tp, Eu∈p}

=
∑

p∈Pu, j

P{Eu∈p |dp = tp}P{dp = tp}

(4.12)

103

Equality (1?) is because the probability that packet u is scheduled at t and according to the path-

job p is equal to the probability that path-job p is delayed by some specific time tp and packet u is

scheduled according to the path-job p. Regardless of the value of t, the probability that path-job p

is delayed by tp is either β/∆ j or zero (if tp < 0). Hence,

Pu ≤
β

∆ j

∑
p∈Pu, j

P{Eu∈p |dp = tp} ≤
β|Pu, j |

∆ j
(4.13)

Moreover, for two different packets u and v with at least a common (source or destination)

server, the probability that they collide (i.e., are assigned to the same time slot) is zero if they

both belong to the same coflow or same path-job, due to the feasible scheduling of each coflow

and satisfaction of precedence constraints at each path-job. Otherwise, the probability that the

two events Eu,t and Ev,t happen can be upper-bounded by multiplications of two terms of the form

β |P., j |/∆ j (using arguments similar to Equations (4.12) and (4.13)), since the random delays are

chosen independently.

Therefore,

P0 ≤

(
∆ j

α

)
Π
α
i=1Pui ≤ (

e∆ j

α
)α(

β

∆ j
)α × Παi=1 |Pui, j |

(2?)
≤ (

eβµ j

α2)
α (4.14)

Note that the size of set Pj is bounded by |S0 | (and therefore µ j) as there is only one path for any

coflow in S0 to coflow Rj . Therefore,
∑α

i=1 |Pui, j | ≤ |Pj | ≤ µ j . Combining this with the fact that

Παi=1 |Pui, j | is maximized when |Pui, j | = µ j/α, Inequality (2?) is yielded.

If we choose α = kε
√
µ j then P0 ≤ (mµ j)

−(kε−1). Hence, the probability that any server at

any time is assigned more that α packets can be bounded by P ≤ 2m(∆ j + Tj)P0 < 2m(∆ j +

Tj)(mµ j)
−(kε−1). This last step is similar to the argument in [104, 121], for job shop scheduling

problem. To specify kε , note that we require P to be less than ε > 0, which is satisfied by choosing

kε as

kε ≥ logmµj

(2m(∆j+Tj)

ε

)
+ 1 (4.15)

104

We now need to show that kε is a constant by showing that ∆ j + Tj is polynomially bounded in

m and µ j . Let δ j denote the maximum size of a flow in job j. Note that ∆ j + Tj is polynomially

bounded in m, µ j and δ j . In the case that δ j is polynomially bounded in m and µ j , it is easy to see

that by choosing kε according to (4.15), with probability (1 − ε), there is at most kε (
√
µ j h(m, µ j)

packets on any server at any time. If δ j is not polynomially bounded in m and µ j , we round down

each flow size dc j
sr to the nearest multiple of δ j/m2µ j and denote it by d′c j

sr . This ensures that we

have at most m2µ j distinct values of modified flow sizes. Therefore, we can treat d′c j
sr as integers in

{0, 1, . . . ,m2µ j} and trivially retrieve a schedule for d′c j
sr by rescaling. Let S′ denote this schedule.

If we increase the flow sizes from d′c j
sr to dc j

sr in S′ by increasing the length of the last matching

that flow (s, r, c, j) is scheduled in and achieve schedule S, we can argue that the length of S and

S′ differs in at most δ j amount. This is because there are at most m2µ j number of flows. Thus,

length of S is at most (kε + 1)√µ j h(m, µ j) as δ j ≤ Tj . �

We are now ready to prove Theorem 5.

Proof of Theorem 5. It is easy to see that steps 1-3 of DMA-SRT can be done in polynomial time.

By Lemma 13, Steps 4 and 5 of DMA-SRT are also executed in polynomial time. Therefore,

DMA-SRT is a polynomial time algorithm.

Moreover, the completion time of each coflow is bounded by ∆ j/β + Tj , since the maximum

delay is ∆ j/β and the maximum starting time of coflow c is Tj − D(c j). Using Lemma 14, we

conclude that the length of the final schedule is at most O(√µ j h(m, µ j))(∆ j/β + Tj) with a high

probability. Given that both ∆ j and Tj are lower bounds for the optimal makespan, the proof is

complete. �

We now prove Theorem 6 regarding performance of DMA-RT.

Proof of Theorem 6. The proof is similar to proof of Theorem 4. Using DMA-SRT, completion

time of job j is O(√µ j h(m, µ j))× (∆ j/β+Tj). Delaying and merging these schedules and applying

an argument similar to proof of Lemma 11 and 12, we can conclude that the final solution is

105

bounded from above by O(
√
µg(m)h(m, µ)) × (∆/β + max j Tj). Combining this with the fact that

both ∆ and max j Tj are lower bounds on the optimal makespan, we can conclude the result. �

4.9.3 Proofs Related to G-DM

We use C̃j to denote the optimal solution to LP (4.3) for the completion time of job j, and use

ÕPT =
∑

j w jC̃j to denote the corresponding objective value. Similarly we use C?
j to denote the

optimal completion time of job j in the original job scheduling problem, and use OPT =
∑

j w jC?
j .

The following lemma establishes a relation between ÕPT and OPT. To prove Theorem 7, we first

show the following.

Lemma 15. The optimal value of the LP, ÕPT, is a lower bound on the optimal total weighted

completion time OPT of multi-stage coflow scheduling problem, i.e., ÕPT ≤ OPT .

Proof. It is easy to see that an optimal solution for the original multi-stage job scheduling problem

is a feasible solution to LP (4.3) from which the lemma’s statement can be concluded. �

Lemma 16. If there is an algorithm that generates a feasible job schedule such that for any job j,

CALG
j = O(ζ)(Tj + ρ j +D j), then

∑
j w jCALG

j = O(ζ) ×OPT, where CALG
j is completion time of job

j under the algorithm.

Proof. The proof is similar to the proofs of Lemmas 5 and 6, and Theorem 1 in [76]. We first show

the following,

∑
j

w jCALG
j = O(ζ)(

∑
i∈M

∑
J⊆N

λi,J fi(J) +
∑
j∈N

η j(Tj + ρ j)), (4.16)

for η and λ as computed in Algorithm 7 in Section 4.6.2. We would like to emphasize that the

values of η and λ at the end of Algorithm 7 constitute a feasible dual solution [76]. Note that the

second term in the right hand side of inequality (4.16) is the optimization objective in the Dual

LP (4.5). Therefore, from weak duality (as η and λ constitute a feasible dual solution), we can

106

conclude that
∑

j w jCALG
j = O(ζ) × OPT. To show Inequality (4.16), first note that

w j = η j +
∑
i∈M

∑
k≥ j

d j
i λi,k, (4.17)

where, with a slight abuse of notation, λi,k = λi,N ′ when N ′ = {1, 2, . . . , k}. Equation (4.17) is

correct as job j is added to the permutation in Algorithm 7 only if Constraint (4.5b) gets tight for

this job. Therefore by the lemma’s assumption,

∑
j

w jCALG
j <O(ζ)(

∑
j

(η j +
∑
i∈M

∑
k≥ j

d j
i λi,k)(Tj + ρ j + D j))

We first bound the term
∑

j η j(Tj + ρ j + D j). Note that for every job j that has a nonzero η j ,

Tj + ρ j > dφ(j) = D j . Therefore,

∑
j

η j(Tj + ρ j + D j) < 2
∑

j

η j(Tj + ρ j). (4.18)

To bound the term
∑

j
∑

i∈M
∑

k≥ j d j
i λi,k(Tj + ρ j + D j), note that for every set N ′ = {1, 2, . . . , k}

with nonzero λi,k , we have Tj + ρ j ≤ dφ(k) = D j . Therefore,

∑
j

∑
i∈M

∑
k≥ j

d j
i λi,k(Tj + ρ j + D j) ≤ 2

∑
j

∑
i∈M

∑
k≥ j

d j
i λi,k D j

≤ 2
∑

k

∑
i∈M

λi,k Dk

∑
j≤k

d j
i ≤ 2

∑
k

∑
i∈M

λi,k D2
k

?
≤ 4

∑
i∈M

∑
J⊆N

λi,J fi(J),

(4.19)

where, Inequality (?) is by (4.4) and the fact that λi,J is only nonzero for the sets of the form

J = 1, 2, . . . , k for some k. Combining (4.18) and (4.19), Inequality (4.8) is derived. �

Proof of Theorem 7. Recall that C̃j is the optimal completion time of job j according to the LP

(4.3). Let Ĉj denote the actual completion time of job j under G-DM. Also, let l j be the index of

107

the group to which job j belongs based on (4.7). Let jb be the last job in group b, and Tb be the

maximum size of critical paths of jobs in group b. Also let T (Jb) be the amount of time spent on

processing all the jobs in Jb. Then,

Ĉj
(1?)
≤ max

k∈b,b≤lj
ρk +

lj∑
b=0
T (Jb)

(2?)
≤ max

k∈b,b≤lj
ρk +O(µg(m))

lj∑
b=0
(D jb + Tb)

(3?)
≤ alj +O(µg(m))

lj∑
b=0

ab, (4.20)

where g(m) = log(m)/log(log(m)). Inequality (1?) bounds the completion time of job j with sum

of two terms: the first term is the maximum release time of the jobs in the first l j groups (note that

maxk∈b,b≤lj ρk can possibly be greater than ρ j); The second term is the total time the algorithm

spends on scheduling jobs of previous groups plus the time it spends on scheduling Jlj . Lemma

12 implies inequality (2?), and inequality (3?) follows from the fact that maxk∈b,b≤lj ρk ≤ alj , and

Db and Tb are both bounded by ab for every job k ∈ Jb. From (4.6),

∑lj
b=0 ab = γ

∑lj
b=0 2b = γ2(lj+1) − 1 < 2alj . (4.21)

Combining (4.20) with (4.21), and the fact that alj−1 = alj/2,

Ĉj < O(µg(m))alj−1

(4?)
< O(µg(m))(Tj + ρ j + D j)

where (4?) is because Tj + ρ j + D j falls in (alj−1, alj]. This inequality combined with Lemma 16

implies that ∑
j

w jĈj ≤ O(µ log(m)/log(log(m))) × OPT.

�

108

Chapter 5: Max-Min Fairness of Completion Times for Multi-Task Job

Scheduling

5.1 Introduction

Distributed computing platforms, such as MapReduce [4], Dryad [5], Spark [14], etc., have

been widely adapted for large-scale data processing in cloud and computing clusters. The data set

is typically distributed among a set of servers, and processed by executing a job consisting of a set

of tasks in servers. The tasks are typically processed in the servers where their input data is stored

(a.k.a data locality) [4]. The collective behavior of tasks is more important than each of the tasks

individually, as the job can be completed, or moved to another computation stage, only when all of

its tasks finish their processing [4, 5, 14].

Jobs from a wide range applications and different users can coexist in the same cluster, and

often have diverse tasks and processing requirements. Efficient and fair allocation of the cluster’s

resources among jobs is crucial to guarantee their timely completions. This has been amplified

by the increasing complexity of workloads, i.e., from traditional batch jobs, to queries, graph

processing, streaming, machine learning jobs, etc., that all need to share the same cluster, and often

have very different latency and priority requirements. For example, analysis of a Google cluster’s

trace in [122] shows a diverse mix of jobs in the same cluster, ranging from latency-tolerant jobs

(∼ 24%) to latency-sensitive jobs (∼ 42%).

Fair allocation of resources in shared clusters among applications and organizations has been

studied in, e.g., [123, 124, 125], where the cluster’s resources are usually divided among different

applications through some notion of fairness, e.g. DRF (Dominant Resource Fair) [123]. The

scheduler then manages queues of tasks for applications and schedules their tasks. For example,

Hadoop [90] reserves resources by launching containers or virtual machines in servers. Each

109

container reserves memory and CPU for processing a task at a time. The Hadoop scheduler uses

FIFO scheduling or memory-based DRF [126]. However, these schedulers ignore the completion

times of jobs and their latency requirements when allocating resources. Assigning priorities can

alleviate this problem, however priorities are typically assigned to applications manually [127],

and it is not clear how to assign priorities to jobs (and their tasks) dynamically, based on the

existing jobs in the cluster and their sensitivities to latency. Further, application priority in Hadoop

is supported only for FIFO scheduling [127].

Despite the vast research on scheduling algorithms (see Related Work), theoretical study of

fairness with focus on sensitivities of jobs to latency is very limited. Moreover, prior work is

mainly based on simple models that assume each job is only one task (ignoring dependency among

tasks and their collective impact on the job’s completion time), or tasks are processed on any server

arbitrarily (ignoring data locality).

In this chapter, we consider a multi-task job scheduling model that captures such features. Each

job consists of a set of tasks whose completion time is determined by the completion time of its

last task. As in [128, 129], to capture latency-sensitivity, we consider a utility for each job as a

function of its completion time. For example, a highly latency-sensitive job can specify a utility

function that decays rapidly to zero as its completion time increases. We consider the notion of

max-min fairness which is one of the most widely used resource allocation mechanisms [130, 131,

132]. Our objective is to schedule tasks in a way that achieves max-min fairness among jobs’

utilities, i.e., maximize the worst utility across all the jobs, then maximize the second-worst utility

without affecting the worst utility, and so on. We refer to this problem as max-min fair scheduling.

Note that this implies that at the optimal solution, we cannot increase the utility of any job without

hurting the utility of some job with smaller or equal utility.

We also would like to mention that the max-min fair scheduling problem for our multi-task job

model is of interest from theoretical point of view. As we see later, our model can be reduced to

the three scheduling problems considered in the literature to achieve max-min fairness for jobs and

110

coflows1 considered in [129, 133, 134]. Hence, all the three problems are at least as hard as our

problem.

5.1.1 Related Work

There has been much work on fair scheduling in data centers, e.g. [125, 123, 124, 128, 135,

133, 129, 136, 137]. They mostly consider fair resource allocation to guarantee properties such

as sharing-incentive among users of a shared cloud [125, 123, 124], with little focus on the sen-

sitivity of jobs to their completion times, or consider heuristics for different notions of fairness

for maximizing total utility [135], meeting deadlines [137], or fair resource assignment to each

job [136]. Generating proper utility functions based on jobs’ priorities and completion times was

studied in [128]. In [135], a Risk-Reward heuristic was presented where scheduling decisions are

made based on the cost of reallocating resources and future utility gain. The max-min fairness of

job utilities were studied in [129, 133], however, their models assume each job has only one task

and the cloud cluster is one large pool for each resource type. Moreover, in their solution, a job

can be allocated different resource types in different unrelated time slots, as opposed to having all

its required resources available at the same time. Further, despite their plausible algorithms that try

to solve the problem optimally, we show in this chapter that the problems are NP-hard in a strong

sense.

Our model is closely related to the concurrent open shop model [138, 139, 140, 75] in schedul-

ing literature. Minimizing the (weighted) average completion time of jobs in this model has been

widely studied, with several approximation algorithms in [139, 140, 75]. However, to the best of

our knowledge, there is no theoretical result on max-min fairness in this model.

Max-min fair is one of the most widely used notions of fairness [130, 131, 132]. Moreover, the

use of utilities and the network utility maximization for rate allocation in communication networks

has been extensively studied (e.g. see [141] and references therein). However, the results cannot

be extended to max-min fair job scheduling in data centers. The max-min fair optimization is not a

1a collection of flows whose completion time is the completion time of the last flow in the collection [7].

111

single-objective optimization, as we aim to optimize a vector of objective functions (utilities) in the

sense of max-min fairness. Multi-objective optimization programs have been widely studied and

different methods have been developed to solve these problems efficiently in special cases [142,

143, 144]. However, as we show, solving the multi-objective optimization in our setting is a

hard problem (NP-hard). In [144], existence and computation of a set of equivalent weights was

studied which enable the conversion of a given multi-objective optimization to a single-objective

optimization. We use this method in this chapter to study the performance of one of our proposed

algorithms.

We would like to mention that, there exist well-established techniques to estimate tasks’ du-

rations to the scheduler, based on the history of prior runs for recurring jobs, using tasks’ peak

demands, or measuring statistics from the first few tasks in each job, see [145, 146]. Hence,

throughout the chapter, we assume that tasks’ processing times are known.

5.1.2 Main Contributions

Our main contributions can be summarized as follows:

• NP-Hardness of Max-Min Fair Scheduling: We first show that it is NP-hard to optimally solve

the max-min fair scheduling problem. We actually prove a stronger complexity result. Given n

multi-task jobs in a cluster of machines, it is NP-hard to find a schedule in which even the first

O(nε) � n number of jobs, for any ε > 0, conform to their optimal max-min fair solution.

Further, we conclude that the scheduling problems considered in [129, 133, 134] are NP-hard.

• Approximation Algorithms: We define two notions of approximation solutions for this prob-

lem: one based on finding a constant number of elements of the max-min fair vector, and the

other based on a single-objective optimization whose solution gives the max-min fair vector. We

develop scheduling algorithms, using dynamic programming and random perturbation of tasks’

processing times, that provide guarantees under both notions of approximation solutions.

112

• Empirical Evaluation: We use a real traffic trace from a large Google cluster to verify that our

algorithms in fact perform very well compared to other scheduling policies.

This chapter is based on the results published in the paper [147].

5.2 Model and problem statement

Cluster and Job Model: We consider a cluster of m machines, denoted by the set M =

{1, ...,m}. Each machine can be thought of as a container or virtual machine [90] that can pro-

cess one task at a time. There is a collection of n jobs, denoted by the set N = {1, ..., n}. Each job

j ∈ N consists of up to m different tasks that need to be processed on different machines. Each task

requires a specific processing time from its corresponding machine2. Specifically, the task of job

j on machine i, denoted by task (i, j), requires a processing time pi j ≥ 0 from machine i. For each

job j, we use Mj ⊆ M to denote the subset of machines that contain tasks of job j, i.e., pi j > 0

for each i ∈ Mj . Without loss of generality, we assume processing times of all non-zero tasks are

integer numbers and the smallest processing time is at least one. This can be done by defining a

proper time unit and representing the tasks’ processing times using integer multiples of this unit.

Tasks are independent of each other in the sense that tasks of the same job can be processed in

parallel on their corresponding machines. However, a job is completed only when all of its tasks

finish their processing. Define Ci j to be the completion time of task (i, j). Then, the completion

time of job j, denoted by Cj , is given by

Cj = max
i∈Mj

Ci j . (5.1)

This model is known as the concurrent open shop problem [138, 139, 140, 75] in scheduling

literature. The total time that it takes to complete all the jobs in N is called makespan and is

denoted by τ(N). Note that by definition τ(N) = max j∈N Cj . It is easy to see that any valid schedule

that does not leave a machine idle, unless it has completed all its corresponding tasks, achieves the
2In the case that a job has multiple tasks on a specific machine, we can view them as a single task with processing

time equal to the cumulative original tasks’ processing times.

113

optimal makespan which is equal to

τ(N) = max
i∈M

∑
j∈N

pi j . (5.2)

Max-Min Fair Objective: As in [128, 129], we assume each job j specifies a utility U j(Cj),

which is a function U j(·) of its completion time Cj , and captures its sensitivity to its completion

time. Since each job prefers an earlier completion time, the utility function is assumed to be

decreasing (with respect to the completion time). We further assume that the utility function is

Lipschitz continuous (i.e., its first derivative is bounded). To define our max-min fairness, we first

define the lexicographic order for two given vectors [148], as follows.

Definition 10 (Lexicographic Order). Let X = (X1, · · · , Xk) and Y = (Y1, · · · ,Yk) be two vectors

of length k. Sort elements of X and Y in a non-decreasing order and denote the corresponding

vectors by X̄ and Ȳ , respectively. We write X � Y , and say X is lexicographically greater than Y ,

if X̄i > Ȳi for the first i that X̄i and Ȳi differ. Consequently, we write X � Y and say vector X is not

lexicographically smaller than Y if X̄ = Ȳ or X � Y .

Our objective is to schedule jobs (their tasks) in a way that achieves the max-min fairness

across the vector of jobs’ utilities. In other words, we wish to maximize the worst (minimum) job

utility across all the jobs, and then sequentially maximize the next-worst utility without affecting

the previous-worst utility, and so on. Formally, let C = (C1, · · · ,CN) be the vector of completion

times of jobs in set N and define U(C) = (U1(C1), · · · ,UN (CN)). We seek to schedule jobs in a way

that the optimal completion time vector, denoted by C?, has the property that the vector U(C?) is

lexicographically greater than U(C) for any other valid scheduling of jobs with completion time

vector C, i.e., U(C?) � U(C). Note that by Definition 10, the sorted optimal vector Ū(C?) is

unique.

Preemptive vs Non-preemptive Scheduling: The scheduling algorithm could be preemptive or

non-preemptive. In a non-preemptive algorithm, a task cannot be preempted once it starts its pro-

cessing on its corresponding machine, while in a preemptive algorithm, a task may be preempted

114

and resumed later on the same machine.

5.3 Lexicographic Max-Min Fair Schedule and NP-hardness

In this section, we first characterize the structure of optimal schedules for max-min fair prob-

lem. Then we show a strong result regarding NP-hardness of finding the optimal schedule.

5.3.1 Structure of Optimal Schedule

In a non-preemptive schedule (Section 5.2), tasks on each machine are processed according

to some order. We say a task is at position l, l = 1, · · · , n, on machine i if it is the l-th task that

is completed in machine i. Hence, to fully describe a non-preemptive schedule, it is sufficient to

specify a permutation πi for each machine i, i ∈ M , as formally defined below.

Definition 11 (Permutation of Tasks on Machine i). Given a set of jobs N = {1, 2, . . . , n} and

a valid non-preemptive schedule on machine i, a permutation πi : N → {1, 2, . . . , n} is a one-

to-one mapping of jobs to positions {1, 2, . . . , n} according to which their tasks on machine i are

completed.

Hence πi(j) determines the position of job j’s task on machine i. Note that some jobs might

not have any tasks on machine i. For these jobs, we consider tasks with zero processing time on

machine i. These zero-processing tasks do not contribute to the completion times of jobs and their

utilities; nevertheless, including them in Definition 11 will make the future arguments easier. The

following theorem characterizes the structure of optimal solution.

Theorem 8. Any optimal schedule for max-min fair problem can be converted to another optimal

schedule in which all the tasks are scheduled in a non-preemptive fashion, according to the same

permutation on all the machines.

Proof Overview. Given any optimal schedule, we construct a non-preemptive schedule, with iden-

tical permutation for all machines: Starting from the last job (the job with the largest completion

115

time) in the given solution, we move all its tasks to the end of the schedule in their corresponding

machines, and sequentially do this for all the jobs. We omit the details. �

Hence, by Theorem 8, in order to find an optimal solution, it is sufficient to only consider

non-preemptive schedules with the same permutation of jobs πi = π on all machines i ∈ M .

5.3.2 NP-Hardness

Next, we show that finding an optimal solution to the max-min fair scheduling is NP-hard.

In fact, we prove a stronger complexity result. Before stating the result, we make the following

definition.

Definition 12 (f (n)-max-min fair). Let Ū(C) denote the sorted utility vector corresponding to

completion time vector C. We say a solution C is f (n)-max-min fair, if the first f (n) elements of

Ū(C) match the first f (n) elements of Ū(C?) where C? is completion time vector for some optimal

solution.

Consider any increasing function f (n) ≤ n for which f −1(n) is bounded by a polynomial in n.

We show that it is NP-hard to find a schedule (or equivalently a permutation of jobs by Theorem 8)

for which the first f (n) elements of the sorted utility vector matches the first f (n) elements of the

sorted max-min fair utility vector. We state the result in the following theorem.

Theorem 9. Given a set of machines M = {1, ...,m} and a set of jobs N = {1, ..., n}, scheduling

jobs to achieve f (n)-max-min utility optimal is NP-hard, for any increasing function f (n) for which

f −1(n) is polynomially bounded in n. The result holds even if all the utility functions are the same,

i.e., U j(Cj) = U(Cj), ∀ j ∈ N .

For instance, Theorem 9 holds for any sublinear function f (n) = nε , for any ε ∈ (0, 1], but not

for f (n) = log(n).

In the case of identical utility functions, U j(Cj) = U(Cj), ∀ j ∈ N , it is easy to observe that

“max-min” fairness among utilities is equivalent to “min-max” among the completion times. In

116

the latter problem, we minimize the largest completion time across the jobs, and then successively

minimize the next largest completion time as long as it does not affect the previous largest com-

pletion time, and so on. We formally state this fact in the following lemma.

Lemma 17. In the case that U j(Cj) = U(Cj), ∀ j ∈ N , max-min fairness among utilities is equiva-

lent to min-max of completion times.

Proof. Given that the utility function U(.) is not increasing, the result is immediate. �

Proof of Theorem 9. We prove the theorem for the special case when all jobs’ utility functions

are the same. This implies NP-hardness of the problem for general cases with any non-increasing

utility functions. To prove this, we use a reduction from the Minimum Vertex Cover Problem which

is known to be NP-hard [149]. An instance I of Minimum Vertex Cover Problem is given by a

graph G = (V, E), where the goal is to find a minimum cardinality set of vertices W ⊂ V such that

each edge e ∈ E is incident to at least one vertex of W . We use VC(G) to denote the cardinality

of W . We map this instance to an instance I′ of the problem of f (n)-min-max completion times

using a polynomial time procedure.

Instance I′ has m = |E | + n′ machines, one for each edge e ∈ E , plus n′ extra machines to be

specified shortly, and n = |V | + n′ jobs, one for each vertex v ∈ V and extra n′ jobs. Let dv denote

the degree of vertex v in G. For each vertex v ∈ V , we consider a job j(v) consisting of dv tasks

(j(v), e), such that p j(v)e = 1 if edge e ∈ E is incident to v, and 0 otherwise. We refer to these jobs

as vertex jobs. The remaining n′ jobs, each has a unit-sized task on one of the last n′ machines,

such that each of the n′ machines only has one task to process. We refer to these jobs as dummy

jobs. We choose n′ = f −1(|V |) − |V |. Note that f (|V |) ≤ |V | and f is an increasing function (and

so is f −1), therefore, n′ ≥ 0. At the end of this construction, each machine has either 1 or 2 tasks

to process; hence, all the jobs can be scheduled in two time slots. Consider a schedule with the

following properties: (1) it finishes all the jobs using two time slots, (2) all the n′ dummy jobs are

completed in the first time slot Note that the set of tasks completed in the second time slot belong

to a set of vertex jobs. This set of vertex jobs creates a vertex cover for G, because each of the first

117

|E | machines has to process some task from these jobs in the second time slot.

Note that by the choice of n′,

f (n) = f (|V | + n′) = f (f −1(|V |)) = |V | > VC(G). (5.3)

Out of the first f (n) = V jobs in the sorted completion time vector, some jobs have completion

time equal to 2 and some jobs have completion time equal to 1. To find the f (n)-min-max vector,

we therefore need to minimize the number of jobs completed in the second time slot, which is

equivalent to finding the minimum vertex cover of G. Note that the remaining jobs correspond

to an independent set in graph G, and hence all their tasks can be scheduled in the first time slot.

However, it is NP-hard to find the minimum vertex cover of graph G = (V, E) [149]. �

As a result of Theorem 9, we can conclude that the max-min fairness problem for single-task

jobs considered in [129] (see Section 5.1.1 for more details) and the max-min fairness scheduling

of coflows considered in [134] are both NP-hard problems, that were not shown before. The proof

is based on reduction of our problem to these scheduling problems. The details are omitted.

Corollary 3. The max-min fair scheduling problems considered in [129, 133, 134] are NP-hard.

5.4 Defining Approximation Solutions

In single-objective optimization, in case the problem is NP-hard, we try to find approximation

algorithms, which run in polynomial time, and can return a solution with provable guarantee on

its distance from the optimal solution (e.g., approximation ratio) [150]. However, the optimiza-

tion problem in our setting is not a single-objective optimization, as we aim to optimize a vector

of objective functions in the sense of max-min fairness. Consequently, given that finding the op-

timal vector solution to our problem is NP-hard (Theorem 9), it is not clear how to define the

approximation algorithms in our setting. In this section, we describe two possible definitions for

approximation solutions. We focus on the case that all jobs’ utility functions are the same, i.e.,

U j(Cj) = U(Cj), j ∈ N . Recall that by Lemma 17, this is equivalent to the problem of min-max

118

of completion times, which is still NP-hard by Theorem 9. In Section 5.6, we discuss possible

extensions to unequal utility functions.

5.4.1 k-Min-Max Fair Approximation

A natural way of extending the idea of approximation ratio is through αn-min-max, for some

α < 1, based on f (n) = αn in Definition 12. We can attempt to find an approximate algo-

rithm (schedule) such that the first αn elements of its corresponding sorted completion time vector

matches the first αn elements of the sorted min-max vector. However, Theorem 9 implies that even

finding such a schedule is NP-hard for any constant α > 0. Therefore, we ask for less, and consider

finding the first k elements of the sorted optimal vector, for a fixed constant k < n.

5.4.2 Single-Objective Approximation

The second approach could be to formulate a single-objective optimization whose optimal

solution coincides with the min-max vector. We can then use this single-objective optimization to

measure the quality of an approximation solution to the min-max problem. We describe one such

formulation based on an integer program.

An Equivalent Integer Program (IP). We formulate an Integer Program based on minimiza-

tion of the total weighted completion times of jobs. In traditional minimization of total weighted

completion times [139, 140, 75], each job j has a positive fixed weight w j and the objective is to

minimize
∑

j∈N w jCj . The optimization that we consider here is different as the weights of jobs

are not fixed in advance and depend on their positions in permutation. Formally, for any position

l ∈ {1, 2, . . . , n} and any job j ∈ N , we define a binary variable xl j which is 1 if job j is the l-th

job to complete in the schedule, and 0 otherwise. In view of Definition 11, xl j = 1 is equivalent to

having π(j) = l, when πi(j) = π(j) for all i ∈ M . We refer to {xl j} as permutation variables. Each

position l ∈ {1, 2, . . . , n} is assigned a non-negative weight wl . Define C(l) to be the completion

119

time of the l-th job completed in the schedule

(IP) min
n∑

l=1
wlC(l) (5.4a)

C(l) ≥
l∑

s=1

∑
j∈N

pi j xs j, i ∈ M, 1 ≤ l ≤ n (5.4b)

n∑
l=1

xl j = 1, j ∈ N (5.4c)∑
j∈N

xl j = 1, 1 ≤ l ≤ n (5.4d)

xl j ∈ {0, 1}, 1 ≤ l ≤ n, j ∈ N (5.4e)

Constraint (5.4b) is based on the definition of permutation variables and the fact that the completion

time of the l-th job is greater than completion time of its task on any machine i. Constraints (5.4c)

and (5.4d), capture the requirement that each job is assigned to a position, and each position is

assigned to a job, respectively. Let C?(l) denote the value of completion time of the l-th job in an

optimal solution to (IP). Observe that by the minimization objective, for any job there is a machine

for which Constraint (5.4b) turns to equality at the optimal solution. Let i? denote the machine for

which C?(l−1) =
∑l−1

s=1
∑

j∈N pi? j x?s j . Then, as a result of Constraint (5.4b) on machine i? for the

l-th job we have,

C?(l) ≥

l∑
s=1

∑
j∈N

pi? j x?s j ≥

l−1∑
s=1

∑
j∈N

pi? j x?s j = C?(l−1).

This implies that C?(1) ≤ · · · ≤ C?(n), i.e. the values of C?(l) are consistent with our definition

of jobs’ positions l = 1, · · · , n. However, since a job l with no task on a machine i is assumed to

have a task with zero processing time on that machine, and Constraint (5.4b) is on all machines

i ∈ M , the completion time of the job may be dominated by one of its zero-processing tasks. This

can result in a larger value for C?(l) than the actual completion time of the l-th job in the schedule

according to (5.1). We need to show that C?(l) is indeed the completion time of the l-th job in the

schedule.

120

Lemma 18. For any job h and its corresponding position l (i.e., x?lh = 1) in an optimal solution to

IP (5.4),

Ch = C?(l) =

l∑
s=1

∑
j∈N

pi? j x?s j, for some i? ∈ Mh.

Therefore, C?(l) is indeed the completion time of job h in the schedule corresponding to optimal

permutation variables x?l j (or its corresponding job permutation π?).

The proof of Lemma 18 is based on a contradiction argument and optimality of C?.

Proof. For purpose of contradiction, assume that the lemma statement does not hold for some l,

i.e. completion time of l-th job, job h, happens at machine i? for which pi?h = 0. In other words,

x?lh = 1, C?(l) =
∑l

s=1
∑

j∈N pi? j x?s j , and i? ∈ M \ Mh. We further assume that there is no machine

in Mh at which completion time of job h happens and i? is unique. Denote by m the machine in

Mh that task phm has the maximum completion time C?
mh, i.e., m = arg maxi∈Mh

∑l
s=1

∑
j∈N pi j x?s j .

Therefore, C?
mh < C?

h = C?(l).

Moreover, let l′ < l denotes the largest position of some job, say k, whose task at machine i? is

non-zero, i.e., x?l ′k = 1 and pi?k > 0. Then the following inequality holds.

C?(l ′) ≥

l ′∑
s=1

∑
j∈N

pi? j x?s j =

l∑
s=1

∑
j∈N

pi? j x?s j = C?(l),

Given that C?(l ′) ≤ C?(l) (by optimality of the solution), we conclude that C?(l ′) = C?(l). By

changing the positions of jobs h and k, and using C for the new completion times, we have the

following:

C(l
′) = Ch ≤ max{C?

mh,C
?(l ′) − pi?k} < C?

h = C?(l).

Furthermore, completion time of job k is equal to C(l) = Ck = C?(l ′), therefore, we can decrease

the objective function of IP (5.4) using the updated permutation. This suggests that the solution is

not optimal which is a contradiction.

121

In the case that i? is not unique, we denote the set of such machines by I. We then choose l′ to be

the largest position < l of some job, say k, whose task at machine i? ∈ I is non-zero, i.e., pi?k > 0.

The rest of the proof is similar. This completes the proof. �

Next, we show that by an appropriate choice of weights wl , l = 1, 2, . . . , n, we can force

the optimal solution to IP (5.4) to coincide with the optimal min-max vector of completion times.

Recall the definition of τ(N) in (5.2). The following lemma states the result for non-trivial instances

of min-max problem.

Lemma 19. Let w0 = (τ
(N))n and assume that τ(N) ≥ 2 and n ≥ 3. The optimal solution to IP (5.4)

is an optimal solution for min-max problem if we set wl = wl
0.

Proof Overview. Consider an optimal solution C?(l), l = 1, · · · , n, to IP (5.4), and let C̃(l) be the

completion time of the l-th job in a min-max solution. The proof is by contradiction. Suppose

{C?(l)}nl=1 is not a min-max optimal solution. Then, it follows that there must exist some position

l, 1 ≤ l ≤ n, for which the following relation holds,

C?(l ′) = C̃(l
′) ∀l′ > l,

C?(l ′) > C̃(l) for l′ = l,

C?(l ′) < C̃(l
′) ∀l′ < l .

We then proceed to show that by the choice of weights as in the lemma’s statement, even if

the completion time of the l-th job, C?(l) is greater than C̃(l) by only one time unit, we get∑l
l ′=1 wl ′C?(l ′) >

∑l
l ′=1 wl ′C̃(l

′), which contradicts the optimality of {C?(l)}nl=1 for IP (5.4). We

omit the details. �

Note that the total number of bits required to represent the weights in Lemma 19 is polyno-

mially bounded in the problem input. Specifically, the number of bits required to represent the

largest weight wn is O(n2 log τ(N)), therefore we need at most O(n3 log τ(N)) bits to represent all

the weights.

122

5.5 Approximation Algorithms for Equal Utility Functions

In this section, we consider the case where all jobs’ utility functions are the same. Before

presenting our scheduling algorithms, we describe a set of permutations that contains an optimal

schedule. Recall that for each job j ∈ N , Mj denotes the set of machines for which pi j > 0.

Lemma 20. Consider the problem of finding the optimal min-max solution of jobs’ completion

times. For any two jobs h and k, 1) If pi,h ≤ pi,k, ∀i ∈ Mh ∩ Mk , then there is an optimal schedule

that job h precedes job k in the permutation. 2) If pi,h = pi,k = p, ∀i ∈ Mh ∩ Mk , then there is an

optimal schedule that jobs h and k are adjacent in the permutation.

Proof. The proofs of both statements are based on exchange arguments. We omit the proof of the

first statement. For proof of the second statement, consider an optimal solution with the same job

permutation on all the machines (Recall Theorem 8). Assume that there are R > 0 jobs between

job h and k in the permutation. Let denote by Ch, Ck , and Cr for r = 1, . . . , R completion times of

job h, completion time of job k, and completion time of the r-th job that is between jobs h and k,

respectively. Therefore, the optimal permutation is π? = (. . . , h, 1, 2, . . . , R, k, . . .) and the optimal

completion time vector can be written as

[. . . ,Ch,C1,C2, . . . ,CR,Ck, . . .]
T . (5.5)

We now show that one of the two following permutations in which jobs k and h are incident is also

an optimal permutation.

π1 = (. . . , h, k, 1, 2, . . . , R, . . .)

π2 = (. . . , 1, 2, . . . , R, k, h, . . .).

Assume that π1 is not optimal. The corresponding sorted completion time vector for this per-

123

mutation is

[. . . ,Ch,Ch + p,C1 + p,C2 + p, . . . ,CR + p, . . .]T .

Note that CR + p = Ck . Since this permutation is not optimal, there exists some job with index x,

1 ≤ x ≤ R with the following property.

Cx−1 + p > Cx

Cl−1 + p = Cl ∀l > x.
(5.6)

In the case that x = 1, job 0 refers to job h. Now consider the other permutation π2. The corre-

sponding sorted completion time vector for this permutation is

[. . . ,C1 − p,C2 − p, . . . ,CR − p,CR,CR + p, . . .]T,

in which CR + p = Ck . Value of the l-th element in this vector is Cl − p for 1 ≤ l ≤ R. Comparing

this vector with the optimal vector in (5.5), value of the last two elements are equal. Also, the l-th

element in the optimal vector is Cl−1, with C0 = Ch and CR+1 = Ck . By property (5.6) we know

that Cx−1 + p > Cx which implies that Cx − p < Cx−1 for some x and Cl = Cl−1 + p for l > x. This

means that π2 is strictly better than π? which contradicts with optimality of the latter permutation.

This implies that a permutation in which job h and k are incident is also optimal. �

We use Lemma 20 later in this section to augment the solution of an algorithm.

5.5.1 k-Max-Min Scheduling Algorithm

We aim to find a k-min-max fair schedule as defined in Section 5.4.1. This is equivalent to

finding the last k jobs in the corresponding optimal permutation. Algorithm 9 gives a description

of our algorithm. It is based on dynamic programming and starts by finding the last job and moves

backward to find the last k jobs in the optimal permutation.

Let π1 be the output of Algorithm 9, and Ñ = { j ∈ N : π1(j) = n, · · · , n − k + 1}. To schedule

124

Algorithm 9 k-Max-Min Algorithm

1. If k > 1,

1.1. compute the busy duration of each machine i ∈ M , given the job set N as τ(N)i =
∑

j∈N pi j .

1.2. Compute the set of candidate jobs to be the last job to complete as IN =

arg min j∈N maxi∈M(τ
(N)
i − pi j).

1.3. For each job j ∈ IN , run Algorithm 9 for N ← N \ { j}, and k ← k − 1 and denote the
output permutation by π j . Assign π j(j) = n for j ∈ IN .

1.4. Compare the output permutations {π j}, and set π1 to be the one whose corresponding
completion time vector dominates the others in the sense of min-max fairness.

2. Else (k = 0), Ñ = �, π1 = �.

remaining jobs, we can compute a random permutation over remaining jobs N \ Ñ , and modify it

by exchanging jobs’ positions according to Lemma 20 to get a permutation π2. We can then use

π = [π2, π1] to schedule all jobs.

Correctness of Algorithm 9

Consider a machine i. The time that this machine needs to process all its associated tasks is

given by τ(N)i as defined in line 1.1. Therefore, there exists a task (i, j) that completes at time τ(N)i .

Also, the completion time of the last job in any optimal schedule is equal to τ(N) = maxi∈M τ
(N)
i ,

which is the optimal makespan (5.2). Now the algorithm needs to decide which job should it

actually complete last in the schedule. Assume that it chooses job j as the last job to complete

(equivalently, π(j) = n), then the second-largest completion time across all the jobs will be equal

to

τ(N\{ j}) = max
i∈M

τ
(N\{ j})
i = max

i∈M
(τ
(N)
i − pi j).

Hence, the algorithm finds the set of jobs IN such that τ(N\{ j}) is minimized for j ∈ IN . Note that

this is necessary in order to achieve a min-max fair vector. Also, note that the maximization in

line 1.2 of the algorithm is over the set M and not Mj , for all j ∈ N , to ensure that position n is

assigned to a job with the largest completion time. Applying a similar argument, we conclude that

Algorithm 9 correctly finds the last k jobs in the optimal schedule.

125

Time Complexity of Algorithm 9

Observe that the size of set IN (line 1.2) is at most n. This implies that running time of the

algorithm is O(kmnk) which is polynomial in input size for a fixed value of k. If we set k = n,

we need to check all the n! possible permutations to find out the optimal solution. As we can

observe from execution of Algorithm 9, the reason that we need to consider all possibilities for the

optimal permutation of jobs (that can blow to n!) is that size of candidate set IN is generally greater

than one. Hence, the Algorithm requires to check which candidate job it should choose for each

position. In the case that there is a unique candidate job at each iteration, the optimal permutation

can be computed in O(mn2 + mn log(p)) time, where p is the maximum task processing time.

5.5.2 Perturbation-Based Scheduling Algorithm

Algorithm 10 Perturbation-Based Algorithm

1. Choose a constant ε > 0.

2. For every job j ∈ N , draw a number ε j randomly from interval [0, ε]. Then update its tasks’
processing times pi j ← pi j + ε j .

3. For l = n to 1, compute the busy duration of each machine i ∈ M corresponding to set N , as in
line 1.1 of Algorithm 9.

4. Let IN = arg min j∈N maxi∈M(τ
(N)
i − pi j).

5. If |IN | , 1, go to line 2. Else, set the l-th position in the permutation to be the unique job
j? ∈ IN , i.e., π(j?) = l, and update N ← N \ { j?}.

6. Schedule jobs (with the original processing times) according to the obtained permutation π.

Algorithm 10 gives a description of our perturbation-based algorithm to schedule multi-task

jobs so as to approximate the min-max completion time vector, in the single-objective approxi-

mation sense (Section 5.4.2). At a high level, given an instance of the problem, we perturb the

tasks’ processing times with a small random noise. This is an attempt to ensure in execution of

Algorithm 9, the number of candidate jobs calculated in line 2 reduces to 1 with high probability.

126

For each job j, we draw a noise ε j uniformly at random from interval [0, ε]. Define p′i j = pi j + ε j

to be the processing times in the perturbed instance. Similar to Algorithm 9, for the perturbed

instance, we compute the optimal permutation starting from the last position n. The perturbation

noises in practice are not real numbers, hence, the probability that the set of candidate jobs for the

l-th position, l = 1, . . . , n, contains more than one job is small but not zero. To resolve possible

collisions in a candidate set, we have lines 5 in Algorithm 10.

Evaluation of Algorithm 10

Consider an instance of our problem. Let π denote the permutation of jobs computed by Al-

gorithm 10. We use optimal objective value of IP (5.4) to measure the distance of the computed

solution by Algorithm 10 to the optimal solution.

Theorem 10. Let π be the permutation of jobs computed by Algorithm 10 and C denote the ob-

jective value of IP (5.4) according to this permutation. Also let OPT be the objective value of IP

for an optimal min-max fair schedule. Then, C ≤ OPT + g(ε), where g(ε) is a strictly decreasing

function in ε , and g(ε) → 0 as ε → 0.

We refer to the instance before applying perturbation as original instance. Recall that opti-

mal solution of IP (5.4) is equivalent to the optimal max-min solution for the original instance;

therefore, difference of the two objective values C and OPT, denoted by g(ε) is a sound metric to

evaluate the quality of permutation π computed by Algorithm 10 for the original instance. More-

over, note that we can choose any ε by considering sufficiently large number of bits to represent the

perturbation noise which incurs greater complexity. This issue is addressed in Subsection 5.5.2.

Proof Overview. The permutation π computed by Algorithm 10 is optimal for the perturbed in-

stance. Therefore, by Lemma 19, π yields to the smallest objective value, ÕPT, for IP (5.4) (when

equipped with weights that correspond to the perturbed instance). Next, we apply the optimal

permutation of the original instance, π?, on the perturbed instance and use C̄ to denote its IP’s

value. We find the relationship between OPT and C, by comparing their values with ÕPT and

127

C̄. It follows that g(ε) = (n2 + 1)ε
∑n

l=1 lwl + ε
2 f (ε), for a polynomial function f . We omit the

details. �

Time Complexity of Algorithm 10

Let b denote the number of bits used to represent the perturbation noises. The probability

of having more than one job in set IN in the first iteration is less than
(n
2
)
× 2−b by the union

bound. Therefore, the probability of not encountering any collision in IN is at least 1 − 2−(b+1)n2.

Choosing b = 3 × log(n), the average number of times we should execute the algorithm to pass

the first iteration successfully is less than 2n
2n−1 ≤ 2. Applying the same argument, the average

number of times needed to successfully complete all the iterations is polynomial in the input size.

Therefore, Algorithm 10, on average, has polynomial time complexity in the input size of the

original instance (i.e., O(mn2 + mn log(p))). In simulations for Google trace (Section 5.7), the

algorithm always found each position successfully in one try.

5.6 General Utility Functions

The main obstacle in extending the results in Section 5.4 and 5.5 to unequal utility functions is

that the jobs’ positions in the optimal permutation, based on jobs’ completion times, may not be the

same as the jobs’ positions according to jobs’ utilities. Algorithm 9 used the fact that for any set of

jobs N , there exists a job that completes at the optimal makespan τ(N) (Equation (5.2)). This gives

the min-max of completion times and also helps us decide which job to schedule last. However, in

the case of unequal utility functions, the job that is scheduled last with the largest completion time

may not be the job with the worst utility. Therefore, Algorithm 9 cannot be generalized to find the

last k jobs with the worst utilities in the case of general utility functions.

Nevertheless, we present a generalization of the perturbation-based algorithm (Algorithm 10)

to unequal utility functions. Since utility functions are assumed to be Lipschitz continuous (bounded

first derivative), we can choose the noise parameter ε small enough such that job utilities do not

change dramatically after perturbing task processing times. The algorithm is essentially the same

128

as Algorithm 10, except that we do not update processing times in line 2, and instead in line 4, the

set of candidate jobs is computed as

IN = arg max
j∈N

min
i∈Mj

U j(τ
(N)
i + ε j).

Note that the positions of jobs in the obtained permutation π by this algorithm, is neither the same

as the positions based on the sorted completion time vector (Definition 11), nor the same as the

positions based on the sorted utility vector. Nevertheless, we can use this permutation π to schedule

jobs. We evaluate the performance of this algorithm empirically in simulations.

5.7 Simulation Results

In this section, we evaluate the performance of our algorithms using a real traffic trace from a

large Google cluster [151]. The original trace is based on ∼11000 servers over a month long period.

In our experiments, we filter jobs and consider a set of jobs with at most 200 number of tasks which

are about 99% of all the jobs in the production class. Also, in order to have reasonable traffic

density on each machine (since otherwise the problem is trivial), we consider a cluster with 200

machines and randomly map machines of the original set to machines of this set. In simulations,

we choose parameter ε in Algorithm 10 and its generalized version to be 10−4 times the smallest

task processing time in the data set. For brevity, in Figures, we refer to both Algorithm 10 and its

generalized version as PBA (Perturbation-Based Algorithm).

We evaluate the performance of our algorithms in two cases:

• Equal Utility Functions: When all the jobs have the same utility function, lexicographic max-

min of utilities is equivalent to lexicographic min-max of completion times (by Lemma 17). We

compare Algorithm 10 (PBA) with First-In First-Out (FIFO), and Shortest Processing Time First

(SPTF). In FIFO, we list jobs based to their arrival times and schedule tasks on each machine

according to this list. In SPTF, we list tasks on each machine in non-increasing order of their

processing times, and schedule tasks starting from the first task in this list.

129

• General Utility Functions: We consider linear utility functions for jobs with different slopes

that capture the priority information which is available for each job in the data set. In this case,

we compare the performance of generalized Algorithm 10 as described in Section 5.6 (PBA),

First-In First-Out (FIFO), and Largest Utility First (LUF). In LUF, we consider a utility for each

task, using the utility function of its corresponding job. Then on each machine at any time, we

list tasks according to their utility values, and schedule the task that gives the largest utility upon

completion, then move to the next task, and so on.

We examine algorithms by looking at Cumulative Distribution Function (CDF) for job com-

pletion times and utilities, in online and offline setting, with equal and unequal utility functions. In

addition, we report 3 performance metrics:

• Average: the average of completion times of jobs (in the case of equal utility functions), or the

average of their utilities (in the case of unequal utility functions).

• 4th Quartile-Average: the average of the worst 25% of completion times or utilities among jobs.

This metric indicates how much each algorithm starves long or low-utility jobs compared to the

average.

• Deviation: the standard deviation of the job completion times (or their utilities) from the average,

which is a metric of overall fairness to all jobs

In the case of equal utility functions, we report the results for job completion times, hence, smaller

average and smaller 4th quartile-average are preferable. In the case of general utilities, we report

the results for job utility values, hence in this case, larger average and larger 4th quartile-average

are preferable. Moreover, in both cases, smaller deviation value for an algorithm shows that it has

a better overall fairness.

130

Completion Time (second) ×106

0 1 2 3 4 5 6

F
ra

c
ti

o
n

 o
f

J
o

b
s

0

0.2

0.4

0.6

0.8

1
Empirical CDF

PBA

SPTF

FIFO

(a) Empirical CDF.

 Average 4th Quartile-Average Deviation

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
e

c
o

n
d

)

×106

0

0.5

1

1.5

2

2.5

3

PBA

SPTF

FIFO

(b) Average and Deviation.

Figure 5.1: Job completion times under PBA, SPTF, and FIFO in the offline setting. Lower average
and lower deviation is better.

Utility ×106

0 1 2 3 4 5 6

F
ra

c
ti

o
n

 o
f

J
o

b
s

0

0.2

0.4

0.6

0.8

1
Empirical CDF

PBA

LUF

FIFO

(a) Empirical CDF.

 Average 4th Quartile-Average Deviation

U
ti

li
ty

×106

0

0.5

1

1.5

2

2.5

PBA

LUF

FIFO

(b) Average and Deviation.

Figure 5.2: Job utilities under PBA, LUF, and FIFO, in the offline setting. Higher averages and
lower deviation is better.

5.7.1 Offline Setting

Equal Utility Functions

Figure 5.1a depicts the empirical CDF of PBA, SPTF, and FIFO. Furthermore, Figure 5.1b

shows the three aforementioned performance metrics (Average, 4th Quartile-Average, and Devi-

ation) for job completion times. Not only our algorithm is better in terms of fairness, as shown

by its deviation which is 0.65 of deviation of the other algorithms, and does not starve long jobs

compared to other algorithms, but interestingly it also improves the average job completion time

by a factor of almost 1.7 and 3, compared to SPTF and FIFO, respectively.

131

General Utility Functions

In the data set, each jobs has a priority that roughly represents how sensitive it is to latency.

There are 9 different values of job priorities. For job j, we consider the utility function U j(t) =

Pj × (τ − t), where τ is the makespan of completing all the jobs (a constant just to ensure utilities

are positive) and Pj is the priority of job j.

Figure 5.2a shows the empirical CDF of PBA, LUF, and FIFO, and Figure 5.2b shows the

average, 4th quartile-average, and deviation of jobs’ obtained utilities. The worst utility among

all the jobs under PBA is 9.5 and 6.9 times greater than the worst utility under LUF and FIFO,

respectively. Note that, the CDF plot of PBA is sharper around its average value. PBA reduces

deviation in obtained utilities, compared to LUF and FIFO, by a factor of 1.6 and 1.4, respectively,

while it achieves almost the same average utility as LUF.

5.7.2 Online Setting

In the online setting, jobs arrive according to the arrival times information in the data set. Upon

arrival of a job, SPTF updates its list and proceeds with the new list. However, it does not preempt

an ongoing task in a machine. Similar to SPTF, LUF updates its list upon arrival of a job and

proceeds with the new list in a non-preemptive fashion.

To extend our algorithm to online setting, we choose a parameter δ that is tunable. We divide

time into time intervals of length δ time-units. At the beginning of each interval, we run the offline

algorithm on the set of jobs consisting of jobs that are not scheduled yet and those that arrived in

the previous interval. Further, tasks on the boundary of intervals are processed non-preemptively,

i.e., if some task is running in some machine according to the previously computed schedule, we

let it finish and then proceed with the new schedule. It is preferred to start with a smaller value

of δ at the beginning, to avoid delaying the initial jobs in the system for δ amount of time before

starting scheduling them. Therefore, we use an adaptive choice of δ to improve the performance

of our online algorithm. We choose the length of the i-th interval, δi, as

132

Delay (second) ×106

0 0.5 1 1.5 2 2.5 3 3.5 4

J
o

b
 F

ra
c

ti
o

n

0

0.2

0.4

0.6

0.8

1
Empirical CDF

PBA

FIFO

SPTF

(a) Empirical CDF.

 All-Average 4th Quartile-Average Deviation

D
e
la

y
 (

s
e
c
o

n
d

)

×106

0

0.5

1

1.5

2

PBA

SPTF

FIFO

(b) Average and Deviation.

Figure 5.3: Job delays under PBA, SPTF, and FIFO, in the online setting. Lower averages and
lower deviation is better.

Utility ×106

0 1 2 3 4 5 6 7 8

F
ra

c
ti

o
n

 o
f

J
o

b
s

0

0.2

0.4

0.6

0.8

1
Empirical CDF

PBA

LUF

FIFO

(a) Empirical CDF.

 Average 4th Quartile-Average Deviation

U
ti

li
ty

×106

0

0.5

1

1.5

2

2.5

3

PBA

LUF

FIFO

(b) Average and Deviation.

Figure 5.4: Job utilities under PBA, LUF, and FIFO, in the online setting. Higher averages and
lower deviation is better.

δi = δ0/(1 + α × exp(−βi)), i = 1, 2, · · ·

We choose δ0 = 3.3 × 105 seconds, and α = 50 and β = 3. All the jobs arrive over a time horizon

of 3.3 × 106 seconds.

Equal Utility Functions

Figure 5.3a and 5.3b show the performance of PBA, SPTF, and FIFO in the online setting. We

present the results in terms of job delay, which is the time between a job arrival and its completion

time. PBA improves the average job delay by a factor of 1.7 and 3.3, compared to SPTF and FIFO.

It also achieves better fairness by a factor 1.9 and 1.7 compared to SPTF and FIFO for the 4th

133

quartile-average.

General Utility Functions

In the online setting, variable t used in the job utility function is measured from arrival of job j

to the system. Figure 5.4a shows the empirical CDF of PBA, SPTF, and FIFO. Further, Figure 5.4b

shows the average and deviation of jobs’ obtained utilities. The smallest utility value among all the

jobs under PBA is 1.9 and 14.6 times greater than the smallest utility value of jobs under FIFO and

LUF, respectively. PBA also improves utility deviation compared to LUF and FIFO by a factor of

1.8 and 1.3, respectively.

134

Chapter 6: Scheduling Parallel-Task Jobs Subject to Packing and Placement

Constraints

6.1 Introduction

Modern parallel computing frameworks, e.g. Hadoop and Spark [11, 12], have enabled large-

scale data processing in computing clusters. In such frameworks, the data is typically distributed

across a cluster of machines and is processed in multiple stages. In each stage, a set of tasks are

executed on the machines, and once all the tasks in the stage finish their processing, the job is

finished or moved to the next stage. For example, in MapReduce [4], in the map stage, each map

task performs local computation on a data block in a machine and writes the intermediate data to

the disk. In the reduce stage, each reduce task pulls intermediate data from different maps, merges

them, and computes its output. While the reduce tasks can start pulling data as map tasks finish, the

actual computation by the reduce tasks can only start once all the map tasks are done and their data

pieces are received. Further, the job is not completed unless all the reduce tasks finish. Similarly,

in Spark [152], the computation is done in multiple stages. The tasks in a stage can run in parallel,

however, the next stage cannot start unless the tasks in the preceding stage(s) are all completed.

We refer to such constraints as synchronization constraints, i.e., a stage is considered completed

only when all its tasks finish their processing. Such synchronizations could have a significant

impact on the jobs’ latency in parallel computing clusters [153, 154, 155, 156, 152]. Intuitively, an

efficient scheduler should complete all the (inhomogeneous) tasks of a stage more or less around

the same time, while prioritizing the stages of different jobs in an order that minimizes the overall

latency in the system. Note that the scheduler can only make scheduling decisions for the stages

that have been released from various jobs up to that point (i.e., those that their preceding stages

have been completed). In our model, we use the terms stage and job interchangeability.

135

Another main feature of parallel computing clusters is that jobs can have diverse tasks and pro-

cessing requirements. This has been further amplified by the increasing complexity of workloads,

i.e., from traditional batch jobs, to queries, graph processing, streaming, and machine learning

jobs, that all need to share the same cluster. The cluster manager (scheduler) serves the tasks of

various jobs by reserving their requested resources (e.g. CPU, memory, etc.). For example, in

Hadoop [11], the resource manager reserves the tasks’ resource requirements by launching “con-

tainers” in machines. Each container reserves required resources for processing of a task. To

improve the overall latency, we therefore need a scheduler that packs as many tasks as possible in

the machines, while retaining their resource requirements.

In practice, there are further placement constraints for processing tasks on machines. For

example, each task is preferred to be scheduled on one of the machines that has its required data

block [4, 13] (a.k.a. data locality), otherwise processing can slow down due to data transfer.

The data block might be stored in multiple machines for robustness and failure considerations.

However, if all these machines are highly loaded, the scheduler might actually need to schedule

the task in a less loaded machine that does not contain the data.

Despite the vast scheduling literature, scheduling algorithms with theoretical results (approx-

imation ratios) are mainly based on simple models, where each machine processes one task at a

time, each job is a single task, or tasks can be processed on any machine arbitrarily (see Related

Work in Section 6.1.1). Such models do not fully capture the modern features of data-parallel

computing clusters, namely,

• packing: each machine is capable of processing multiple tasks at a time subject to its capac-

ity.

• synchronization: tasks that belong to the same job have a collective completion time which

is determined by the slowest task in the collection.

• placement constraint: a task’s processing time is machine-dependent and a task is typically

preferred to be processed on a subset of machines (e.g. where its input data block is located).

136

Further, each task at each time can get processed on at most a single machine.

The goal of this work is to design scheduling algorithms, with theoretical guarantees, under the

above features of modern parallel computing clusters. For simplicity, we consider one dimension

for task resource requirement (e.g. memory). While task resource requirements are in general

multi-dimensional (CPU, memory, etc.), it has been observed that memory is typically the bottle-

neck resource [90, 157].

Our objective is to minimize the weighted sum of completion times of existing jobs in the

system, where weights can encode different priorities for the jobs. Clearly, minimization of the

average completion time is a special case of this problem with equal weights. We consider both

preemptive and non-preemptive scheduling. In a non-preemptive schedule, a task cannot be pre-

empted (and hence cannot be migrated among machines) once it starts processing on a machine

until it is completed. In a preemptive schedule, a task may be preempted and resumed later in

the schedule, and we further consider two cases depending on whether migration of a task among

machines is allowed or not.

6.1.1 Related Work

Default cluster schedulers in Hadoop [11, 136] focus primarily on fairness and data locality.

Such schedulers can make poor scheduling decisions by not packing tasks well together, or having

a task running long without enough parallelism with other tasks in the same job. Several cluster

schedulers have been proposed to improve job completion times, e.g. [99, 158, 159, 160, 145, 161,

162, 163, 164]. However, they either do not consider all aspects of packing, synchronization, and

data locality, or use heuristics which are not necessarily efficient.

We highlight four relevant papers [145, 161, 163, 164] here. Tetris [145] is a scheduler that

assigns scores to tasks based on Best-Fit bin packing and Shortest-Remaining-Time-First (SRPF)

heuristic, and gives priority to tasks with higher scores. The data locality is encoded in scores by

imposing a remote penalty to penalize use of remote resources. Borg [161] packs multiple tasks of

jobs in machines from high to low priority, modulated by a round-robin scheme within a priority to

137

ensure fairness across jobs. The scheduler considers data locality by assigning tasks to machines

that already have the necessary data stored. The papers by [163] and [164] focus on single-task

jobs and study the mean delay of tasks under a stochastic model where if a task is scheduled on

one of the remote servers that do not have the input data, its average processing time will be larger,

by a multiplicative factor, compared to the case that it is processed on a local server that contains

the data. They propose algorithms based on Join-the-Shortest-Queue and Max-Weight (JSQ-MW)

to incorporate data locality in load balancing. This model is generalized by [164] to more levels of

data locality. However, these models do not consider any task packing in servers or synchronization

issue among multiple tasks of the same job.

From a theoretical perspective, our problem of scheduling parallel-task jobs with synchroniza-

tion, packing, and placement constraints, can be seen as a generalization of the concurrent open

shop (COS) problem [138]. Unlike COS, where each machine processes one task at a time and

each task can be processed on a specific machine, in our model a machine can process (pack) mul-

tiple tasks simultaneously subject to its capacity, and there are further task placement constraints

for assigning tasks to machines. Minimizing the weighted sum of completion times in COS, is

known to be APX-hard [139], with several 2-approximation algorithms [165, 139, 140, 75, 82,

166]. There is also a line of research on the parallel tasks scheduling (PTS) problem [167]. In

PTS, each job is only a single task that requires a certain amount of resource for its processing

time, and can be served by any machine subject to its capacity. This differs from our model where

each job has multiple tasks, each task can be served by a set of machines, and the job’s completion

time is determined by its last task. Minimizing the weighted sum of completion times in the PTS is

also NP-complete in the strong sense [168]. In the case of a single machine, [169] proposed a non-

preemptive algorithm that can achieve approximation ratio of 7.11, and a preemptive algorithm,

called PSRS, that can achieve approximation ratio of 2.37. In the case of multiple machines, there

is only one result in the literature which is a 14.85-approximation non-preemptive algorithm [170].

We emphasize that our setting of parallel-task jobs, subject to synchronization, packing, and

placement constraints, is significantly more challenging than the COS and PTS problems, and

138

algorithms from these problems cannot be applied to our setting. To the best of our knowledge,

this is the first work that provides constant-approximation algorithms for this problem subject to

synchronization, packing, and placement constraints,

6.1.2 Main Contributions

We briefly summarize our main results and describe our techniques below. We propose schedul-

ing algorithms for three cases:

• Task Migration Allowed. When migration is allowed, a task might be preempted several times

and resume possibly on a different machine within its placement-feasible set. Our algorithm in

this case is based on greedy scheduling of task fractions (fraction of processing time of each task)

on each machine, subject to capacity and placement constraints. The task fractions are found

by solving a relaxed linear program (LP), which divides the time horizon into geometrically-

increasing time intervals, and uses interval-indexed variables to indicate what fraction of each

task is served at which interval on each machine. We show that our scheduling algorithm has an

approximation ratio better than (6 + ε), for any ε > 0.

• Task Migration Not Allowed. When migration is not allowed, the schedule can be non-

preemptive, or preemptive while all preemptions occur on the same machine. In this case, our

algorithm is based on mapping tasks to proper time intervals on the machines. We utilize the

interval-indexed variables to form a relaxed LP. We then utilize the LP’s optimal solution to

construct a weighted bipartite graph representing tasks on one side and machine-intervals on the

other side, and fractions of tasks completed in machine-intervals as weighted edges. We then use

an integral matching in this graph to construct a mapping of tasks to machine-intervals. Finally,

the tasks mapped to intervals of the same machine are packed in order and non-preemptively by

using a greedy policy. We prove that this non-preemptive algorithm has an approximation ratio

better than 24. Further, we show that the algorithm’s solution is also a 24-approximation for the

case that preemption on the same machine is allowed.

139

• Preemption and Single-Machine Placement Set. When preemption is allowed, and there is a

specific machine for each task, we propose an algorithm with an improved approximation ratio

of 4. The algorithm first finds a proper ordering of jobs, by solving a relaxed LP of our schedul-

ing problem. Then, for each machine, it lists its tasks, with respect to the obtained ordering

of jobs, and apply a simple greedy policy to pack tasks in the machine subject to its capacity.

The methods of LP relaxation and list scheduling have been used in scheduling literature; how-

ever, the application and analysis of such techniques in presence of packing, placement, and

synchronization is very different.

• Empirical Evaluations. We evaluate the performance of our preemptive and non-preemptive

algorithms compared with the prior approaches using a Google traffic trace [151]. We also

present online versions of our algorithms that are suitable for handling dynamic job arrivals. Our

4−approximation preemptive algorithm outperforms PSRS [169] and Tetris [145] by up to 69%

and 79%, respectively, when jobs’ weights are determined using their priority information in the

data set. Further, our non-preemptive algorithm outperforms JSQ-MW [163] and Tetris [145]

by up to 81% and 175%, respectively, under the same placement constraints. Note that, since

these algorithms do not consider all aspects of packing, synchronization, and data locality, we

combined them with reasonable heuristics to enforce all the constraints in our settings.

This chapter is based on the results of the paper [171].

6.2 Formal Problem Statement

Cluster and Job Model. Consider a collection of machinesM = {1, ..., M}, where machine i

has capacity mi > 0 on its available resource. We use J = {1, ..., N} to denote the set of existing

jobs (stages) in the system that need to be served by the machines. Each job j ∈ J consists of a

set of tasksK j , where we use (k, j) to denote task k of job j, k ∈ K j . Task (k, j) requires a specific

amount ak j of resource for the duration of its processing. Machine i can process multiple tasks at

the same time, however, the sum of resource requirements of tasks running in machine i should not

140

exceed its capacity mi at any time.

Task Processing and Placement Constraint. Each task (k, j) can be processed on a machine

from a specific set of machinesMk j ⊆ M. We refer toMk j as the placement set of task (k, j).

For generality, we let pi
k j denote the processing time of task (k, j) on machine i ∈ Mk j . Such

placement constraints can model data locality. For example, we can set Mk j to be the set of

machines that have task (k, j)’s data, and pi
k j = pk j , i ∈ Mk j . Or, we can considerMk j to be as

large asM, and incorporate the data transfer cost as a penalty in the processing time on machines

that do not have the task’s data.

Throughout the chapter, we refer to ak j as size or resource requirement of task (k, j), and to

pi
k j as its length, duration, or processing time on machine i. We also define the volume of task

(k, j) on machine i as vi
k j = ak j pi

k j . Without loss of generality, we assume processing times are

nonnegative integers and duration of the smallest task is at least one. This can be done by defining

a proper time unit (slot) and representing the task durations using integer multiples of this unit.

Synchronization Constraint. Tasks can be processed in parallel on their corresponding ma-

chines; however, a job is considered completed only when all of its tasks finish. Hence, using Ck j

to denote the completion time of task (k, j), the completion time of job j, denoted by Cj , satisfies

Cj = max
k∈Kj

Ck j . (6.1)

Let 1(i ∈ Mk j) be the indicator function which is 1 if i ∈ Mk j , and 0 otherwise. Define

T = max
i∈M

∑
j∈J

∑
k∈Kj

pi
k j1(i ∈ Mk j), (6.2)

which is clearly an upper bound on the time required for processing all the jobs. We define 0-1

variables X i
k j(t), i ∈ M, j ∈ J , k ∈ K j , t ≤ T , where X i

k j(t) = 1 if task (k, j) is served at time slot

t on machine i, and 0 otherwise. We also make the following definition.

Definition 13 (Height of Machine i at time t). The height of machine i at time t, denoted by hi(t),

141

is the sum of resource requirements of the tasks running at time t in machine i, i.e.,

hi(t) =
∑

j∈J,k∈Kj

ak j X i
k j(t). (6.3)

Given these definitions, a valid schedule X i
k j(t) ∈ {0, 1}, i ∈ M, j ∈ J , k ∈ K j , 0 < t ≤ T ,

must satisfy the following three constraints:

(i) Packing: the sum of resource requirements of the tasks running in machine i at time t (i.e., tasks

with X i
k j(t) = 1) should not exceed machine i’s capacity, i.e., hi(t) ≤ mi, ∀t ≤ T , ∀i ∈ M.

(ii) Placement: each task at each time can get processed on at most a single machine selected from

its feasible placement set, i.e.,
∑

i∈Mk j
X i

k j(t) ≤ 1, and X i
k j(t) = 0 if i <Mk j .

(iii) Processing: each task must be processed completely. Noting that X i
k j(t)/p

i
k j is the fraction of

task (k, j) completed on machine i in time slot t, we need
∑

i∈Mk j

∑T
t=1 X i

k j(t)/p
i
k j = 1.

Preemption and Migration. We consider three classes of scheduling policies. In a non-

preemptive policy, a task cannot be preempted (and hence cannot be migrated among machines)

once it starts processing on its corresponding machine until it is completed. In a preemptive policy,

a task may be preempted and resumed several times in the schedule, and we can further consider

two subcases depending on whether migration of a task among machines is allowed or not. Note

that when migration is not allowed, the scheduler must assign each task (k, j) to one machine

i ∈ Mk j on which the task is (preemptively or non-preemptively) processed until completion.

Main Objective. Given positive weights w j , j ∈ J , our goal is to find valid non-preemptive

and preemptive (under with and without migrations) schedules of jobs (their tasks) in machines, so

as to minimize the sum of weighted completion times of jobs, i.e.,

minimize
∑
j∈J

w jCj . (6.4)

The weights can capture different priorities for jobs. Clearly the case of equal weights reduces the

142

problem to minimization of the average completion time.

Here, we use the 3-field notation to specify our problems. While we utilize some of the nota-

tions from the scheduling literature, we need to define new ones to capture all the constraints in

our model. We consider the following problems:

• PRP|mgr|
∑

j w jCj

• PRP| |
∑

j w jCj and PRP|pmtn|
∑

j w jCj

• PDP|pmtn|
∑

j w jCj

In the first field of the notations, the first letter P stands for “parallel” and specifies the fact that

the machines can process different tasks of a given job in parallel. The letter R means that the

machines are “unrelated”, i.e., a task has different processing times on different machines. The

letter D stands for “dedicated” and shows that there is a dedicated machine for processing of each

task. Finally, the last letter P stands for “packing” and shows that a machine can pack tasks subject

to its capacity. In the second field, pmts and mgr indicate that processing of a task can be preempted

and a task can migrated among machines, respectively. Finally, the objective function is specified

in the third field.

6.3 Scheduling When Migration is Allowed

We first consider the case that migration of tasks among machines is allowed. This is equivalent

to PRP|mgr|
∑

j w jCj . In this case, we propose a preemptive algorithm, called SynchPack-1, with

approximation ratio (6+ε) for any ε > 0. We will use the construction ideas and analysis arguments

for this algorithm to construct our preemptive and non-preemptive algorithms when migration is

prohibited in Section 6.4.

In order to describe SynchPack-1, we first present a relaxed linear program. We will utilize

the optimal solution to this LP to schedule tasks in a preemptive fashion.

143

6.3.1 Relaxed Linear Program (LP1)

Recall that without loss of generality, the processing times of tasks are assumed to be integers

(multiples of a time unit) and therefore Cj ≥ pi
k j ≥ 1 for all j ∈ J , k ∈ K j , and i ∈ Mk j . We

use interval indexed variables using geometrically increasing intervals (see, e.g., [172, 173, 69]) to

formulate a linear program for our problem.

Let ε > 0 be a constant. We choose L to be the smallest integer such that (1 + ε)L ≥ T (recall

T in (6.2)). Subsequently define

dl = (1 + ε)l, for l = 0, 1, · · · , L, (6.5)

and define d−1 = 0. We partition the time horizon into time intervals (dl−1, dl], l = 0, ..., L. Note

that the length of the l-th interval, denoted by ∆l , is

∆0 = 1, ∆l = ε(1 + ε)l−1 ∀l ≥ 1. (6.6)

We define zil
k j to be the fraction of task (k, j) (fraction of its required processing time) that is

processed in interval l on machine i ∈ Mk j .

To measure completion time of job j, for each interval l, we define an integer variables x jl

which is 1 if job j finishes in interval l and 0 otherwise. Consider the following constraints,

∀ j ∈ J :

l∑
l ′=0

x jl ′ ≤

l∑
l ′=0

∑
i∈Mk j

zil ′
k j, k ∈ K j, l = 0, . . . , L (6.7a)

L∑
l=0

x jl = 1, x jl ∈ {0, 1}, l = 0, · · · , L. (6.7b)

Note that (6.7b) implies that only one of the variables {x jl}
L
l=0 can be nonzero (equal to 1).

(6.7a) implies that x jl can be 1 only for one of the intervals l ≥ l? where l? is the interval in which

144

the last task of job j finishes its processing. Now define,

Cj =

L∑
l=0

dl−1x jl j ∈ J . (6.8)

If we can guarantee that x jl? = 1 for l? as defined above, then Cj will be equal to the starting

point dl?−1 of that interval, and the actual completion time of job j will be bounded above by

dl? = (1+ ε)Cj , thus implying that Cj is a reasonable approximation for the actual completion time

of job j. This can be done by minimizing the objective function in the following linear program:

min
∑
j∈J

w jCj (LP1) (6.9a)

L∑
l=0

∑
i∈Mk j

zil
k j = 1, k ∈ K j, j ∈ J (6.9b)

l∑
l ′=0

∑
i∈Mk j

zil ′
k j p

i
k j ≤ dl, k ∈ K j, j ∈ J, l = 0, . . . , L (6.9c)

l∑
l ′=0

∑
(k, j):i∈Mk j

zil ′
k j p

i
k jak j ≤ midl, i ∈ M, l = 0, . . . , L (6.9d)

zil
k j ≥ 0, k ∈ K j, j ∈ J, i ∈ Mk j, l = 0, . . . , L (6.9e)

l∑
l ′=0

x jl ′ ≤

l∑
l ′=0

∑
i∈Mk j

zil ′
k j, k ∈ K j, j ∈ J, l = 0, . . . , L (6.9f)

Cj =

L∑
l=0

dl−1x jl, j ∈ J (6.9g)

L∑
l=0

x jl = 1, x jl ≥ 0, l = 0, . . . , L, j ∈ J (6.9h)

Constraint (6.9b) means that each task must be processed completely. (6.9c) is because during

the first l intervals, a task cannot be processed for more than dl , the end point of interval l, which

itself is due to requirement (ii) of Section 6.2. (6.9d) bounds the total volume of the tasks processed

by any machine i in the first l intervals by dl × mi. (6.9e) indicates that z variables have to be

nonnegative.

145

Constraints (6.9f), (6.9h), (6.9g) are the relaxed version of (6.7a), (6.7b), (6.8), respectively,

where the integral constraint in (6.7b) has been relaxed to (6.9h). To give more insight, note that

(6.9f) has the interpretation of keeping track of the fraction of the job processed by the end of each

time interval, which is bounded from above by the fraction of any of its tasks processed by the end

of that time interval. We should finish processing of all jobs as indicated by (6.9h). Also (6.9g)

computes a relaxation of the job completion time Cj , as a convex combination of the intervals’ left

points, with coefficients x jl .

6.3.2 Scheduling Algorithm: SynchPack-1

In the following, a task fraction (k, j, i, l) of task (k, j) corresponding to interval l, is a task with

size ak j and duration zil
k j p

i
k j that needs to be processed on machine i.

The SynchPack-1 (Synchronized Packing-1) algorithm has three main steps:

Step 1: Solve (LP1). We first solve (LP1) and obtain the optimal solution of {zil
k j} which we

denote by { z̃il
k j}.

Step 2: Pack task fractions greedily to construct schedule S. To schedule task fractions, we

use a greedy list scheduling policy as follows:

Consider an ordered list of the task fractions such that task fractions corresponding to interval

l appear before the task fractions corresponding to interval l′, if l < l′. Task fractions within

each interval and corresponding to different machines are ordered arbitrarily. Let t denote a time

at which the algorithm makes some scheduling decision. The algorithm scans the list starting

from the first task fraction, and schedules task fraction (k, j, i, l) on machine i, if some fraction of

task (k, j) is not already scheduled on some other machine at time t, and machine i has sufficient

capacity, i.e., hi(t) + ak j ≤ mi (recall hi(t) in Definition 13). It then moves to the next task fraction

in the list, repeats the same procedure, and so on. Upon completion of a task fraction, it preempts

the task fractions corresponding to higher indexed intervals on all the machines if there is some

unscheduled task fraction of a lower-indexed interval in the list. It then removes the completed

task fraction(s) from the list, updates the remaining processing times of the task fractions in the

146

(1,2,2,1)

(1,2,1,1)

(1,3,3,1)

(1,1,2,1)
(2,3,2,2)

(2,2,3,2) (1,1,1,1)

(1)

(2)

(3)

(2,3,1,2)

(1,3,1,3)

t0=0

(a) A list of task fractions is given. The first three
task fractions in the list are already scheduled on the
machines at time t0 = 0.

(1,2,2,1)

(1,2,1,1)

(1,3,3,1)

(1,1,2,1)
(2,3,2,2)

(2,2,3,2)

(1,1,1,1)

(1)

(2)

(3)

(2,3,1,2)

t0=0

(1,3,1,3)

t1

(b) Due to placement constraint, task fractions
(1, 2, 2, 1) and (1, 1, 1, 1) cannot get scheduled.
However, machine 2 can accommodate task fraction
(2, 3, 2, 2).

(1,2,2,1)

(1,2,1,1)

(1,3,3,1)

(1,1,2,1)
(2,3,2,2)

(2,2,3,2) (1,1,1,1)

(1)

(2)

(3)

(2,3,2,2)

(2,3,1,2)

(1,3,1,3)

t1 t2

(c) At t1 task fraction (1, 2, 1, 1) completes and task
fraction (2, 3, 2, 2) is preempted. Task fractions
(1, 2, 2, 1) and (2, 3, 1, 2) are scheduled.

(1,2,2,1)
(1,2,1,1)

(1,3,3,1)

(1,1,2,1)
(2,3,2,2)

(2,2,3,2)

(1,1,1,1)
(1)

(2)

(3)

(2,3,2,2)

(2,3,1,2)

(2,3,1,2)

(1,3,1,3)

t2

(d) Both task fractions (1, 1, 2, 1) and (1, 3, 3, 1) com-
plete, and task fraction (2, 3, 1, 2) is preempted at
time t2. Then task fractions (1, 1, 1, 1), (2, 3, 2, 2),
and (2, 2, 3, 2) are scheduled.

Figure 6.1: An example for execution of Step 2 of SynchPack-1 for 3 jobs in a system with
3 machines. Different tasks of a job have the same color and different patterns. Note that task
fraction (1, 2, 2, 1), which is at the head of the list in Figure 6.1a, cannot get scheduled on machine
2 as task fraction (1, 2, 1, 1) (of the same task (1, 2)) is already scheduled on machine 1. At time
t1, task fraction (1, 2, 1, 1) is finished processing as shown in Figure 6.1b. At this time, while task
fraction (2, 3, 2, 2) is running on machine 2 (whose corresponding interval is 2), two task fractions,
namely (1, 2, 2, 1) and (1, 1, 1, 1) (whose corresponding intervals are 1), have remained unscheduled
in the list. Therefore, task fraction (2, 3, 2, 2) is preempted and its remaining duration is updated.
Then, the algorithm scans the list and schedules the task fractions as shown in Figure 6.1c. The
next time that a completion occurs is denoted by t2. Figure 6.1d shows the schedule at this time.
The rest of the schedule can be determined in a similar fashion.

list, and starts scheduling the updated list. Note that the set of times at which scheduling decisions

are made consists of time 0 and task fractions’ completion times. This greedy list scheduling

algorithm schedules task fractions in a preemptive fashion. We refer to the constructed schedule

as S. As an illustration, Figure 6.1 shows execution of Step 2 in a system with 3 machines and 3

147

jobs.

Step 3: Apply Slow-Motion technique to construct schedule S̄. Unfortunately, we cannot

bound the value of objective function (6.9a) for schedule S, since completion times of some jobs

in S can be very long compared to the completion times returned by (LP1)1.

Therefore, we construct a new feasible schedule S̄, by stretching S, for which we can bound

the value of its objective function. This method is referred to as Slow-Motion technique [174]. Let

Z̃ i
k j =

∑L
l=0 z̃il

k j denote the total fraction of task (k, j) that is scheduled in machine i according to

the optimal solution to (LP1). We refer to Z̃ i
k j as the total task fraction of task (k, j) on machine i.

The Slow-Motion technique works by choosing a parameter λ ∈ (0, 1] randomly drawn according

to the probability density function f (λ) = 2λ. It then stretches schedule S by a factor 1/λ. If a task

is scheduled in S during an interval [τ1, τ2), the same task is scheduled in S̄ during [τ1/λ, τ2/λ)

and the machine is left idle if it has already processed its total task fraction Z̃ i
k j completely. We

may also shift back future tasks’ schedules as far as the machine capacity allows and placement

constraint is respected. Figure 6.2 shows the execution of this step on the example of Figure 6.1

for λ = 1/2.

A pseudocode for SynchPack-1 can be found in Section 6.14. The obtained algorithm is a

randomized algorithm; however, we will show in Section 6.10 how we can de-randomize it to get

a deterministic algorithm.

6.3.3 Performance Guarantee

We now analyze the performance of SynchPack-1. The result is stated by the following

proposition.

Theorem 11. For any ε > 0, the sum of weighted completion times of jobs, for the problem of

parallel-task job scheduling with packing and placement constraints, under SynchPack-1, is at

1This is because of how Cj is defined as a convex combination of the interval left points in constraint (6.9g). More
specifically, assume job j consists of one task and completes at interval lj , however, only a very small fraction of its
task is scheduled in lj , i.e., xjlj is very small. Furthermore, assume the rest of the task is scheduled at some interval l
where l << lj . Then, we can choose xjlj such that Cj ∼ dl (according to (6.9g)), while the actual completion time of
job j in schedule S can be ∼ dlj .

148

(1)

(2)

(3)

(a) Schedule S for
the example of Fig-
ure 6.1.

(1)

(2)

(3)

(b) Schedule S̄ for stretch factor λ =
1/2. The machines are left idle in the
shadowed crossed parts.

(1)

(2)

(3)

(c) Final schedule after shift-
ing back future tasks’ schedules
while respecting the constraints.

Figure 6.2: An example for execution of Slow-Motion technique in Step 3 of SynchPack-1. In
Figure 6.2a, the final schedule of the example in Figure 6.1 is shown. Figure 6.2b shows the result
after applying Slow-Motion with λ = 1/2. If a machine has already processed total task fraction
of a task completely, it is left idle. For instance, consider the blue task fraction on machine 2, i.e.
(2, 3, 2, 2). Some portion of its schedule in the second part is shadowed and crossed and machine
2 is left idle, since machine 2 has already processed this task fraction for the total time that it does
originally in Figure 6.2a. Figure 6.2c shows the result after shifting back future tasks’ schedules
while respecting the constraints. For instance, see the red task fraction (i.e., (1, 2, 2, 1) on machine
2 and part of the green task fraction (i.e., (1, 1, 1, 1)) on machine 1. The idle times on the machines
are left blank in Figure 6.2c. Note that this last action (shifting back future tasks’ schedules) is
optional.

most (6 + ε) × OPT.

The rest of the section is devoted to the proof of Theorem 11. We use C̃j to denote the optimal

solution to (LP1) for completion time of job j ∈ J . The optimal objective value of (LP1) is a

lower bound on the optimal value of our scheduling problem as stated in the following lemma

whose proof is provided in Section 6.9.1.

Lemma 21.
∑N

j=1 w jC̃j ≤
∑N

j=1 w jC?
j = OPT.

Note that Constraint (6.9d) bounds the volume of all the task fractions corresponding to the

first l intervals on machine i by dl × mi. However, the (LP1)’s solution does not directly provide a

feasible schedule as task fractions of the same task on different machines might overlap during the

same interval, and machines’ capacity constraints might be also violated as Constraint (6.9d) in

(LP1) bounds the total volume of the processed tasks and ignores their sizes and durations. Next,

149

we show under the greedy list scheduling policy (Step 2 in SynchPack-1), the completion time

of task fraction (k, j, i, l) is bounded from above by 3 × dl , i.e., we need a factor 3 to guarantee a

feasible schedule.

Lemma 22. Let τl denote the time that all the task fractions (k, j, i, l′), for l′ ≤ l, are completed in

schedule S. Then, τl ≤ 3dl .

Proof. Proof. Consider the non-zero task fractions (k, j, i, l′), i ∈ M, l′ ≤ l (according to an

optimal solution to (LP1)). Without loss of generality, we normalize the processing times of task

fractions to be positive integers, by defining a proper time unit and representing the task durations

using integer multiples of this unit. Let Dl and Tl be the value of dl and τl using the new unit. Let

i? denote the machine that schedules the last task fraction among the non-zero task fractions of the

first l intervals. Note that Tl is the time that this task fraction completes. If Tl ≤ Dl , then Tl ≤ 3Dl

and the lemma is proved. Hence consider the case that Tl > Dl .

Define hil(t) to be the height of machine i at time t in schedule S considering only the task

fractions of the first l intervals. First we note that,

l∑
l ′=0

∑
(k, j):i∈Mk j

zil ′
k j p

i
k jak j

(a)
=

Tl∑
t=1

hil(t)
(b)
≤ miDl, ∀i ∈ M (6.10)

Using the definition of hil(t), the right-hand side of Equality (a) is the total volume of task fractions

corresponding to the first l intervals that are processed during the interval (0,Tl] on machine i,

which is the left-hand side. Further, Inequality (b) is by Constraint (6.9d).

Let Sil(θ) denote the set of tasks whose some task fraction is running at time θ, θ ∈ {1, . . . ,Tl},

on machine i. Consider machine i?. We construct a bipartite graph G = (U ∪ V, E)2 as follows.

With a slight abuse of notations, for each time slot θ ∈ {1, . . . ,Tl}, we consider a node θ, and

define V = {θ |1 ≤ θ ≤ Tl − Dl}, and U = {θ |Tl − Dl + 1 ≤ θ ≤ Tl}. For any s ∈ U and t ∈ V , we

add an edge (s, t) if hi?l(s) + hi?l(t) ≥ mi?. This implies that if hi?l(s) + hi?l(t) < mi?, then there is

2G = (U ∪ V, E) is a bipartite graph iff for any edge e = (u, v) ∈ E , we have u ∈ U and v ∈ V .

150

no edge between s and t, and we can write

(
∪i∈M Sil(s)

)
\
(
∪i∈M Sil(t)

)
= �. (6.11)

This is because otherwise SynchPack-1 would have scheduled the task(s) in Si?l(s) at time t (note

that t < s).

Let | · | denote set cardinality (size). For any set of nodes Ũ ⊆ U, we define set of its neighbor

nodes as NŨ = {t ∈ V |∃ s ∈ Ũ : (s, t) ∈ E}. Note that, there are Tl − Dl − |NŨ | nodes in V which

do not have any edge to some node in Ũ. We consider two cases:

Case (i): There exists a set Ũ for which |NŨ | < |Ũ |. Consider a node s ∈ Ũ and a task with

duration p running at time slot s. Let pU denote the amount of time that this task is running on

time slots of set U. Note that pU ≥ 1. By Equation (6.11), a task that is running at time s is also

running at Tl − Dl − |NŨ | many other time slots whose corresponding nodes are in V .

p = Tl − Dl − |NŨ | + pU ≤ Dl,

where the inequality is by Constraint (6.9c). Therefore

Tl ≤ 2Dl + |NŨ | − pU < 2Dl + |Ũ | ≤ 3Dl .

Case (ii): For any Ũ ⊆ U, |Ũ | ≤ |NŨ |. Hence, |V | ≥ |U | which implies that Tl ≥ 2Dl . Further,

Hall’s Theorem [175] states that a perfect matching3 of nodes in U to nodes in V always exists in

G in this case. The existence of such a matching then implies that any time slot s ∈ (Tl − Dl,Tl]

can be matched to a time slot ts ∈ (0,Tl − Dl] and hi?l(s) + hi?l(ts) ≥ mi. This implies that

∑
s∈U

(hi?l(s) + hi?l(ts)) ≥ mi?Dl
(c)
≥

Tl∑
t=1

hi?l(t), (6.12)

3A perfect matching in G (with size |U |) is a subset of E such that every node in set U is matched to one and only
one node in set V by an edge in the subset.

151

where Inequality (c) is by Equation (6.10). From this, one can conclude that no non-zero task

fraction (k, j, i?, l′), i?, l′ ≤ l is processed at time slots V ′ = V \ ∪s∈U{ts}. This is because the

right hand side of Inequality (c) is the total amount of task fractions that is processed up to time Tl .

Hence, V ′ = �, since otherwise SynchPack-1 would have scheduled some of the tasks running at

time slots of set U, at V ′. We then can conclude that Tl = 2Dl < 3Dl . This completes the proof.

� �

Recall that schedule S̄ is formed by stretching schedule S by factor 1/λ. Let C̄λ
j denote the

completion time of job j in S̄. Next, we need to relate C̄λ
j and C̃j , the optimal solution to (LP1)

for completion time of job j. For this purpose, we first make the following definition regarding

schedule S.

Definition 14. We define Cj(α), for 0 < α ≤ 1, to be the time at which α-fraction of job j is

completed in schedule S (i.e., at least α-fraction of each of its tasks has been completed.).

The following lemma shows the relationship between Cj(α) and C̃j . The proof is provided in

Section 6.9.2.

Lemma 23.
∫ 1
α=0 Cj(α)dα ≤ 3(1 + ε)C̃j

Now, we can show that the following lemma holds.

Lemma 24. E
[
C̄λ

j

]
≤ 6(1 + ε)C̃j .

Proof. Proof. The proof is based on Lemma 23 and taking expectation with respect to probability

density function of λ. The details can be found in Section 6.9.3. � �

In constructing S̄, we may shift scheduling time of some of the tasks on each machine to the left

and construct a better schedule. Nevertheless, we have the performance guarantee of Theorem 11

even without this shifting.

152

Proof. Proof of Theorem 11. Let Cj denote the completion time of job j under SynchPack-1.

Then

E
[∑

j∈J

w jCj

]
≤ E

[∑
j∈J

w jC̄λ
j

] (a)
≤ 6(1 + ε)

∑
j∈J

w jC̃j
(b)
≤ 6(1 + ε)

∑
j∈J

w jC?
j ,

where (a) is by Lemma 24, and (b) is by Lemma 21. In Section 6.10, we discuss how to de-

randomize the random choice of λ ∈ (0, 1], which is used to construct schedule S̄ from schedule

S. So the proof is complete. � �

6.4 Scheduling When Migration is not Allowed

The algorithm in Section 6.3 is preemptive, and tasks can be migrated across the machines

in the same placement set. Implementing such an algorithm can be complex and costly in prac-

tice. In this section, we consider the case that migration of tasks among machines is not allowed.

We propose a non-preemptive scheduling algorithm for this case. Using the 3-field notation, this

case is represented by PRP| |
∑

j w jCj . We also show that its solution provides a bounded solu-

tion for the case that preemption of tasks (in the same machine, without migration) is allowed

(PRP|pmtn|
∑

j w jCj).

Our algorithm is based on a relaxed LP which is very similar to (LP1) of Section 6.3, however

a different constraint is used to ensure that each task is scheduled entirely by the end point of

some time-interval of a machine. Next, we introduce this LP and describe how to generate a

non-preemptive schedule based on its solution.

6.4.1 Relaxed Linear Program (LP2)

We partition the time horizon into intervals (dl−1, dl] for l = 0, ..., L, as defined in (6.5) by

replacing ε by 1. Define 0-1 variable zil
k j to indicate whether task (k, j) is completed on machine

i by the end-point of interval l, i.e., by dl . Note that the interpretation of variables zil
k j is slightly

different from their counterparts in (LP1). By relaxing integrality of z variables, we formulate

153

(LP2):

min
∑
j∈J

w jCj (LP2) (6.13a)

zil
k j = 0 if pi

k j > dl, j ∈ J, k ∈ K j, i ∈ Mk j, l = 0, . . . , L (6.13b)

Constraints (6.9b)–(6.9h) (6.13c)

Note that Constraint (6.13b) allows zil
k j to be positive only if the end point of the l-th interval is at

least as long as task (k, j)’s processing time on machine i ∈ Mk j . We would like to emphasize that

this is a valid constraint for both the preemptive and non-preemptive cases when migration is not

allowed. We will see shortly how this constraint helps us construct our non-preemptive algorithm.

We interpret fractional values of zil
k j as the fraction of task (k, j) that is processed in interval l of

machine i (as in Section 6.3).

6.4.2 Scheduling Algorithm: SynchPack-2

Our non-preemptive algorithm, which we refer to as SynchPack-2, has three main steps:

Step 1: Solve (LP2). We first solve the linear program (LP2) to obtain the optimal solution of

{zil
k j} denoted by { z̃il

k j}.

Step 2: Apply Slow-Motion. Before constructing the actual schedule of tasks, the algorithm

applies the Slow-Motion technique (see Section 6.3.2). We pause here to clarify the connection

between z̃il
k j and those obtained after applying Slow-Motion which we denote by z̄il

k j , below.

Recall that z̃il
k j is the fraction of task (k, j) that is scheduled in interval l of machine i in the

optimal solution to (LP2), and ∆l is the length of the l-th interval. Also, recall that Z̃ i
k j =

∑L
l=0 z̃il

k j

is the total task fraction to be scheduled on machine i corresponding to task (k, j). Similarly, we

define ∆̄l and d̄l to be the length and the end point of the l-th interval after applying the Slow-

Motion using a stretch parameter λ ∈ (0, 1], respectively. Therefore,

∆̄l =
∆l

λ
, d̄l =

dl

λ
. (6.14)

154

Further, we define z̄il
k j to be the fraction of task (k, j) to be scheduled during the l-th interval on

machine i after applying Slow-Motion. Then it holds that,

z̄il
k j =

z̃il
k j

λ , if
∑l

l′=0
z̃il
′

k j

λ < Z̃ i
k j

max
{
0,

(
Z̃ i

k j −
∑l−1

l′=0
z̃il
′

k j

λ

)}
, otherwise.

(6.15)

To see (6.15), note that in Slow-Motion, both variables and intervals are stretched by factor 1/λ,

and after stretching, the machine is left idle if it has already processed its total task fraction com-

pletely. Hence, as long as Z̃ i
k j fraction of task (k, j) is not completely processed by the end of

the l-th interval in the stretched solution, it is processed for z̃il
k j p

i
k j/λ amount of time in the l-th

interval of length ∆̄l = ∆l/λ. Hence z̄il
k j = z̃il

k j/λ. Now suppose l? is the first interval for which∑l?
l′=0 z̃il ′

k j/λ ≥ Z̃ i
k j . Then, the remaining processing time of task (k, j) to be scheduled in the l?-th

interval of machine i in the stretched schedule is pi
k j(Z̃

i
k j−

∑l?−1
l′=0 z̄il ′

k j) = pi
k j(Z̃

i
k j−

∑l?−1
l′=0 z̃il ′

k j/λ) > 0.

Therefore, the second part of (6.15) holds for l?, and for intervals l > l?, z̄il
k j will be zero, since

Z̃ i
k j −

∑l−1
l′=0 z̄il ′

k j/λ ≤ 0. Observe that
∑

i∈Mk j

∑L
l=0 z̄il

k j = 1.

Step 3: Construct a non-preemptive schedule. Note that according to variables z̄il
k j , a task

possibly is set to get processed in different intervals and machines. The last step of SynchPack-2

is the procedure of constructing a non-preemptive schedule using these variables. This procedure

involves 2 substeps: (1) mapping of tasks to machine-intervals, and (2) non-preemptive scheduling

of tasks mapped to each machine-interval using a greedy scheme. We now describe each of these

substeps in detail.

Substep 3.1: Mapping of tasks to machine-intervals. For each task (k, j), the algorithm uses

a mapping procedure to find a machine and an interval in which it can schedule the task entirely

in a non-preemptive fashion. The mapping procedure is based on constructing a weighted bipartite

graph G = (U ∪V, E), followed by an integral matching of nodes in U to nodes in V on edges with

non-zero weights, as described below:

(i) Construction of Graph G = (U ∪V, E): For each task (k, j), j ∈ J , k ∈ K j , we consider a node

155

in U. Therefore, there are
∑

j∈J |K j | nodes in U. Further, V = ∪i∈MVi, where Vi is the set of

nodes that we add for machine i to represent intervals. To construct graph G, we start from the

first machine, say machine i, and sort tasks in non-increasing order of their volume vi
k j = ak j pi

k j

in machine i. Let Ni denote the number of tasks on machine i with nonzero volumes. Without

loss of generality, suppose

vi
k1 j1 ≥ vi

k2 j2 ≥ . . . v
i
kNi

jNi
> 0. (6.16)

For each interval l, we consider dz̄ile = d
∑

j∈J
∑

k∈Kj
z̄il

k je (recall the definition of z̄il
k j in (6.15))

consecutive nodes in Vi which we call copies of interval l.

Starting from the first task in the ordering (6.16), we draw edges from its corresponding node

in U to the interval copies in Vi in the following manner. Assume we reach at task (k, j) in the

process of adding edges. For each interval l, if z̄il
k j > 0, first set R = z̄il

k j . Consider the first copy

of interval l for which the total weight of its current edges is strictly less than 1 and set W to be

its total weight. We draw an edge from the node of task (k, j) in U to this copy node in Vi, and

assign a weight equal to min{R, 1 −W} to this edge. Then we update R← R −min{R, 1 −W},

consider the next copy of interval l, and apply the same procedure, until R = 0 (or equivalently,

the sum of edge weights from node (k, j) to copies of interval l becomes equal to z̄il
k j). We use

wilc
k j to denote the weight of edge that connects task (k, j) to copy c of interval l of machine i,

and if there is no such edge, wilc
k j = 0. We then move to the next machine and apply the similar

procedure, and so on. See Figure 6.3 for an illustrative example.

Note that in G, the weight of any node u ∈ U (the sum of weights of its edges) is equal to 1

(since
∑L

l=0 z̄il
k j = 1, for any task (k, j)), while the weight of any node v ∈ V is at most 1.

(ii) Integral Matching: Finally, we find an integral matching on the non-zero edges of G, such that

each non-zero task is matched to some interval copy. As we will show shortly in Section 6.4.3,

we can always find an integral matching of size
∑

j∈J |K j |, the total number of tasks, in G, in

polynomial time, in which each task is matched to a copy of some interval.

156

1

0.7

0.9
0.1
0.2

0.3
0.1

Machine-Interval (𝑖, 𝑙)

Machine-Interval (𝑖, 𝑙′)

task (𝑘, 𝑗)

Figure 6.3: An illustrative example for construction of graph G in Substeb 3.1. Task (k, j) requires
z̄il

k j = 0.4 and z̄il ′
k j = 0.3. When we reach at task (k, j), the total weight of the first copy of interval

l is 1 and that of its second copy is 0.7. Also, the total weight of the first copy of interval l′ is 0.9.
Hence, the procedure adds 2 edges to copies of interval l with weights 0.3 and 0.1, and 2 edges to
copies of interval l′ with weights 0.1 and 0.2.

A pseudocode for the mapping procedure can be found in Section 6.15.

Substep 3.2: Greedy packing of tasks in machine-intervals. We utilize a greedy packing to

schedule all the tasks that are mapped to a machine-interval non-preemptively. More precisely, on

each machine, the greedy algorithm starts from the first interval and considers an arbitrary ordered

list of its corresponding tasks. Starting from the first task, the algorithm schedules it, and moves to

the second task. If the machine has sufficient capacity, it schedules the task, otherwise it checks the

next task and so on. Once it is done with all the tasks of the first interval, it considers the second

interval, applies the similar procedure, and so on. We may also shift back future tasks’ schedules

as far as the machine capacity allows.

Note that this greedy algorithm is simpler than the one described in Section 6.3, since it does

not need to consider requirement (ii) of Section 6.2 as here each task only appears in one feasible

machine.

As we prove in the next section, we can bound the total volume of tasks mapped to interval

l on machine i in the mapping phase by mi∆̄l . Furthermore, by Constraint (6.13b) and the fact

that the integral matching in Substep 3.1 was constructed on non-zero edges, the processing time

of any task mapped to an interval is not greater than the interval’s end point, which is twice the

interval length. Hence, we can bound the completion time of each job and find the approximation

ratio that our algorithm provides. A pseudocode for the SynchPack-2 algorithm can be found in

Section 6.15.

157

6.4.3 Performance Guarantee

In this section, we analyze the performance of our non-preemptive algorithm SynchPack-2.

The main result of this section is as follows:

Theorem 12. The scheduling algorithm SynchPack-2 is a 24-approximation algorithm for the

problem of parallel-task jobs scheduling with packing and placement constraints, when preemption

and migration is not allowed.

Since the constraints of (LP2) also hold for the preemptive case when migration is not allowed,

the optimal solution of this case is also lower bounded by the optimal solution to the LP. Therefore,

the algorithm’ solution is also a bounded solution for the case that preemption is allowed (while

still migration is not allowed).

Corollary 4. The scheduling algorithm SynchPack-2, in Section 6.4.2, is a 24-approximation

algorithm for the problem of parallel-task jobs scheduling with packing and placement constraints,

when preemption is allowed and migration is not.

The rest of this section is devoted to the proof of Theorem 12. With a minor abuse of notation,

we use C̃k j and C̃j to denote the completion time of task (k, j) and job j, respectively, in the

optimal solution to (LP2). Also, let C?
k j and C?

j denote the completion time of task (k, j) and job

j, respectively, in the optimal non-preemptive schedule. We can bound the optimal value of (LP2)

as stated below. The proof is provided in Section 6.11.1.

Lemma 25.
∑N

j=1 w jC̃j ≤
∑N

j=1 w jC?
j = OPT .

Definition 15. Given 0 < α ≤ 1, define Ĉj(α) to be the starting point of the earliest interval l for

which α ≤ x̃ jl in solution to (LP2).

Note that Ĉj(α) is slightly different from Definition 14, as we do not construct an actual sched-

ule yet. We then have the following corollary which is a counterpart of Lemma 23. See Sec-

tion 6.11.2 for the proof.

Corollary 5.
∫ 1
α=0 Ĉj(α)dα = C̃j

158

Consider the mapping procedure where we construct bipartite graph G and match each task to

a copy of some machine-interval. Below, we state a lemma which ensures that indeed we can find

an integral (i.e. 0 or 1) matching in G. The proof can be found in Section 6.11.3.

Lemma 26. Consider graph G constructed in the mapping procedure. There exists an integral

matching on the nonzero edges of G in which each task is matched to some interval copy. Further,

this matching can be found in polynomial time.

LetVil denote the total volume of the tasks mapped to all the copies of interval l of machine i.

The following lemma boundsVil whose proof is provided in Section 6.11.4.

Lemma 27. For any machine-interval (i, l), we have

Vil ≤ d̄lmi +
∑
j∈J

∑
k∈Kj

vi
k j z̄

il
k j . (6.17)

Note that the second term in the right side of (6.17) can be bounded by d̄lmi which results in

the inequalityVil ≤ 2d̄lmi. However, the provided bound is tighter and allows us to prove a better

bound for the algorithm. We next show that, using the greedy packing algorithm, we can schedule

all the tasks of an interval l in a bounded time.

In the case of packing single tasks in a single machine, the greedy algorithm by [167] is known

to provide a 2-approximation solution for minimizing makespan. The situation is slightly different

in our setting as we require to bound the completion time of the last task as a function of the total

volume of tasks, when the maximum duration of all tasks in each interval is bounded. We state the

following lemma and its proof in Section 6.11.5 for completeness.

Lemma 28. Consider a machine with capacity 1 and a set of tasks J = {1, 2, . . . , n}. Suppose each

task j has size a j ≤ 1, processing time p j ≤ 1, and
∑

j∈J a j p j ≤ v. Then, we can schedule all the

tasks within the interval (0, 2 max{1, v}] using the greedy algorithm.

Now consider a machine-interval (i, l). Note that Lemma 27 bounds the total volume of tasks

while Constraint (6.13b) ensures that duration of each task is less than dl . Thus, by applying

159

Lemma 28 on the normalized instance, in which size and length of tasks are normalized by mi and

dl , respectively, we guarantee that we can schedule all the task within a time interval of length

2dl + 2
∑

j∈J
∑

k∈Kj
vi

k j z̄
il
k j/mi. Moreover, the factor 2 is tight as stated in the following lemma

whose proof can be found in Section 6.11.6.

Lemma 29. We need an interval of length at least 2 max(1, v) to be able to schedule any list of

tasks as in Lemma 28 using any algorithm.

Hence, Lemmas 28 and 29 imply that applying the greedy algorithm to schedule the tasks of

each machine-interval, provides a tight bound with respect to the total volume of tasks in that

machine-interval. Let Ck j denote the completion time of task (k, j) under SynchPack-2. Then we

have the following lemma whose proof can be found in Section 6.11.7.

Lemma 30. Suppose that task (k, j) is mapped to the l-th interval of machine i at the end of Substep

3.1. Then, Ck j ≤ 6d̄l .

Proof. Proof of Theorem 12. Let l denote the end point of the interval in which task (k, j) has the

last non-zero fraction according to z̄il
k j . Then,

d̄l = 2l/λ
(?)
≤ 2Ĉj(λ)/λ. (6.18)

First note that ε is replaced by 1 in Equation (6.5). Further, Inequality (?) follows from the defini-

tion of Ĉj(λ) (Definition 15), and the fact that dl’s are multiplied by 1/λ. Therefore, Ĉj(λ)/λ is the

start point of the interval in which job j is completed, and, accordingly, 2Ĉj(λ)/λ is the end point

of that interval. Thus, 2l/λ, the end point of the interval in which task (k, j) is completed, has to

be at most 2Ĉj(λ)/λ, the end point of the interval in which job j is completed.

Let Ck j and Cj be the completion time of task (k, j) and job j under SynchPack-2. Recall

that in the mapping procedure, we only map a task to some interval l′ in which part of the task is

assigned to that interval after Slow-Motion applied (in other words, z̄il ′
k j > 0). Thus, task (k, j) that

has its last non-zero fraction in interval l (by our assumption) is mapped to some interval l′ ≤ l,

160

because z̄il ′′
k j = 0 for intervals l′′ > l. Suppose task (k j, j) is the last task of job j and finishes

in interval l j in our non-preemptive schedule. Then, by Lemma 30 and Equation (6.14), we have

Cj = Cij j ≤ 6d̄l =
6
λ2lj . Recall that C̃j denotes the completion time of job j in an optimal solution

of (LP2). Hence,

E
[∑

j∈J

w jCj

]
≤ E

[∑
j∈J

w j
6
λ

2lj
] (a)
≤ 12 × E

[∑
j∈J

w jĈj(λ)/λ
]

(b)
= 12 ×

∑
j∈J

w j

∫ 1

λ=0

Ĉj(λ)

λ
2λdλ

(c)
≤ 24 ×

∑
j∈J

w jC̃j,

where in the above, (a) is by the second part of (6.18) for l = l j , (b) is by definition of expectation

with respect to λ, with pdf f (λ) = 2λ, and (c) is by Corollary 5. Using the above inequality and

Lemma 25,

E
[∑

j∈J

w jCj

]
≤ 24 ×

∑
j∈J

w jC?
j = 24 × OPT. (6.19)

By applying de-randomization procedure (see Section 6.10), we can find λ = λ? in polynomial

time for which the total weighted completion time is less that its expected value in (6.19). This

completes the proof of Theorem 12. � �

6.5 Special Case: Preemption and Single-Machine Placement set

In previous sections, we studied the parallel-task job scheduling problem for both cases when

migration of tasks (among machines in its placement set) is allowed or not, and provided (6 + ε)

and 24 approximation algorithms, respectively. In this section, we consider a special case when

only one machine is in the placement set of each task (e.g., it is the only machine that has the

required data for processing the task), and preemption is allowed. Using the 3-field notation, this

case is represented by PDP|pmtn|
∑

j w jCj .

Corollary 6. Consider the parallel-task job scheduling problem when there is a specific machine

to process each task and preemption is allowed. For any ε > 0, the sum of the weighted completion

times of jobs under SynchPack-1, in Section 6.3.2, is at most (4 + ε) × OPT.

161

Proof. Proof. The proof is straight forward and similar to proof of Theorem 11. Specifically, the

factor 3 needed to bound the solution of the greedy policy is reduced to 2 due to the fact that

placement constraint is not needed to be enforced here, since there is only one machine for each

task. � �

We can show that there is a slightly better approximation algorithm to solve the problem in this

special case, that has an approximation ratio 4. The algorithm uses a relaxed LP, based on linear

ordering variables (e.g., see [84, 75, 77]) to find an efficient ordering of jobs. Then it applies a

simple list scheduling to pack their tasks in machines subject to capacity constraints. The details

are as follows.

6.5.1 Relaxed Linear Program (LP3)

Note that each task has to be processed in a specific machine. Each job consists of up to M

(number of machines) different tasks. We useM j to denote the set of machines that have tasks for

job j. Task i of job j, denoted as task (i, j), requires a specific amount ai j of machine i’s resource

(ai j ≤ mi) for a specific time duration pi j > 0. We also define its volume as vi j = ai j pi j . The

results also hold in the case that a job has multiple tasks on the same machine.

For each pair of jobs, we define δ j j ′ ∈ {0, 1} such that δ j j ′ = 1 if job j is completed before job

j′, and δ j j ′ = 0 otherwise. Note that by the synchronization constraint (6.1), the completion of a

job is determined by its last task. If both jobs finish at the same time, we set either one of δ j j ′ or

δ j ′ j to 1 and the other one to 0, arbitrarily. By relaxing the integral constraint on binary variables,

162

we formulate the following LP:

min
∑
j∈J

w jCj (LP3) (6.20a)

miCj ≥ vi j +
∑

j ′∈J, j ′, j

vi j ′δ j ′ j, j ∈ J, i ∈ M j (6.20b)

Cj ≥ pi j, j ∈ J, i ∈ M j (6.20c)

δ j j ′ + δ j ′ j = 1, j , j′, j, j′ ∈ J (6.20d)

δ j j ′ ≥ 0, j, j′ ∈ J (6.20e)

Recall the definition of job completion time Cj and task completion time Ci j in Section 6.2. In

(LP3), (6.20b) follows from the definition of δ j j ′, and the fact that the tasks which need to be

served on machine i are processed by a single machine of capacity mi. It states that the total

volume of tasks that can be processed during the time period (0,Cj] by machine i is at most miCj .

This total volume is given by the right-hand-side of (6.20b) which basically sums the volumes of

the tasks on machine i that finish before job j finishes its corresponding tasks at time Cj , plus the

volume of task (i, j) itself. Constraint (6.20c) is due to the fact that Cj ≥ Ci j and each task cannot

be completed before its processing time pi j . (6.20d) indicates that for each two jobs, one precedes

the other. Further, we relax the binary ordering variables to be fractional in (6.20e).

Note that the optimal solution to (LP3) might be an infeasible schedule as (LP3) replaces the

tasks by sizes of their volumes and it might be impossible to pack the tasks in a way that matches

the obtained completion times from (LP3).

Remark 4. (LP3) can be easily modified to allow each job to have multiple tasks on the same

machine. We omit the details to focus on the main ideas.

6.5.2 Scheduling Algorithm: SynchPack-3

The SynchPack-3 algorithm has two steps:

163

Step 1: Solve (LP3) to find an ordering of jobs. Let C̃j denote the optimal solution to (LP3)

for completion time of job j ∈ J . We order jobs based on their C̃j values in a nondecreasing order.

Without loss of generality, we re-index the jobs such that

C̃1 ≤ C̃2 ≤ ... ≤ C̃N . (6.21)

Ties are broken arbitrarily.

Step 2: List scheduling based on the obtained ordering. For each machine i, the algorithm

maintains a list of tasks such that for every two tasks (i, j) and (i, j′) with j < j′ (according to

ordering (6.21)), task (i, j) appears before task (i, j′) in the list. On machine i, the algorithm scans

the list starting from the first task. It schedules a task (i, j) from the list if the machine has sufficient

remaining resource to accommodate it. Upon completion of a task, the algorithm preempts the

schedule, removes the completed task from the list and updates the remaining processing time

of the tasks in the list, and starts scheduling the tasks in the updated list. Observe that this list

scheduling is slightly different from the greedy scheme used in SynchPack-1. A pseudocode for

the algorithm can be found in Section 6.16.

6.5.3 Performance Guarantee

Theorem 13. The scheduling algorithm SynchPack-3 is a 4-approximation algorithm for the

problem of parallel-task jobs scheduling with packing and single-machine placement constraints.

The proof of the theorem, and any supporting lemmas, is presented in Section 6.12.

6.6 Complexity of Algorithms

The complexity of our algorithms is mainly dominated by solving their corresponding LPs,

which can be solved in polynomial time using efficient linear programming solvers. The rest of

the operations have low complexity and can be parallelized on the machines. We have provided a

detailed discussion of the complexity in Section 6.8.

164

6.7 Evaluation Results

In this section, we evaluate the performance of our algorithms using a real traffic trace from a

large Google cluster [151], and compare to prior algorithms. The original data set only contains

the machine to which each task is assigned by the resource manager, and the information regarding

the placement constraints (data locality) is missing. The setting is then similar to our model for

preemptive algorithm SynchPack-3 in Section 6.5. To incorporate placement constraints, we

modify the data set as follows. For each task, we randomly choose 3 machines and assume that

processing time of the task on these machines is equal to the processing time given in the data

set. We allow the task to be scheduled on other machines; however, its processing time will be

penalized by a factor α > 1. This is consistent with the data locality models in previous work

(e.g. [145, 163]). The details of the data set can be found in Section 6.13.

We consider three prior algorithms, PSRS [169], Tetris [145], and JSQ-MW [163] to compare

with our algorithms SynchPack-2 and SynchPack-3. PSRS is a preemptive algorithm for the

parallel task scheduling problem (see Section 6.1.1) on a single machine. Tetris is a heuristic that

schedules tasks on each machine according to an ordering based on their scores (Section 6.1.1).

In our evaluations, we consider two versions of Tetris, preemptive (Tetris-p) and non-preemptive

(Tetris-np). Finally, Join-the-Shortest-Queue routing with Max Weight scheduling (JSQ-MW)

is a non-preemptive algorithm in presence of data locality (Section 6.1.1). An overview of these

algorithms can be found in Section 6.13.

6.7.1 Results in Offline Setting

We use SynchPack-3, Tetris-p, and PSRS to schedule tasks of the original data set preemp-

tively, and use SynchPack-2, Tetris-np, and JSQ-MW to schedule tasks of the modified data set

(with placement constraints) non-preemptively. We then compare the weighted average completion

time of jobs,
∑

j w jCj/
∑

j w j , under these algorithms for the three weight cases, i.e. equal, random,

and priority-based weights. Note that weighted average completion time is equivalent to the total

165

 Equal Random Priority-Based

Weights of Jobs

0

50

100

150

200

250

300
W

ig
h
te

d
 A

v
e
ra

g
e
 C

o
m

p
le

ti
o
n
 T

im
e

SynckPack-3

PSRS

Tetris-p

(a) Performance of SynchPack-
3, Tetris-p, and PSRS for differ-
ent weights.

 Equal Random Priority-Based

Weights of Jobs

0

100

200

300

400

500

600

700

800

W
e

ig
h

te
d

 A
v
e

ra
g

e
 C

o
m

p
le

ti
o

n
 T

im
e

SynckPack-2

JSQ-MW

Tetris-np

(b) Performance of SynchPack-
2, Tetris-np, and JSQ-MW for
different weights and remote
penalty α = 2.

 2 5 10

Remote Penalty

0

100

200

300

400

500

600

W
e

ig
h

te
d

 A
v
e

ra
g

e
 C

o
m

p
le

ti
o

n
 T

im
e

SynckPack-2

JSQ-MW

Tetris-np

(c) Performance of SynchPack-
2, Tetris-np, and JSQ-MW for
different remote penalties and
equal weights.

Figure 6.4: Performance of algorithms in the offline setting.

 Equal Random Priority-Based

Weights of Jobs

0

10

20

30

40

50

60

70

80

90

W
ig

h
te

d
 A

v
e

ra
g

e
 D

e
la

y

SynckPack-3

PSRS

Tetris-p

(a) Performance of SynchPack-
3, Tetris-p, and PSRS for differ-
ent weights.

 Equal Random Priority-Based

Weights of Jobs

0

10

20

30

40

50

60

W
e

ig
h

te
d

 A
v
e

ra
g

e
 D

e
la

y

SynckPack-2

JSQ-MW

Tetris-np

(b) Performance of SynchPack-
2, Tetris-np, and JSQ-MW for
different weights.

0 0.05 0.1 0.15 0.2 0.25 0.3

Traffic Intensity

15

20

25

30

35

40

45

50

55

60

W
e

ig
h

te
d

 A
v
e

ra
g

e
 D

e
la

y

SynckPack-2

JSQMW

Tetris-np

(c) Performance of SynchPack-
2, Tetris-np, and JSQ-MW for
different traffic intensities.

Figure 6.5: Performance of algorithms in the online setting.

weighted completion time (up to the normalization
∑

j w j). We first report the ratio between the

total weighted completion time obtained from SynchPack-2 (for α = 2) and SynchPack-3 and

their corresponding optimal value of their relaxed LPs (6.13) and (6.20) (which are lower bounds

on the optimal total weighted competition times) to verify Theorem 12 and 13. Table 6.1 shows

this performance ratio for the 3 cases of job weights. All ratios are within our theoretical results of

24 and 4. In fact, the approximation ratios are much smaller.

Table 6.1: Performance ratio of SynchPack-3 with respect to (LP3), and SynchPack-2 with
respect to (LP2)

Jobs’ Weights Equal Random Priority-Based
Ratio for SynchPack-2 2.87 2.90 2.98
Ratio for SynchPack-3 1.34 1.35 1.31

166

Figure 6.4a shows the performance of SynchPack-3, Tetris-p, and PSRS in the offline setting.

As we see, SynchPack-3 outperforms the other two algorithms in all the cases and performance

gain varies from 33% to 132%. Further, Figure 6.4b depicts performance of SynchPack-2, Tetris-

np, and JSQ-MW for different weights, when α = 2. The performance gain of SynchPack-2

varies from 81% to 420%. Figure 6.4c shows the effect of remote penalty α in the performance of

SynchPack-2, Tetris-np, and JSQ-MW. As we see, SynchPack-2 outperforms the other algo-

rithms by 85% to 273%

6.7.2 Results in Online Setting

In the online setting, jobs arrive dynamically over time, according to the arrival time informa-

tion in the data set, and we are interested in the weighted average delay of jobs. The delay of a job

is measured from the time that it arrives to the system until its completion. See Section 6.13 for

details on implementation of the algorithms in the online setting.

Figure 6.5a shows the performance results, in terms of the weighted average delay of jobs, un-

der SynchPack-3, Tetris-p, and PSRS. Performances of Tetris-p is worse than our algorithm by

11% to 27%, while PSRS presents the poorest performance and has 36% to 65% larger weighted

average delay compared to SynchPack-3. Moreover, performance of SynchPack-2, Tetris-np,

and JSQ-MW for different weights is depicted in Figure 6.5b. As we see, SynchPack-2 outper-

forms the other two algorithms in all the cases and performance gain varies from 109% to 189%.

Further, by multiplying arrival times by constant values we can change the traffic intensity and

study its effect on algorithms’ performance. Figure 6.5c shows the results for equal job weights.

As we can see, SynchPack-2 outperforms the other algorithms and the performance gain increases

as traffic intensity grows.

6.8 Complexity of Algorithms

The linear program (LP1) in (6.9) has at most KN ML + N L + N variables (K is the maximum

number of tasks a job has.), which is polynomially bounded in the problem’s input size. The

167

number of constraints is also polynomially bounded. Hence, it can be solved in polynomial time

using efficient linear programming solvers. The complexity of SynchPack-1 is mainly determined

by solving (LP1). The complexity of Slow-Motion step is very low and can be parallelized in

different machines, namely, O(KN L) on each machine, and O(KN LM) in total. The complexity

of the greedy list scheduling – upon arrival or departure of a task fraction– is at most the length of

the list (equal to the number of incomplete task fractions which is initially equal to O(KN LM))

times the number of machines M .

Mapping procedure is the extra step for SynchPack-2. The complexity of this step is also

polynomially bounded in input size and is O(K2N2ML). O(KN + ML) is used for constructing

the graph as there are O(KN) nodes on one side (number of all the tasks), O(KN + ML) on the

other side (number of all machine-interval copies), and it takes O(KN ML) to create edges (each

task has at most 2 edges to copies of each machine-interval.). Further, finding an integral matching

from the fractional matching takes O(K2N2ML). The greedy algorithm in SynchPack-2 can be

parallelized on the machines and takes O(KN) in total.

Similarly, the complexity of SynchPack-3 is mainly dominated by solving (LP3) to find an

appropriate ordering of jobs. The relaxed linear program (LP3) has O(N2) variables and O(N2 +

MN) constraints and can be solved in polynomial time using efficient linear programming solvers.

Note that the job ordering is the same on all the machines and they simply list-schedule their tasks

respecting this ordering, independently of other machines. The complexity of the list scheduling is

less than the one used in SynchPack-2 and is at most the length of the list, which is equal to the

number of incomplete tasks.

Further, we would like to emphasize that in all the algorithms the corresponding linear program

(LP) is solved only once at the beginning of the algorithm.

For the simulations, we used Gurobi software [176] to solve (LP2) and (LP3) in the simulations.

On a desktop PC, with 8 Intel CPU core i7 − 4790 processors @ 3.60 GHz and 32.00 GB RAM,

the average time it took to solve (LP1) was 145 seconds under offline setting. For purpose of

comparison, the maximum job completion and the weighted average completion time time under

168

our algorithm are 4.3 × 104 seconds and 8.6 × 103 seconds, respectively, for the case of priority-

based weights. For solving (LP3), the average time it took was 435 seconds under offline setting,

while the maximum job completion time and the weighted average completion time under our

algorithm are 4.8×104 seconds and 104 seconds, respectively for the case of priority-based weights

for α = 2. We note that solving the LPs can be done much faster using the powerful computing

resources in today’s data centers.

6.9 Proofs Related to SynchPack-1

6.9.1 Proof of Lemma 21

Consider an optimal solution to the task scheduling problem with packing and synchronization

constraints. Define Ĉ?
k j (similarly, Ĉ?

j) to be the left point of the interval in which task (k, j)

(similarly, job j) completes in the optimal schedule. Clearly, Ĉ?
j ≤ C?

j . We set zil?
k j equal to the

fraction of task (k, j) that is scheduled in interval l on machine i. Also, we set x?j,l to be one for

the last interval that some task of job j is running in the optimal schedule and to be zero for other

intervals. Obviously, Ĉ?
j =

∑L
l=0 dl−1x?jl . It is easy to see that the set of values Ĉ?

j , zil
k j
?, and x?j,l

satisfies all the constraints of (LP3). Therefore,
∑N

j=1 w jC̃j ≤
∑N

j=1 w jĈ?
j ≤

∑N
j=1 w jC?

j .

6.9.2 Proof of Lemma 23

Recall that τl is the time that all the task fractions (k, j, i, l′), for l′ ≤ l, complete in schedule S.

Let αl be the fraction of job j that is completed by τl .

Note that as we schedule all the task fractions (k, j, i, l′), for l′ ≤ l and possibly some other task

fractions, we have,

αl ≥

l∑
l ′=0

x̃ jl ′ . (6.22)

We define y jl = αl − αl−1. Note that
∑L

l=0 y jl = 1. Moreover, Cj(α) ≤ 3dl for α ∈ (αl−1, αl]. The

169

factor 3 comes from Lemma 22. Therefore:∫ 1

0
Cj(α)dα =

L∑
l=0

∫ αl

αl−1

Cj(α)dα ≤
L∑

l=0
(αl − αl−1) × 3dl

(a)
= 3(1 + ε)

L∑
l=0

y jl dl−1
(b)
≤ 3(1 + ε)

L∑
l=0

x̃ jl dl−1

(c)
= 3(1 + ε)C̃j,

(6.23)

where (a) follows from definitions. Inequality (b) follows from (6.22) when y jl and x jl is seen as

probabilities. Equality (c) comes from (6.9g) in (LP1).

6.9.3 Proof of Lemma 24

It is easy to observe that for every job j, C̄λ
j ≤ Cj(λ)/λ. The reason is that Cj(λ) is the time

that λ fraction of job j is completed in S; therefore, in the stretched schedule S̄ by factor 1/λ, job

j is completed by time Cj(λ)/λ. Hence, we have

E
[
C̄λ

j

]
≤ E

[
Cj(λ)/λ

]
(a)
=

∫ 1

0

Cj(λ)

λ
× 2λ × dλ

(b)
≤ 6(1 + ε)C̃j,

where Equality (a) is by definition of expectation with respect to λ, with pdf f (λ) = 2λ, and

Equality (b) is due to Lemma 23.

6.10 De-randomization

In this section, we discuss how to de-randomize the random choice of λ ∈ (0, 1] in SynchPack-

1, which was used to construct schedule S̄ from schedule S.

Recall that from Definition 14, Cj(λ), 0 < λ ≤ 1, is the starting point of the earliest interval

in which λ-fraction of job j has been completed in schedule S, which means at least λ-fraction of

170

each of its tasks has been completed. We first aim to show that we can find

λ? = arg min
λ∈(0,1]

∑
j∈J

w jCj(λ)/λ (6.24)

in polynomial time. Note that using the greedy packing algorithm, we schedule task fractions

preemptively to form schedule S. It is easy to see that Cj(λ) is a step function with at most O(L)

breakpoints, since Cj(λ) = dl for some l and can get at most L different values. Consequently,

F(λ) =
∑

j∈J w jCj(λ) is a step function with at most O(N L) breakpoints. Let B denote the set of

breakpoints of F(λ). Thus, F(λ)/λ =
∑

j∈J w jCj(λ)/λ is a non-increasing function in intervals

(b, b′], for b, b′ being consecutive points in set B. This implies that,

min
λ∈(0,1]

F(λ)/λ = min
λ∈(0,1]

∑
j∈J

w jCj(λ)/λ = min
λ∈B

∑
j∈J

w jCj(λ)/λ.

We then can conclude that we can find λ? in polynomial time by checking values of function

F(λ)/λ in at most O(N L) points of set B and pick the one which incurs the minimum value. Given

that, we have ∑
j∈J

w jC̄λ?

j ≤
∑
j∈J

(1 + ε)w jCj(λ
?)/λ?

(a)
≤ (1 + ε)E

[∑
j∈J

w jCj(λ)/λ
]

= (1 + ε)
∑
j∈J

w j

∫ 1

λ=0

Cj(λ)

λ
2λdλ

(b)
= 6(1 + ε)

∑
j∈J

w jC̃j,

(6.25)

where (a) follows from (6.24). Equality (b) is due to Lemma 23. By choosing λ = λ? in

SynchPack-1, we have a deterministic algorithm with performance guarantee of (6 + ε) ×OPT. ,

as stated by the following proposition.

171

6.11 Proofs Related to SynchPack-2

6.11.1 Proof of Lemma 25

Consider an optimal solution to the non-preemptive task scheduling problem with packing and

synchronization constraints. For each task, we set zil
k j
?
= 1 for the machine i and interval l if that

task (k, j) is processed on i and finishes before dl , and 0 otherwise. The rest of argument is similar

to the proof of Lemma 21.

6.11.2 Proof of corollary 5

Note that (LP2) includes all the Constraints (6.9f)–(6.9h) of (LP1). Let αl be the fraction of

job j that is completed by interval l. Therefore,

αl =

l∑
l ′=0

x̃ jl ′ . (6.26)

Similar to Equations (6.23), we can write

∫ 1

0
Ĉj(α)dα =

L∑
l=0
(αl − αl−1) × dl−1 =

L∑
l=0

x̃ jl dl−1 = C̃j,

6.11.3 Proof of Lemma 26

We use the following fundamental theorem (Theorem 2.1.3 in [177]): If there exists a fractional

matching of some value ν in a bipartite graph G, then there exists an integral matching of the same

value ν in G on the non-zero edges and can be found in polynomial time.

In our constructed bipartite graph G, edge weights wilc
k j can be seen as a fractional matching.

This is because for any node u ∈ U, the sum of weights of edges that are incident to u is 1, while

for any node v ∈ V the sum of weights of edges that are incident to v is at most 1. Recall that

| ∪ j∈J K j | =
∑

j∈J
∑

k∈Kj

∑L
l=0 z̄il

k j is the number of total tasks. Setting G = G and ν = | ∪ j∈J K j |,

an integral matching of nodes in U to nodes in V on non-zero edges can be found in polynomial

172

time by the stated theorem.

6.11.4 Proof of Lemma 27

We now present the proof of Lemma 27 which bounds Vil (the total volume of tasks matched

to all copies of interval l for machine i) by the product of the capacity of machine i and the length

of interval l. Observe that due to definition of vi
k j and Constraint (6.9d) we have,

∑
j∈J

∑
k∈Kj

vi
k j z̄

il
k j ≤ d̄lmi, (6.27)

The proof idea is similar to [172] that uses a simpler version of the mapping procedure in makespan

minimization problem for scheduling tasks with unit resource requirements on unrelated machines

with unit capacities, where each task can be scheduled in any machine. LetVc
il denote the volume

of the task that is matched to copy c of interval l on machine i. Thus, Vil is equal to the sum of

Vc
il for all copies. Recall that we have dz̄ile = d

∑
j∈J

∑
k∈Kj

z̄il
k je many copies of interval l. Let

Vmax
il denote the largest volume of the task that is mapped to interval l. For this task, we know

that z̄il
k j > 0 because the integral matching was found on nonzero edges (line 23 in Algorithm 13);

hence, pi
k j ≤ dl = λd̄l ≤ d̄l by Constraint (6.13b) and λ ∈ (0, 1]. In addition, let vminc

il denote the

volume of the smallest task that has an edge with non-zero weight to copy c of interval l in graph

G (or equivalently, has a non-zero edge in the fractional matching.). Observe that, the volume of

the task that is matched to copy c + 1 is at most vminc
il . This is because of the way we construct

graph G by sorting tasks according to their volumes for each machine (see the ordering in (6.16))

and the way we assign weights to edges. Thus,

Vil =

dz̄ile∑
c=1
Vc

il ≤ V
max

il +

dz̄ile∑
c=2

vminc−1
il

(a)
≤ d̄lmi +

∑
j∈J

∑
k∈Kj

dz̄ile−1∑
c=1

vi
k jw

ilc
k j .

173

Inequality (a) comes from the fact that
∑

j∈J
∑

k∈Kj
wilc

k j ≤ 1 and convex combination of some

numbers is greater than the minimum number among them (note that the only copy for which we

might have
∑

j∈J
∑

k∈Kj
wilc

k j < 1 is the last copy which is not considered in the left hand side of

Inequality (a)). Therefore, as the direct result of the way we constructed graph G, we have

Vil ≤ d̄lmi +
∑
j∈J

∑
k∈Kj

vi
k j z̄

il
k j

6.11.5 Proof of Lemma 28

Lemma 28 ensures that we can accommodate all the task fractions mapped to machine-interval

(i, l) within an interval with length twice dl +
∑

j∈J
∑

k∈Kj
vi

k j z̄
il
k j/mi.

Similar to Definition 13, we define h(t) to be the height of the machine at time t. Assume that

completion time of the last task, τ, is larger than 2V = 2 max(1, v), then

∑
j∈J

a j p j =

∫ τ

0
h(t)dt >

∫ 2V

0
h(t)dt ≥

∫ V

0
(h(t) + h(t + 1))dt > 1 + v,

where we have used the fact that h(t) + h(t + 1) > 1, because otherwise the greedy scheduling can

move tasks from time t + 1 to time t as the greedy scheduling is non-preemptive and p j ≤ 1 for all

tasks. Hence we arrived at a contradiction and the statement of Lemma 28 indeed holds.

6.11.6 Proof of Lemma 29

Let max(1, v) = 1. We show correctness of Lemma 29 by constructing an instance for which

an interval of size at least 2 − ζ is needed to be able to schedule all the tasks for any ζ > 0.

Given a ζ > 0, consider n > log2(1/ζ) + 1 tasks with processing times 1, 1/2, 1/4, . . . , 1/2(n−1)

and size 1/2 + η, for some η > 0 which is specified shortly. Note that we cannot place more

than one of such tasks at a time on the machine, and therefore we need an interval of length

1 + 1/2 + 1/4 + · · · + 1/2(n−1) = 2 − 1/2(n−1) > 2 − ζ to schedule all the tasks. The total volume

of tasks is equal to (1/2 + η)(2 − 1/2(n−1)) which is less than 1, by choosing η ≤ 1/(2(n+1) − 2).

174

Therefore, for any ζ > 0, we can construct an example for which an interval of length at least 2− ζ

is needed to schedule all the tasks.

6.11.7 Proof of Lemma 30

Let Til denote the completion time of the last task of machine-interval (i, l), and τil ′ be the length

of the time interval that SynchPack-2 uses to schedule tasks of machine-interval (i, l). Then,

Ck j ≤ Til =

l∑
l ′=0

τil ′
(a)
≤ 2 ×

l∑
l ′=0

(
d̄l ′ +

∑
j ′∈J

∑
k ′∈Kj ′

vi
k ′ j ′ z̄

il ′
k ′ j ′/mi

)
(b)
≤ 4d̄l + 2

l∑
l ′=0

∑
j ′∈J

∑
k ′∈Kj ′

vi
k ′ j ′ z̄

il ′
k ′ j ′/mi

(c)
≤ 6d̄l .

(6.28)

Inequality (a) is due to Lemma 27 and Lemma 28, while Inequality (b) is because dl ′−1 = dl ′/2.

Further, Inequality (c) is by Constraint (6.9d).

6.12 Proofs Related to SynchPack-3

This section is devoted to the proof of the Theorem 13. We first characterize the solution of the

linear program (LP3).

Lemma 31. Let C̃j be the optimal solution to (LP3) for completion time of job j, as in the ordering

(6.21). For each machine i and each job j, miC̃j ≥
1
2
∑ j

k=1 vik .

Proof. Proof. Using Constraint (6.20b), for any machine i ∈ M, we have

vi jmiC̃j ≥ v2
i j +

∑
j ′∈J, j ′, j

vi jvi j ′δ j ′ j .

Hence, by defining δkk = 0, it follows that

j∑
k=1

vikmiC̃k ≥
1
2

(
2

j∑
k=1

v2
ik +

j∑
k=1

j∑
k ′=1

(
vikvik ′δk ′k + vikvik ′δkk ′

))
(6.29)

175

We simplify the right-hand side of (6.29), using Constraint (6.20d), combined with the following

equality
j∑

k=1
v2

ik +

j∑
k=1

j∑
k ′=1
k ′,k

vikvik ′ = (

j∑
k=1

vik)
2,

and get
j∑

k=1
vikmiC̃k ≥

1
2

j∑
k=1
(vik)

2 +
1
2
(

j∑
k=1

vik)
2 ≥

1
2
(

j∑
k=1

vik)
2. (6.30)

Given that C̃j ≥ C̃k for 1 ≤ k ≤ j, we get the final result. � �

Let C?
j be the completion time of job j in an optimal schedule, and OPT =

∑N
j=1 w jC?

j be the

optimal value of our job scheduling problem. The following lemma states that the optimal value

of (LP3), i.e.,
∑N

j=1 w jC̃j , is a lower bound on the optimal value OPT.

Lemma 32.
∑N

j=1 w jC̃j ≤
∑N

j=1 w jC?
j = OPT.

Proof. Proof. Consider an optimal preemptive solution to the task scheduling problem with pack-

ing and synchronization constraints. We set the ordering variables such that δ j j ′ = 1 if job j

precedes job j′ in this solution, and δ j j ′ = 0, otherwise. We note that this set of ordering variables

and job completion times satisfies Constraint (6.20b) since this solution will respect resource con-

straints on the machines. It also satisfies Constraint (6.20c). Therefore, the optimal solution can

be converted to a feasible solution to (LP1). This implies the desired inequality. � �

Let Ci j and Cj denote the completion time of task (i, j) and the completion time of job j under

SynchPack-3, respectively. In the next step for the proof of Theorem 13, we aim to bound the total

volume of the first j jobs (according to ordering (6.21)) that are processed during the time interval

(0, 4C̃j] and subsequently use this result to bound Cj . Note that the list scheduling policy used

in SynchPack-3 is similar to the one used in SynchPack-1, without the extra consideration for

placement of fractions corresponding to the same task on different machines. Thus, The arguments

here are similar to the ones in Lemma 22. Nevertheless, we present them for completeness.

176

Let Ti j denote the first time that all the first j tasks complete under SynchPack-3 on machine

i. Recall that, as a result of Constraint (6.20c) and ordering in (6.21), C̃j ≥ C̃k ≥ pik for all k ≤ j

and all i ∈ M. Further, the height of machine i at time t restricted to the first j jobs is denoted

by hi j(t) and defined as the height of machine i at time t when only considering the first j jobs

according to the ordering (6.21). We have the following lemma.

Lemma 33. Consider any interval (T1,T2] for which T2 − T1 = 2C̃j and suppose T2 < Ti j for some

machine i. Then
T2∑

t=T1+1
hi j(t) > miC̃j (6.31)

�

Proof. Proof of Lemma 33. Without loss of generality, consider interval (0, 2C̃j] and assume

Ti j > 2C̃j . Let Si j(τ) denote the set of tasks (i, k), k ≤ j (according to ordering (6.21)), running

at time τ on machine i. We construct a bipartite graph G = (U ∪ V, E) as follows. With a

slight abuse of notations, for each time slot τ ∈ {1, . . . , 2C̃j} we consider a node τ, and define

U = {τ |1 ≤ τ ≤ C̃j}, and V = {τ |C̃j + 1 ≤ τ ≤ 2C̃j}. For any s ∈ U and t ∈ V , we add an edge

(s, t) if Si j(t) \ Si j(s) , �, i.e., there is a task (i, k), k ≤ j, running at time t that is not running

at time s. Note that existence of edge (s, t) implies that hi j(s) + hi j(t) > mi, because otherwise

SynchPack-3 would have scheduled the task(s) in Si j(t) \ Si j(s) (those that are running at t but not

at s) at time s.

Next, we show that a perfect matching of nodes in U to nodes in V always exists in G. The

existence of perfect matching then implies that any time slot s ∈ (0, C̃j] can be matched to a time

slot t ∈ (C̃j, 2C̃j] (one to one matching) and hi j(s) + hi j(t) > mi. To prove that such a perfect

matching always exists, we use Hall’s Theorem [175]. For any set of nodes Ũ ⊆ U, we define set

of its neighbor nodes as NŨ = {t ∈ V |∃ s ∈ Ũ : (s, t) ∈ E}. Hall’s Theorem states that a perfect

matching exists if and only if for any Ũ ⊆ U we have |Ũ | ≤ |NŨ |, where | · | denotes set cardinality

(size). To arrive at a contradiction, suppose there is a (non-empty) set of nodes Ũ ⊆ U such that

|Ũ | > |NŨ |. This implies that for a node t1 in V but not in the neighbor set of Ũ, i.e., t1 ∈ V \ NŨ ,

177

we should have

Si j(t1) \ Si j(s) = �, (6.32)

for all s, s ∈ Ũ. We now consider two cases:

Case (i): |V \ NŨ | = 1, which means |NŨ | = C̃j − 1. But we had assumed |Ũ | > |NŨ |, thus

|Ũ | = C̃j and Ũ = U. This implies that the tasks that are running at time t1, are also running in

the entire interval (0, C̃j]; therefore, the processing time of each of them is at least C̃j + 1 which

contradicts the fact that C̃j ≥ pik for all jobs k ≤ j, by Constraint (6.20c) and ordering in (6.21).

Case (ii): |V \NŨ | > 1. In addition to the previous node t1, consider another node t2 ∈ V \NŨ ,

and without loss of generality, assume t1 < t2. Similarly to (6.32), it holds that

Si j(t2) \ Si j(s) = �, (6.33)

for all s ∈ Ũ. We claim that Si j(t2) ⊆ Si j(t1), otherwise SynchPack-3 would have moved some

task (i, k) running at t2 and not at t1 to time t1 without violating machine i’s capacity. This is

feasible because, in view of (6.32) and (6.33), (Si j(t1) ∪ (i, k)) \ Si j(s) = � for all s ∈ Ũ. This

implies that SynchPack-3 has scheduled all tasks of the set Si j(t1) ∪ (i, k) simultaneously at some

time slot s ∈ (0, C̃j], which in turn implies that adding task (i, k) to time t1 is indeed feasible (the

total resource requirement of the tasks won’t exceed mi). Repeating the same argument for the

sequence of nodes t1, t2, . . . , t|V\NŨ |
, where t1 < t2 < · · · < t|V\NŨ |

, we conclude that there exists a

task that is running at all the times t, t ∈ V \NŨ , and at all the times s ∈ Ũ. Therefore, its processing

time is at least C̃j − |NŨ | + |Ũ | which is greater than C̃j by our assumption of |Ũ | > |NŨ |. This is

a contradiction with the fact that pik ≤ C̃j for all k ≤ j by Constraint (6.20c) and ordering (6.21).

Hence, we conclude that conditions of Hall’s Theorem hold and a perfect matching in the

constructed graph exists. As we argued, if s ∈ U is matched to t ∈ V , we have hi j(s) + hi j(t) > mi.

Hence it follows that
∑2C̃j

t=1 hi j(t) > miC̃j . �

�

Now we are ready to complete the proof of Theorem 13 regarding the performance of SynchPack-

178

3.

Proof. Proof of Theorem 13. Recall that Ci j and Cj denote completion time of task (i, j) and

completion time of job j under SynchPack-3, respectively. Also, Ti j denotes the first time that

all the first j tasks are completed under SynchPack-3 on machine i. Therefore, Ci j ≤ Ti j , by

definition.

Define i j to be the machine for which Cj = Cij j . If Ti j ≤ 4C̃j for all machines i ∈ M and all

jobs j ∈ J , we can then argue that
∑N

j=1 w jCj ≤ 4 × OPT, because

N∑
j=1

w jCj =

N∑
j=1

w jCij j ≤

N∑
j=1

w jTij j
(a)
≤ 4

N∑
j=1

w jC̃j
(b)
≤ 4

N∑
j=1

w jC?
j ,

where Inequality (a) follows from our assumption that Ti j ≤ 4C̃j , and Inequality (b) follows from

Lemma 32.

Now to arrive at a contradiction, suppose Ti j > 4C̃j for some machine i and job j. We then

have,
j∑

k=1
vik =

Ti j∑
t=1

hi j(t)
(c)
>

2C̃j∑
t=1

hi j(t) +
2C̃j∑
t=1

hi j(t + 2C̃j)

(d)
> miC̃j + miC̃j = 2miC̃j,

(6.34)

where Inequality (c) is due to the assumption that Ti j > 4C̃j , and Inequality (d) follows by applying

Lemma 33 twice, once for interval (0, 2C̃j] and once for interval (2C̃j, 4C̃j]. But (6.34) contradicts

Lemma 31. Hence,
∑N

j=1 w jCj ≤ 4 × OPT. � �

6.13 Supplementary Material Related to Simulations

6.13.1 Data Set

The data set is from a large Google cluster [151]. The original trace is over a month long

period. To keep things simpler, we extract multi-task jobs of production scheduling class that were

completed without any interruptions.In our experiments, we filter jobs and consider those with at

179

most 200 tasks, which constitute about 99% of all the jobs in the production class. Also, in order

to have reasonable traffic density on each machine (since otherwise the problem is trivial), we

consider a cluster with 200 machines and randomly map machines of the original set to machines

of this set. The final data set used for our simulations contains 7521 jobs with an average of 10 tasks

per job. We also extracted memory requirement of each task and its corresponding processing time

from the data set. In the data set, each job has a priority that represents its sensitivity to latency.

There are 9 different values of job priorities.

We evaluate the performance of algorithms in both offline and online settings. For the offline

setting, we consider the first 1000 jobs in the data set and assume all of these jobs are in the system

at time 0. For the online setting, all the 7521 jobs arrive according to the arrival times information

in the data set. Further, we consider 3 different cases for weight assignments: 1) All jobs have

equal weights, 2) Jobs are assigned random weights between 0 and 1, and 3) Jobs’ weights are

determined based on the job priority and class information in the data set.

6.13.2 Algorithms

1. PSRS [169]: Preemptive Smith Ratio Scheduling is a preemptive algorithm for the parallel

task scheduling problem (see Section 6.1.1) on a single machine. Modified Smith ratio of task (i, j)

is defined as wj

ai jpi j
=

wj

vi j
. Moreover, a constant ν = 0.836 is used in the algorithm. It also defines

T(a, t) to be the first time after t at which at least a amount of the machine’s capacity is available,

given the schedule at time t. On machine i, the algorithm first orders tasks based on the modified

Smith ratio (largest ratio first). It then removes the first task (i, j) in the list and as long as the task

needs at most 50% of the machine capacity mi, it schedules the task in a non-preemptive fashion

at the first time that available capacity of the machine is equal to or greater than the task’s size,

namely at T(ai j, t) where t is the current time and ai j is the size of task (i, j). However, if task

(i, j) requires more than half of the machine’s capacity, the algorithm determines the difference

T(ai j, t) −T(mi/2, t). If this time difference is less than the ratio pi j/ν, it schedules task (i, j) in the

same way as those tasks with smaller size; that is, (i, j) starts at T(ai j, t) and runs to completion.

180

Otherwise at time T(mi/2, t) + pi j/ν, it preempts all the tasks that do not finish before that time,

and starts task (i, j). After task (i, j) is completed, those preempted tasks are resumed.

Recall that N is the number of jobs and M is the number of machines in the system. The time

complexity of PSRS is O(N2) on each machine, as there are at most N tasks on each machine and

there is at most N preemptions for each of them. Considering all the machines, the time complexity

of PSRS is O(MN2).

For the online setting, upon arrival of each task, the algorithm preempts the schedule, updates

the list, and schedule the tasks in a similar fashion.

2. Tetris [145]: Tetris is a heuristic that schedules tasks on each machine according to an

ordering based on their scores (Section 6.1.1). Tetris was originally designed for the case that all

jobs have identical weights; therefore, we generalize it by incorporating weights in tasks’ scores.

For each task (i, j) at time t, its score is defined as si j = w j(ai j+
ε∑

i ai jpti j
), where ε =

∑
i

∑
j wjai j∑

j wj (
∑

i ai jpti j)
−1 ,

and pt
i j is the task’s remaining processing time at time t. Note that the first term in the score depends

on the task’ size (it favors a larger task if it fits in the machine’s remaining capacity), while the

second term prefers a task whose job’s remaining volume (based on the sum of its remaining tasks)

is smaller. On each machine, Tetris orders tasks based on their scores and greedily schedules tasks

according to the list as far as the machine capacity allows. We consider two versions of Tetris,

preemptive (Tetris-p) and non-preemptive (Tetris-np).

In Tetris-p, upon completion of a task (or arrival of a job, in the online setting), it preempts

the schedule, update the list, calculate scores based on updated values, and schedule the tasks in a

similar fashion. The time complexity of Tetris-p is O(N2 log(N)) on each machine, as there are at

most N preemptions, and at each preemption the algorithms needs to calculate and sort the scores.

The total complexity is then O(MN2 log(N)) considering all the machines.

In Tetris-np, the algorithm does not preempt the tasks that are running; however, calculates

scores for the remaining tasks based on updated values. Recall that we denote the maximum

number of tasks a job has by K . For Tetris-np, the time complexity to calculate and sort the scores

is O(KN M log(KN M)) which should be done at most KN times. Therefore, the time complexity

181

of Tetris-np is at most O(K2N2M log(KN M)).

To take the placement constraint into account, Tetris imposes a remote penalty to the computed

score to penalize use of remote resources. This remote penalty is suggested to be ≈ 10% by [145].

In simulations, we also simulated Tetris by penalizing scores by the factor α, and found out that

the performance is slightly better. Hence, we only report performance of Tetris with this remote

penalty.

3. JSQ-MW [163]: Join-the-Shortest-Queue routing with Max Weight scheduling (JSQ-MW)

is a non-preemptive algorithm in presence of data locality (Section 6.1.1). It assigns an arriving task

to the shortest queue among those corresponding to the ζ = 3 local servers with its input data and

the remote queue. When a server is available, it either process a task from its local queue or from

the remote queue, where the decision is made based on a MaxWeight scheme. We further combine

JSQ-MW with the greedy packing scheme so it can pack and schedule tasks non-preemptively in

each server.

To evaluate complexity of JSQ-MW, we note that in the routing step, we need to compare ζ +1

queue lengths for each task. Therefore, the complexity of this step is O(ζKN). In the scheduling

step, for each available machine, we need to compare its queue and the remote queue. Thus, the

complexity of the scheduling step is O(ζKN) as an availability of a machine is checked upon

completion time of a task. Hence, the overall complexity is O(KN) if ζ is constant, and O(KN M)

if ζ = Ω(M).

4. SynchPack-2 and SynchPack-3: These are our non-preemptive and preemptive algo-

rithms as described in Section 6.4 and Section 6.5. The complexity of our algorithms is mainly

dominated by solving their corresponding LPs. While (LP3) has reasonable size and can be solved

quickly (see Section 6.8 for the details), (LP2) requires more memory for large instances. In this

case, to expedite computation, besides the 3 randomly chosen local machines that can schedule a

task, we consider 10 other machines (5% of the machines, instead of all the machines) that can

process the task in an α times larger processing time. We choose these 10 machines randomly as

well. Note that this may degrade the performance of our algorithm, nevertheless, as will see, they

182

still significantly outperform the past algorithms. See Section 6.8 for a copmrehensive discussion

on time complexity of these algorithms.

A natural extension of our algorithms to online setting is as follows. We choose a parameter

τ that is tunable. We divide time into time intervals of length τ. For the preemptive case, at the

beginning of each interval, we preempt the schedule, update the processing times, and run the

offline algorithm on a set of jobs, consisting of jobs that are not scheduled yet completely and

those that arrived in the previous interval. In the non-preemptive case, tasks on the boundary of

intervals are processed non-preemptively, i.e., we let the running tasks (according to the previ-

ously computed schedule) finish, then apply the non-preemptive offline algorithm on the updated

list of jobs as in the preemptive online case, and proceed with the new schedule. Note that a larger

value of τ reduces the complexity of the online algorithm; but it also decreases the overall per-

formance. We use an adaptive choice of τ to improve the performance of our online algorithm,

starting from smaller value of τ. In our simulations, we choose the length of the i-th interval, τi,

as τi = τ0/(1 + γ × exp(−βi)), i = 1, 2, · · · , for some constants γ and β. We choose τ0 = 3 × 102

seconds, which is 5 times greater than the average inter-arrival time of jobs, and γ = 50 and β = 3.

6.14 Pseudocodes of (6 + ε)-Approximation Algorithm

A pseudocode for our preemptive (6+ ε)-approximation algorithm SynchPack-1 described in

Section 6.3 is given in Algorithm 11. Line 1 in Algorithm 11 corresponds to Step 1 in Section 6.3,

lines 2-18 correspond to Step 2, construction of schedule S, and lines 19-20 describe Slow-Motion

and construction of schedule S̄ in Step 3.

6.15 Pseudocode of 24-Approximation Algorithm

Algorithm 12 provides a pseudocode for our non-preemptive algorithm, SynchPack-2, de-

scribed in Section 6.4. Line 1 in Algorithm 12 corresponds to Step 1 in SynchPack-2 and lines

2 corresponds to Step 2, namely, construction of preemptive schedule and applying Slow-Motion.

Lines 3-11 describes the procedure of constructing a non-preemptive schedule using S̄ in Step 3.

183

Algorithm 13 describes the mapping procedure which is used as a subroutine in Algorithm 12.

6.16 Pseudocodes of (4)-Approximation Algorithm

Algorithm 14 provides a pseudocode for SynchPack-3, our preemptive 4-approximation al-

gorithm, described in Section 6.5. The algorithm is a simple list scheduling based on the ordering

obtained from (LP3).

184

Algorithm 11 Preemptive Scheduling Algorithm SynchPack-1
Given a set of machinesM = {1, ..., M}, a set of jobs J = {1, ..., N}, and weights wj , j ∈ J :

1: Solve (LP1) and denote its optimal solution by { z̃il
k j

; j ∈ J, k ∈ Kj, i ∈ M, l ∈ {0, 1, . . . , L}}.
2: List non-zero task fractions (i.e., tasks (k, j) with size ai j and non-zero fractional duration z̃il

k j
pi
k j

) such that
task fraction (k, j, i, l) appears before task fraction (k ′, j ′, i′, l ′), if l < l ′. Task fractions within each interval and
corresponding to different machines are ordered arbitrarily.

3: Let Q be size of the list, i.e., the total number of task fractions in the list, and set t = 0.
4: while Q > 0, do
5: For each machine i ∈ M, set hi(t) to be the height of machine i at t.
6: Set q = q′ = 1.
7: while q′ ≤ Q, do
8: Denote the q-th task fraction in the list by (kq, jq, iq, lq).
9: if hiq (t) + akq jq ≤ miq and no fraction of task (kq, jq) is running in any other machine at t, then

10: Schedule task fraction (kq, jq, iq, lq) to run on machine iq and remove it from the list.
11: Update hiq (t) ← hiq (t) + akq jq .
12: else
13: Update q← q + 1.
14: end if
15: Update q′← q′ + 1.
16: end while
17: Process the task fractions that were scheduled in line 9 and denote the first time a task fraction completes

by t ′.
18: Let l? be the corresponding interval of the first task fraction in the list, i.e., the interval with minimum value

that has some unscheduled task fraction.
19: for Each task fraction (k, j, i, l) in the schedule, do
20: Update z̃il

k j
← z̃il

k j
− (t ′ − t)/pi

k j
, where t ′ − t is the amount of time it gets processed.

21: if z̃il
k j
> 0 and l > l?, then

22: Add the task fraction (k, j, i, l) back to the list such that it appears before task fraction (k ′, j ′, i′, l ′),
if l < l ′.

23: end if
24: end for
25: Update the time t ← t ′, and Q to be size of the updated list.
26: end while
27: Denote the obtained schedule by S. Choose λ randomly from (0, 1] with pdf f (λ) = 2λ.
28: Construct schedule S̄ by applying Slow-Motion with parameter λ to S. Process jobs according to S̄.

185

Algorithm 12 Non-Preemptive Scheduling Algorithm SynchPack-2
Given a set of machinesM = {1, ..., M}, a set of jobs J = {1, ..., N}, and weights wj , j ∈ J :

1: Solve (LP2) and denote its optimal solution by { z̃il
k j
, j ∈ J, k ∈ Kj, i ∈ M, 0 ≤ l ≤ L}.

2: Apply Slow-Motion by choosing λ randomly from (0, 1] with pdf f (λ) = 2λ, and define z̄il
k j

, as in (6.15).
3: Run Algorithm 13 and output list of tasks that are mapped to each machine-interval (i, l), i ∈ M, l ≤ L.
4: for Each machine i ∈ M, do
5: Set t = 0.
6: Set hi(0) = 0 to be the height of machine i at time 0.
7: for Each interval l, 0 ≤ l ≤ L, do
8: List the task. Let Q be the total number of tasks in the list.
9: while Q > 0, do

10: Set q = q′ = 1.
11: while q′ ≤ Q, do
12: Denote the q-th task in the list by (kq, jq).
13: if hi(t) + akq jq ≤ mi , then
14: Schedule task (kq, jq), remove it from the list, and update hi(t) ← hi(t) + ai jq .
15: else
16: Update q← q + 1.
17: end if
18: Update q′← q′ + 1.
19: end while
20: Process the tasks that were scheduled in line 14 until a task some task completes and denote this

time by t ′.
21: Update pi

k j
← pi

k j
− (t ′ − t) for the scheduled tasks.

22: if pi
k j
= 0, then

23: Update hi(t) ← hi(t) − ai jq .
24: end if
25: Update the time t ← t ′, and Q to be size of the updated list.
26: end while
27: end for
28: end for

186

Algorithm 13 Procedure of Mapping Tasks to Intervals
Given a set of jobs J = {1, ..., N}, with task volumes vi

k j
on machine i, and values of z̄il

k j
:

1: Construct bipartite graph Gi = (U ∪ V, E) as follows:
2: For each task (k, j), j ∈ J, k ∈ Kj , add a node in U.
3: for Each machine i, i ∈ M, do
4: Order and re-index tasks such that: vi

k1 j1
≥ vi

k2 j2
≥ . . . vi

kNi
jNi

> 0.
5: for Each interval l, l ≤ L, do
6: Consider dz̄ile = d

∑
j∈J

∑
k∈K j

z̄il
k j
e consecutive nodes in Vi , and set W icl

l
= 0 for 1 ≤ cl ≤ dz̄ile. Also

set cl = 1.
7: for q = 1 to Ni , do
8: R = z̄il

k j
,

9: while R , 0, do
10: Add an edge between the node (kq, jq) in set U and node cl ∈ Vi .
11: Assign weight wilc

k j
= min{R, 1 −Wcl

l
}.

12: Update R← R − wilc
k j

.
13: Update Wcl

l
← Wcl

l
+ wilc

k j

14: if Wcl
l
= 1, then

15: cl = cl + 1.
16: end if
17: end while
18: end for
19: end for
20: end for
21: Set V = ∪i∈MVi .
22: Find an integral matching in G on the nonzero edges with value | ∪j∈J Kj | =

∑
j∈J

∑
k∈K j

∑L
l=0 z̄il

k j
.

187

Algorithm 14 Preemptive Scheduling Algorithm SynchPack-3
Given a set of machinesM = {1, ..., M}, a set of jobs J = {1, ..., N}, and weights wj , j ∈ J :

1: Solve (LP1) and denote its optimal solution by {C̃j ; j ∈ J}.
2: Order and re-index jobs such that C̃1 ≤ C̃2 ≤ ... ≤ C̃N .

3: for Each machine i ∈ M, do
4: List tasks of machine i respecting the ordering in line 2. Let Q be the size of the list and set t = 0.
5: while Q > 0, do
6: Set hi(t) to be the height of machine i at t.
7: Set q = q′ = 1.
8: while q′ ≤ Q, do
9: Denote the q-th task in the list by (i, jq)

10: if hi(t) + ai jq ≤ mi , then
11: Schedule task (i, jq), remove it from the list, and update hi(t) ← hi(t) + ai jq .
12: else
13: Update q← q + 1.
14: end if
15: Update q′← q′ + 1.
16: end while
17: Process the tasks that were scheduled in line 11 until some task completes and denote this time by t ′.
18: Update pi j ← pi j − (t ′ − t) for the scheduled tasks.
19: if pi j > 0 and ∃ a task with j ′ < j in the list, then
20: Add the task (i, j) back to the list respecting the ordering in line 2
21: end if
22: Update the time t ← t ′, and Q to be size of the updated list.
23: end while
24: end for

188

Chapter 7: Conclusion and Discussion

In this dissertation, we proposed various theoretically sound algorithms for solving different

scheduling problems in large-scaled data centers. For each algorithm, we proved that it achieves

a performance objective related to the problem model. For many cases, what we offered is the

algorithm’s performance in the worst case scenario. We also evaluated all the proposed algorithms

through extensive simulations. Besides, for each algorithm, we studied the algorithm’s time com-

plexity or how much overhead it adds to the system. We showed that in many cases, the proposed

algorithm is computationally efficient. In the rest of this section, we provide summary of our

results and discuss some future research direction.

7.1 Summary of Results

In what follows, we summarize the contributions of each chapter followed by some practical

considerations:

• Chapter 2: This chapter presented a simple myopic algorithm that dynamically adjusts the link

weights as a function of the link congestions and places any newly generated flow on a least

weight path in the network, with no splitting/migration of existing flows. We demonstrated both

theoretically and experimentally that this myopic algorithm has a good load balancing perfor-

mance. In particular, we proved that the algorithm asymptotically minimizes a network cost and

established the relationship between the network cost and the corresponding weight construct.

Although our theoretical result is an asymptotic result, our experimental results show that the

algorithm in fact performs very well under a wide range of traffic conditions and different data

center networks. While the algorithm has low complexity, the real implementation depends on

how fast the weight updates and least weight paths can be computed in practical data centers

189

(e.g., based on SDN). One possible way to improve the computation time-scale is to perform

the computation periodically or only for long flows, while using the previously computed least

weight paths for short flows or between the periodic updates. Another possibility is to use the

randomized versions of our myopic algorithm with an optimized parameter k which only takes

a small random subset of available paths into account and finds the shortest path among them.

While this algorithm has much lower complexity, it performs very well in structured topologies

such as FatTree for small k. Finally, we would like to note that our myopic algorithm and its

randomized versions can be directly applied to scheduling flowlets instead of scheduling flows,

which can give higher rate/granularity of flows [18, 48].

• Chapter 3: In this chapter, we studied the problem of scheduling of coflows with release dates

to minimize their total weighted completion time, and proposed an algorithm with improved

approximation ratio. This algorithm is currently the state-of-the-art approximation algorithm for

coflow scheduling. We also conducted extensive experiments to evaluate the performance of our

algorithm, compared with three algorithms proposed before, using both real and synthetic traffic

traces. Our experimental results show that our algorithm in fact performs very close to optimal.

• Chapter 4: In this chapter, we proposed algorithms for scheduling coflows of multi-stage jobs

in order to minimize their makespan or total weighted completion time. In particular, our algo-

rithms for total weighted completion time minimization provide significant improvements over

the past known result for this problem. Moreover, our simulation results based on real traffic

traces show that indeed our algorithm improves the total jobs’ completion times in practice as

well.

• Chapter 5: In this chapter, we studied max-min fair scheduling of multi-task jobs. We showed

that it is NP-hard to find a schedule in which a sublinear number of jobs conform to their optimal

max-min fair solution. We further used this result to show that some other scheduling problems

considered in the literature of distributed computing are NP-hard, that were not proved before.

We then defined two notions of approximation and developed approximation algorithms, using

190

dynamic programming and random perturbation of tasks’ processing times, with provable guar-

antees under the two approximation notions. Our experimental results show that our algorithms

in fact perform very well under real traffic, in terms of both fairness and average performance.

• Chapter 6: We studied the problem of scheduling jobs, each job with multiple resource con-

strained tasks, in a cluster of machines. We proposed the first constant-approximation algorithms

for minimizing the total weighted completion time of such jobs. The model and analysis in our

setting of tasks with packing, synchronization, and placement constraints are new. Note that the

approximation results are upper bounds on the algorithms’ performance, and in fact our simula-

tion results showed that the approximation ratios are very close to 1 in practice. As we showed,

applying our simple greedy packing to schedule tasks mapped to each interval in SynchPack-

2, provides a tight bound on the total volume of tasks and its relation to the associated linear

program. Therefore, we cannot improve the final result by replacing this step with more intelli-

gent bin packing algorithms like BestFit [178]. Although, in practice, applying such bin packing

schemes can give a better performance. Further, throughout the chapter we assumed that tasks’

resource requirements and durations are known to the scheduler. This can be justified by exis-

tence of well-established techniques that can provide estimates of tasks’ resource requirements

and processing times to the scheduler, based on the history of prior runs for recurring jobs, using

tasks’ peak demands, or measuring statistics from the first few tasks in each job, see [145, 146,

179, 180].

7.2 Future Directions

We now briefly describe some topics for future research based on the open problems that were

emerged in this dissertation or as a result of generalizing the models we used.

• Chapter 2: The theoretical analysis of the randomized versions of our myopic algorithm can be

an interesting open problem for future work.

• Chapter 3: As future work, other realistic constraints such as deadline constraints need to be

191

considered for coflow scheduling problem. Also, theoretical and experimental evaluation of the

performance of the proposed online algorithm is left for future work. While we modeled the

data center network as a giant non-blocking switch (thus focusing on rate allocation), the routing

of coflows in the data center network is also of great importance for achieving the quality of

service.

• Chapter 4: The problem of multi-stage job scheduling is practically well-motivated, involve

new challenges, and deserves further study. A few future research problems in this regard are

the following. General DAGs: As we showed through an example, it is not possible for an ap-

proximation algorithm to provide a solution that is within o(
√
µ) of the two simple lower bounds.

Still, an interesting open problem is to improve the approximation algorithms for makespan and

total weighted completion time in this case. De-randomization: Our algorithm for single job

makespan minimization for rooted tree involves a random component (random choices of delays

in Step 1 in DMA-SRT). There exists well-established techniques to de-randomized these steps

and convert the algorithms to deterministic ones. For instance, given a set of path jobs, one ap-

proach for selecting good delays is to frame the problem as a vector selection problem and then

apply techniques developed in [115, 116, 104].

• Chapter 5: Our theoretical guarantees for approximation algorithms in this chapter were con-

cerned with equal utility functions. The analysis for unequal utility functions can be an inter-

esting topic for a future work. Also we assumed machines are homogeneous. Incorporating

inhomogeneous machines can be another future research.

• Chapter 6: Improving the performance bound of 24 requires a more careful and possibly dif-

ferent analysis. Further improvement of the result is a great topic for a future work. Extension

of our model to capture multi-dimensional task resource requirements and analysis of online

algorithms for our problem are also interesting and challenging topics for future work.

192

References

[1] Kai Chen et al. “Survey on routing in data centers: insights and future directions”. In: IEEE
network 25.4 (2011).

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A scalable, commodity
data center network architecture”. In: ACM SIGCOMM Computer Communication Review
38.4 (2008), pp. 63–74.

[3] Arjun Singh et al. “Jupiter rising: A decade of clos topologies and centralized control
in Google’s datacenter network”. In: ACM SIGCOMM Computer Communication Review
45.4 (2015), pp. 183–197.

[4] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM. Vol. 51. 1. ACM, 2008, pp. 107–113.

[5] Michael Isard et al. “Dryad: distributed data-parallel programs from sequential building
blocks”. In: ACM SIGOPS Operating Systems Review. Vol. 41. 3. ACM. 2007, pp. 59–72.

[6] Michael Mitzenmacher. “The power of two choices in randomized load balancing”. In:
IEEE Transactions on Parallel and Distributed Systems 12.10 (2001), pp. 1094–1104.

[7] Mosharaf Chowdhury and Ion Stoica. “Coflow: A networking abstraction for cluster ap-
plications”. In: Proceedings of the 11th ACM Workshop on Hot Topics in Networks. ACM.
2012, pp. 31–36.

[8] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. “Efficient coflow scheduling with
Varys”. In: ACM SIGCOMM Computer Communication Review. Vol. 44. 4. ACM. 2014,
pp. 443–454.

[9] Bingchuan Tian et al. “Scheduling Coflows of Multi-stage Jobs to Minimize the Total
Weighted Job Completion Time”. In: IEEE INFOCOM 2018. IEEE. 2018, pp. 864–872.

[10] Mosharaf Chowdhury and Ion Stoica. “Efficient coflow scheduling without prior knowl-
edge”. In: ACM SIGCOMM Computer Communication Review. Vol. 45. 4. 2015, pp. 393–
406.

[11] Software Foundation Apache. Apache Hadoop. http://hadoop.apache.org. 2018.

[12] Software Foundation Apache. Apache Spark. https://spark.apache.org/docs/
latest/index.html. 2018.

193

http://hadoop.apache.org
https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/docs/latest/index.html

[13] Ganesh Ananthanarayanan et al. “Disk-locality in datacenter computing considered irrele-
vant.” In: HotOS. Vol. 13. 2011, pp. 12–12.

[14] Matei Zaharia et al. “Spark: Cluster computing with working sets.” In: HotCloud (2010).

[15] Theophilus Benson et al. “MicroTE: Fine grained traffic engineering for data centers”. In:
Proceedings of the 7th Conference on Emerging Networking Experiments and Technolo-
gies. ACM. 2011, p. 8.

[16] Mohammad Al-Fares et al. “Hedera: Dynamic Flow Scheduling for Data Center Net-
works.” In: NSDI. Vol. 10. 2010, pp. 19–19.

[17] Costin Raiciu et al. “Improving datacenter performance and robustness with multipath
TCP”. In: ACM SIGCOMM Computer Communication Review 41.4 (2011), pp. 266–277.

[18] Srikanth Kandula et al. “Dynamic load balancing without packet reordering”. In: ACM
SIGCOMM Computer Communication Review 37.2 (2007), pp. 51–62.

[19] Albert Greenberg et al. “VL2: A scalable and flexible data center network”. In: ACM SIG-
COMM Computer Communication Review. Vol. 39. 4. 2009, pp. 51–62.

[20] Chuanxiong Guo et al. “BCube: A high performance, server-centric network architecture
for modular data centers”. In: ACM SIGCOMM Computer Communication Review 39.4
(2009), pp. 63–74.

[21] Milan Bradonjić, Iraj Saniee, and Indra Widjaja. “Scaling of capacity and reliability in data
center networks”. In: ACM SIGMETRICS Performance Evaluation Review 42.2 (2014),
pp. 46–48.

[22] Ankit Singla et al. “Jellyfish: Networking Data Centers Randomly.” In: NSDI. Vol. 12.
2012, pp. 17–17.

[23] Srikanth Kandula et al. “The nature of data center traffic: Measurements & analysis”. In:
Proceedings of the 9th ACM SIGCOMM Conference On Internet Measurement Confer-
ence. 2009, pp. 202–208.

[24] Abhishek Dixit et al. “On the impact of packet spraying in data center networks”. In:
Proceedings of IEEE, INFOCOM, 2013, pp. 2130–2138.

[25] Shimon Even, Alon Itai, and Adi Shamir. “On the complexity of time table and multi-
commodity flow problems”. In: 16th Annual Symposium on Foundation of Computer Sci-
ence. IEEE. 1975, pp. 184–193.

194

[26] Geoffrey M Guisewite and Panos M Pardalos. “Minimum concave-cost network flow prob-
lems: Applications, complexity, and algorithms”. In: Annals of Operations Research 25.1
(1990), pp. 75–99.

[27] Yefim Dinitz, Naveen Garg, and Michel X Goemans. “On the single-source unsplittable
flow problem”. In: Foundations of Computer Science, 1998. Proceedings. 39th Annual
Symposium on. IEEE. 1998, pp. 290–299.

[28] Radhika Niranjan Mysore et al. “Portland: A scalable fault-tolerant layer 2 data center
network fabric”. In: ACM SIGCOMM Computer Communication Review. Vol. 39. 4. 2009,
pp. 39–50.

[29] Jiaxin Cao et al. “Per-packet load-balanced, low-latency routing for clos-based data center
networks”. In: Proceedings of the 9th ACM Conference on Emerging Networking Experi-
ments and Technologies. ACM. 2013, pp. 49–60.

[30] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. “Understanding network failures
in data centers: Measurement, analysis, and implications”. In: ACM SIGCOMM Computer
Communication Review. Vol. 41. 4. 2011, pp. 350–361.

[31] Marco Chiesa, Guy Kindler, and Michael Schapira. “Traffic engineering with equal-cost-
multipath: An algorithmic perspective”. In: IEEE/ACM Transactions on Networking 25.2
(2017), pp. 779–792.

[32] Siddhartha Sen et al. “Scalable, optimal flow routing in datacenters via local link balanc-
ing”. In: Proceedings of the 9th ACM Conference on Emerging Networking Experiments
and Technologies. 2013, pp. 151–162.

[33] Joe Wenjie Jiang et al. “Joint VM placement and routing for data center traffic engineer-
ing”. In: Proceedings of IEEE, INFOCOM, 2012, pp. 2876–2880.

[34] Keqiang He et al. “Presto: Edge-based load balancing for fast datacenter networks”. In:
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communi-
cation, pp. 465–478.

[35] Robert Gallager. “A minimum delay routing algorithm using distributed computation”. In:
IEEE transactions on communications 25.1 (1977), pp. 73–85.

[36] Nithin Michael and Ao Tang. “Halo: Hop-by-hop adaptive link-state optimal routing”. In:
IEEE/ACM Transactions on Networking (TON) 23.6 (2015), pp. 1862–1875.

[37] Dahai Xu, Mung Chiang, and Jennifer Rexford. “Link-state routing with hop-by-hop for-
warding can achieve optimal traffic engineering”. In: IEEE/ACM Transactions on network-
ing 19.6 (2011), pp. 1717–1730.

195

[38] Robert W Rosenthal. “A class of games possessing pure-strategy Nash equilibria”. In:
International Journal of Game Theory 2.1 (1973), pp. 65–67.

[39] Noam Nisan et al. Algorithmic game theory. Vol. 1. Cambridge University Press Cam-
bridge, 2007.

[40] Tim Roughgarden. Selfish routing and the price of anarchy. Vol. 174. MIT press Cam-
bridge, 2005.

[41] Peter Key, Laurent Massoulié, and Don Towsley. “Path selection and multipath congestion
control”. In: INFOCOM 2007. 26th IEEE International Conference on Computer Commu-
nications. IEEE. IEEE. 2007, pp. 143–151.

[42] John Glen Wardrop. “ROAD PAPER. SOME THEORETICAL ASPECTS OF ROAD TRAF-
FIC RESEARCH.” In: Proceedings of the institution of civil engineers 1.3 (1952), pp. 325–
362.

[43] David Applegate and Edith Cohen. “Making intra-domain routing robust to changing and
uncertain traffic demands: Understanding fundamental tradeoffs”. In: Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for computer
communications. ACM. 2003, pp. 313–324.

[44] Hao Wang et al. “COPE: traffic engineering in dynamic networks”. In: ACM SIGCOMM
Computer Communication Review. Vol. 36. 4. ACM. 2006, pp. 99–110.

[45] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. “A practical algorithm
for constructing oblivious routing schemes”. In: Proceedings of the fifteenth annual ACM
symposium on Parallel algorithms and architectures. ACM. 2003, pp. 24–33.

[46] Nick McKeown et al. “OpenFlow: Enabling innovation in campus networks”. In: ACM
SIGCOMM Computer Communication Review 38.2 (2008), pp. 69–74.

[47] Martin Casado et al. “Rethinking enterprise network control”. In: IEEE/ACM Transactions
on Networking (TON) 17.4 (2009), pp. 1270–1283.

[48] Mohammad Alizadeh et al. “CONGA: Distributed Congestion-Aware Load Balancing for
Datacenters”. In: Proceedings of the 2014 ACM conference on SIGCOMM. 2014, pp. 503–
514.

[49] Mehrnoosh Shafiee and Javad Ghaderi. “A simple congestion-aware algorithm for load bal-
ancing in datacenter networks”. In: Computer Communications, IEEE INFOCOM 2016-
The 35th Annual IEEE International Conference on. IEEE. 2016, pp. 1–9.

196

[50] Mehrnoosh Shafiee and Javad Ghaderi. “A simple congestion-aware algorithm for load bal-
ancing in datacenter networks”. In: IEEE/ACM Transactions on Networking 25.6 (2017),
pp. 3670–3682.

[51] Alexander L Stolyar. “An infinite server system with general packing constraints”. In:
Operations Research 61.5 (2013), pp. 1200–1217.

[52] Marco Chiesa, Guy Kindler, and Michael Schapira. “Traffic Engineering with Equal-Cost-
MultiPath: An Algorithmic Perspective”. In: Proceedings of IEEE, INFOCOM, 2014, pp. 1590–
1598.

[53] Bernard Fortz and Mikkel Thorup. “Internet traffic engineering by optimizing OSPF weights”.
In: Proceeding of 19th annual joint conference of the IEEE computer and communications
societies. INFOCOM 2000. Vol. 2, pp. 519–528.

[54] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[55] Deniz Ersoz, Mazin S Yousif, and Chita R Das. “Characterizing network traffic in a cluster-
based, multi-tier data center”. In: ICDCS’07. 27th International Conference on Distributed
Computing Systems, 2007. IEEE, pp. 59–59.

[56] Michael Grant and Stephen Boyd. CVX: Matlab Software for Disciplined Convex Program-
ming, version 2.1. http://cvxr.com/cvx. Mar. 2014.

[57] Josep Díaz, Maria J Serna, and Nicholas C Wormald. “Bounds on the bisection width for
random d-regular graphs”. In: Theoretical Computer Science 382.2 (2007), pp. 120–130.

[58] Béla Bollobás. Random graphs. Springer, 1998.

[59] Alexander L Stolyar and Yuan Zhong. “Asymptotic optimality of a greedy randomized
algorithm in a large-scale service system with general packing constraints”. In: Queueing
Systems 79.2 (2015), pp. 117–143.

[60] Javad Ghaderi, Yuan Zhong, and R Srikant. “Asymptotic optimality of BestFit for stochas-
tic bin packing”. In: ACM SIGMETRICS Performance Evaluation Review 42.2 (2014),
pp. 64–66.

[61] Patrick Billingsley. Convergence of probability measures. 2nd. John Wiley & Sons, 1999.

[62] Stewart N Ethier and Thomas G Kurtz. Markov processes: Characterization and conver-
gence. Vol. 282. John Wiley & Sons, 2009.

[63] Konstantin Shvachko et al. “The hadoop distributed file system”. In: 2010 IEEE 26th sym-
posium on mass storage systems and technologies (MSST). IEEE. 2010, pp. 1–10.

197

http://cvxr.com/cvx

[64] Dhruba Borthakur. “The hadoop distributed file system: Architecture and design”. In:
Hadoop Project Website 11.2007 (2007), p. 21.

[65] Fahad R Dogar et al. “Decentralized task-aware scheduling for data center networks”. In:
ACM SIGCOMM Computer Communication Review. Vol. 44. 4. ACM. 2014, pp. 431–442.

[66] NM Mosharaf Kabir Chowdhury. Coflow: A networking abstraction for distributed data-
parallel applications. University of California, Berkeley, 2015.

[67] Yangming Zhao et al. “RAPIER: Integrating routing and scheduling for coflow-aware data
center networks”. In: 2015 IEEE Conference on Computer Communications (INFOCOM).
IEEE. 2015, pp. 424–432.

[68] Mosharaf Chowdhury et al. “Near Optimal Coflow Scheduling in Networks”. In: SPAA
’19. ACM, 2019, pp. 123–134.

[69] Zhen Qiu, Cliff Stein, and Yuan Zhong. “Minimizing the total weighted completion time
of coflows in datacenter networks”. In: Proceedings of the 27th ACM symposium on Par-
allelism in Algorithms and Architectures. ACM. 2015, pp. 294–303.

[70] Samir Khuller and Manish Purohit. “Brief Announcement: Improved Approximation Al-
gorithms for Scheduling Co-Flows”. In: Proceedings of the 28th ACM Symposium on Par-
allelism in Algorithms and Architectures. ACM. 2016, pp. 239–240.

[71] Mehrnoosh Shafiee and Javad Ghaderi. “Scheduling coflows in datacenter networks: Im-
proved bound for total weighted completion time”. In: ACM SIGMETRICS Performance
Evaluation Review 45.1 (2017), pp. 29–30.

[72] Kevin Jurcik. “Open Shop Scheduling to Minimize Makespan”. In: Department of Mathe-
matical Sciences Lakehead University Thunder Bay, Ontario (2009).

[73] Yoo-Ah Kim. “Data migration to minimize the total completion time”. In: Journal of Al-
gorithms 55.1 (2005), pp. 42–57.

[74] Leslie A Hall, David B Shmoys, and Joel Wein. “Scheduling to minimize average comple-
tion time: Off-line and on-line algorithms”. In: SODA. Vol. 96. 1996, pp. 142–151.

[75] Monaldo Mastrolilli et al. “Minimizing the sum of weighted completion times in a concur-
rent open shop”. In: Operations Research Letters 38.5 (2010), pp. 390–395.

[76] Saba Ahmadi et al. “On Scheduling Coflows”. In: International Conference on Integer
Programming and Combinatorial Optimization. Springer. 2017, pp. 13–24.

198

[77] Mehrnoosh Shafiee and Javad Ghaderi. “Brief Announcement: A New Improved Bound
for Coflow Scheduling”. In: Proceedings of the 29th ACM symposium on Parallelism in
Algorithms and Architectures. ACM. 2017.

[78] Mehrnoosh Shafiee and Javad Ghaderi. “An improved bound for minimizing the total
weighted completion time of coflows in datacenters”. In: IEEE/ACM Transactions on Net-
working (TON) 26.4 (2018), pp. 1674–1687.

[79] Hans Kellerer, Thomas Tautenhahn, and Gerhard Woeginger. “Approximability and non-
approximability results for minimizing total flow time on a single machine”. In: SIAM
Journal on Computing 28.4 (1999), pp. 1155–1166.

[80] Michael Pinedo. Scheduling. Springer, 2015.

[81] Linus Schrage. “Letter to the editor—a proof of the optimality of the shortest remaining
processing time discipline”. In: Operations Research 16.3 (1968), pp. 687–690.

[82] Sushant Sachdeva and Rishi Saket. “Optimal inapproximability for scheduling problems
via structural hardness for hypergraph vertex cover”. In: Computational Complexity (CCC),
2013 IEEE Conference on. IEEE. 2013, pp. 219–229.

[83] CN Potts. “An algorithm for the single machine sequencing problem with precedence con-
straints”. In: Combinatorial Optimization II. Springer, 1980, pp. 78–87.

[84] Rajiv Gandhi et al. “Improved bounds for scheduling conflicting jobs with minsum crite-
ria”. In: ACM Transactions on Algorithms (TALG) 4.1 (2008), p. 11.

[85] James Renegar. “A polynomial-time algorithm, based on Newton’s method, for linear pro-
gramming”. In: Mathematical Programming 40.1-3 (1988), pp. 59–93.

[86] Zhen Qiu, Clifford Stein, and Yuan Zhong. “Experimental Analysis of Algorithms for
Coflow Scheduling”. In: International Symposium on Experimental Algorithms. Springer.
2016, pp. 262–277.

[87] Rayadurgam Srikant. The mathematics of Internet congestion control. Springer Science &
Business Media, 2012.

[88] Dritan Nace and Michal Pióro. “Max-min fairness and its applications to routing and load-
balancing in communication networks: a tutorial”. In: IEEE Communications Surveys &
Tutorials 10.4 (2008).

[89] Shouxi Luo et al. “Towards Practical and Near-optimal Coflow Scheduling for Data Center
Networks”. In: (2016).

[90] Apache Hadoop. http://hadoop.apache.org. 2019.

199

http://hadoop.apache.org

[91] Bingchuan Tian et al. “Scheduling dependent coflows to minimize the total weighted job
completion time in datacenters”. In: Computer Networks 158 (2019), pp. 193–205.

[92] Apache Hive. https://hive.apache.org. 2019.

[93] Saksham Agarwal et al. “Sincronia: near-optimal network design for coflows”. In: Pro-
ceedings of the 2018 Conference of the ACM Special Interest Group on Data Communica-
tion. ACM. 2018, pp. 16–29.

[94] Sungjin Im et al. “Matroid Coflow Scheduling.” In: ICALP. 2019.

[95] Hamidreza Jahanjou, Erez Kantor, and Rajmohan Rajaraman. “Asymptotically optimal ap-
proximation algorithms for coflow scheduling”. In: Proceedings of the 29th ACM Sympo-
sium on Parallelism in Algorithms and Architectures. 2017, pp. 45–54.

[96] Yang Liu et al. “Scheduling Dependent Coflows with Guaranteed Job Completion Time”.
In: 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE. 2016, pp. 2109–2115.

[97] Maurice Queyranne and Andreas S Schulz. “Approximation bounds for a general class
of precedence constrained parallel machine scheduling problems”. In: SIAM Journal on
Computing 35.5 (2006), pp. 1241–1253.

[98] Shi Li. “Scheduling to minimize total weighted completion time via time-indexed linear
programming relaxations”. In: SIAM Journal on Computing 0 (2020), FOCS17–409.

[99] Robert Grandl et al. “GRAPHENE: Packing and dependency-aware scheduling for data-
parallel clusters”. In: OSDI’16. 2016, pp. 81–97.

[100] Yu-Kwong Kwok and Ishfaq Ahmad. “Static scheduling algorithms for allocating directed
task graphs to multiprocessors”. In: ACM Computing Surveys (CSUR) 31.4 (1999), pp. 406–
471.

[101] Ronald L. Graham. “Bounds on multiprocessing timing anomalies”. In: SIAM journal on
Applied Mathematics 17.2 (1969), pp. 416–429.

[102] Yu-Kwong Kwok and Ishfaq Ahmad. “Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors”. In: IEEE transactions on parallel
and distributed systems 7.5 (1996), pp. 506–521.

[103] Edward Grady Coffman and John L Bruno. Computer and job-shop scheduling theory.
John Wiley & Sons, 1976.

[104] David B Shmoys, Clifford Stein, and Joel Wein. “Improved approximation algorithms for
shop scheduling problems”. In: SIAM Journal on Computing 23.3 (1994), pp. 617–632.

200

https://hive.apache.org

[105] Leslie Ann Goldberg et al. “Better approximation guarantees for job-shop scheduling”. In:
SIAM Journal on Discrete Mathematics 14.1 (2001), pp. 67–92.

[106] Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. “Chernoff–Hoeffding bounds for
applications with limited independence”. In: SIAM Journal on Discrete Mathematics 8.2
(1995), pp. 223–250.

[107] Mehrnoosh Shafiee and Javad Ghaderi. “Scheduling Coflows with Dependency Graph”.
In: arXiv preprint arXiv:2012.11702 (2020).

[108] Teofilo Gonzalez and Sartaj Sahni. “Flowshop and jobshop schedules: complexity and ap-
proximation”. In: Operations research 26.1 (1978), pp. 36–52.

[109] Eugene L Lawler et al. “Sequencing and scheduling: Algorithms and complexity”. In:
Handbooks in operations research and management science 4 (1993), pp. 445–522.

[110] Michael R Garey, David S Johnson, and Ravi Sethi. “The complexity of flowshop and
jobshop scheduling”. In: Mathematics of operations research 1.2 (1976), pp. 117–129.

[111] David P Williamson et al. “Short shop schedules”. In: Operations Research 45.2 (1997),
pp. 288–294.

[112] Garrett Birkhoff. “Tres observaciones sobre el algebra lineal”. In: Univ. Nac. Tucumán Rev.
Ser. A 5 (1946), pp. 147–151.

[113] Eugene L Lawler and Jacques Labetoulle. “On preemptive scheduling of unrelated parallel
processors by linear programming”. In: Journal of the ACM (JACM) 25.4 (1978), pp. 612–
619.

[114] Donald Ervin Knuth. The art of computer programming. Vol. 3. Pearson Education, 1997.

[115] Prabhakar Raghavan and Clark D Tompson. “Randomized rounding: a technique for prov-
ably good algorithms and algorithmic proofs”. In: Combinatorica 7.4 (1987), pp. 365–374.

[116] Prabhakar Raghavan. “Probabilistic construction of deterministic algorithms: approximat-
ing packing integer programs”. In: Journal of Computer and System Sciences 37.2 (1988),
pp. 130–143.

[117] Michael B Cohen, Yin Tat Lee, and Zhao Song. “Solving linear programs in the current
matrix multiplication time”. In: Proceedings of the 51st annual ACM SIGACT symposium
on theory of computing. 2019, pp. 938–942.

[118] Jan van den Brand. “A deterministic linear program solver in current matrix multiplica-
tion time”. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM. 2020, pp. 259–278.

201

[119] Virginia Vassilevska Williams. “Multiplying matrices faster than Coppersmith-Winograd”.
In: Proceedings of the forty-fourth annual ACM symposium on Theory of computing. 2012,
pp. 887–898.

[120] François Le Gall. “Powers of tensors and fast matrix multiplication”. In: Proceedings of
the 39th international symposium on symbolic and algebraic computation. 2014, pp. 296–
303.

[121] Tom Leighton, Bruce Maggs, and Satish Rao. “Universal packet routing algorithms”. In:
29th Annual Symposium on Foundations of Computer Science. IEEE. 1988, pp. 256–269.

[122] Charles Reiss et al. “Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis”. In: Proc. of ACM Symposium on Cloud Computing. 2012, p. 7.

[123] Ali Ghodsi et al. “Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types.” In: Nsdi. Vol. 11. 2011. 2011, pp. 24–24.

[124] Wei Wang, Ben Liang, and Baochun Li. “Multi-resource fair allocation in heterogeneous
cloud computing systems”. In: IEEE Transactions on Parallel and Distributed Systems
26.10 (2015), pp. 2822–2835.

[125] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. “Dynamic resource allocation for
shared data centers using online measurements”. In: International Workshop on Quality of
Service. Springer. 2003, pp. 381–398.

[126] Hadoop Fair Scheduler. http : / / hadoop . apache . org / docs / r2 . 4 . 1 /
hadoop-yarn/hadoop-yarn-site/FairScheduler.html. 2018.

[127] Hadoop Capacity Scheduler. https://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html. 2018.

[128] Luis Diego Briceno et al. “Time utility functions for modeling and evaluating resource
allocations in a heterogeneous computing system”. In: IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW). 2011, pp. 7–
19.

[129] Zhe Huang et al. “Need for speed: Cora scheduler for optimizing completion-times in the
cloud”. In: IEEE INFOCOM. 2015, pp. 891–899.

[130] Jeffrey Jaffe. “Bottleneck flow control”. In: IEEE Transactions on Communications 29.7
(1981), pp. 954–962.

[131] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks. Vol. 2. Prentice-
Hall International New Jersey, 1992.

202

http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/current /hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/current /hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

[132] Benjamin Avi-Itzhak and Hanoch Levy. “On measuring fairness in queues”. In: Advances
in applied probability 36.3 (2004), pp. 919–936.

[133] Zhe Huang et al. “RUSH: A robust scheduler to manage uncertain completion-times in
shared clouds”. In: IEEE International Conference on Distributed Computing Systems
(ICDCS). 2016, pp. 242–251.

[134] Li Chen et al. “Optimizing coflow completion times with utility max-min fairness”. In:
INFOCOM 2016. 2016, pp. 1–9.

[135] David E Irwin, Laura E Grit, and Jeffrey S Chase. “Balancing risk and reward in a market-
based task service”. In: International Symposium on High-Performance Distributed Com-
puting, 2004, pp. 160–169.

[136] Matei Zaharia et al. “Delay scheduling: A simple technique for achieving locality and fair-
ness in cluster scheduling”. In: Proceedings of the 5th European Conference on Computer
Systems. ACM. 2010, pp. 265–278.

[137] Stratos Dimopoulos, Chandra Krintz, and Rich Wolski. “Justice: A deadline-aware, fair-
share resource allocator for implementing multi-analytics”. In: IEEE International Confer-
ence on Cluster Computing (CLUSTER). 2017, pp. 233–244.

[138] Reza Ahmadi, Uttarayan Bagchi, and Thomas A Roemer. “Coordinated scheduling of
customer orders for quick response”. In: Naval Research Logistics (NRL) 52.6 (2005),
pp. 493–512.

[139] Naveen Garg, Amit Kumar, and Vinayaka Pandit. “Order scheduling models: Hardness
and algorithms”. In: Int. Conf. on Foundations of Software Technology and Theoretical
Computer Science. Springer. 2007, pp. 96–107.

[140] Joseph Y-T Leung, Haibing Li, and Michael Pinedo. “Scheduling orders for multiple prod-
uct types to minimize total weighted completion time”. In: Discrete Applied Mathematics
155.8 (2007), pp. 945–970.

[141] Daniel Pérez Palomar and Mung Chiang. “A tutorial on decomposition methods for net-
work utility maximization”. In: IEEE Journal on Selected Areas in Communications 24.8
(2006), pp. 1439–1451.

[142] Po-Lung Yu. “Domination structures and nondominated solutions”. In: Multiple-Criteria
Decision Making. Springer, 1985, pp. 163–214.

[143] James P Evans and Ralph E Steuer. “A revised simplex method for linear multiple objective
programs”. In: Mathematical Programming 5.1 (1973), pp. 54–72.

203

[144] Hanif D Sherali. “Equivalent weights for lexicographic multi-objective programs: Charac-
terizations and computations”. In: European Journal of Operational Research 11.4 (1982),
pp. 367–379.

[145] Robert Grandl et al. “Multi-resource packing for cluster schedulers”. In: ACM SIGCOMM
Computer Communication Review 44.4 (2015), pp. 455–466.

[146] Sameer Agarwal et al. “Re-optimizing data-parallel computing”. In: Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation. 2012, pp. 21–21.

[147] Mehrnoosh Shafiee and Javad Ghaderi. “On Max-Min Fairness of Completion Times for
Multi-Task Job Scheduling”. In: 2020 IFIP Networking Conference (Networking). IEEE.
2020, pp. 100–108.

[148] Matthias Ehrgott. Multicriteria optimization. Vol. 491. Springer Science & Business Me-
dia, 2005.

[149] Michael R Garey and David S Johnson. Computers and intractability. Vol. 29. W. H. Free-
man New York, 2002.

[150] Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

[151] John Wilkes. More Google cluster data. Google research blog. Posted at http : / /
googleresearch.blogspot.com/2011/11/more- google- cluster-
data.html. Nov. 2011.

[152] Matei Zaharia et al. “Apache spark: a unified engine for big data processing”. In: Commu-
nications of the ACM 59.11 (2016), pp. 56–65.

[153] Thomas Cheatham et al. “Bulk synchronous parallel computing–a paradigm for trans-
portable software”. In: Tools and Environments for Parallel and Distributed Systems. Springer,
1996, pp. 61–76.

[154] Matei Zaharia et al. “Improving MapReduce performance in heterogeneous environments”.
In: Osdi. Vol. 8. 4. 2008, p. 7.

[155] Ganesh Ananthanarayanan et al. “Reining in the Outliers in Map-Reduce Clusters using
Mantri.” In: Osdi. Vol. 10. 1. 2010, p. 24.

[156] Karthik Kambatla et al. “Asynchronous algorithms in MapReduce”. In: 2010 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). 2010, pp. 245–254.

[157] Vlad Nitu et al. “Working Set Size Estimation Techniques in Virtualized Environments:
One Size Does not Fit All”. In: Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2.1 (2018), p. 19.

204

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

[158] Jeff Rasley et al. “Efficient queue management for cluster scheduling”. In: Proceedings of
the 11th European Conference on Computer Systems. 2016, p. 36.

[159] Malte Schwarzkopf et al. “Omega: flexible, scalable schedulers for large compute clusters”.
In: Proceedings of the 8th ACM European Conference on Computer Systems. ACM. 2013,
pp. 351–364.

[160] Jiahui Jin et al. “Bar: An efficient data locality driven task scheduling algorithm for cloud
computing”. In: Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM In-
ternational Symposium on. IEEE. 2011, pp. 295–304.

[161] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”. In: Pro-
ceedings of the Tenth European Conference on Computer Systems. ACM. 2015, p. 18.

[162] Jinwei Liu and Haiying Shen. “Dependency-aware and resource-efficient scheduling for
heterogeneous jobs in clouds”. In: 2016 IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom). 2016, pp. 110–117.

[163] Weina Wang et al. “Maptask scheduling in mapreduce with data locality: Throughput and
heavy-traffic optimality”. In: IEEE/ACM Transactions on Networking (TON) 24.1 (2016),
pp. 190–203.

[164] Ali Yekkehkhany, Avesta Hojjati, and Mohammad H Hajiesmaili. “GB-PANDAS:: Through-
put and heavy-traffic optimality analysis for affinity scheduling”. In: ACM SIGMETRICS
Performance Evaluation Review 45.3 (2018), pp. 2–14.

[165] Zhi-Long Chen and Nicholas G Hall. “Supply chain scheduling: Conflict and cooperation
in assembly systems”. In: Operations Research 55.6 (2007), pp. 1072–1089.

[166] Nikhil Bansal and Subhash Khot. “Inapproximability of hypergraph vertex cover and appli-
cations to scheduling problems”. In: International Colloquium on Automata, Languages,
and Programming. Springer. 2010, pp. 250–261.

[167] Michael R Garey and Ronald L. Graham. “Bounds for multiprocessor scheduling with
resource constraints”. In: SIAM Journal on Computing 4.2 (1975), pp. 187–200.

[168] Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. “Scheduling subject to re-
source constraints: classification and complexity”. In: Discrete applied mathematics 5.1
(1983), pp. 11–24.

[169] Uwe Schwiegelshohn. “Preemptive weighted completion time scheduling of parallel jobs”.
In: SIAM Journal on Computing 33.6 (2004), pp. 1280–1308.

[170] Jan Remy. “Resource constrained scheduling on multiple machines”. In: Information Pro-
cessing Letters 91.4 (2004), pp. 177–182.

205

[171] Mehrnoosh Shafiee and Javad Ghaderi. “Scheduling Parallel-Task Jobs Subject to Packing
and Placement Constraints”. In: arXiv preprint arXiv:2004.00518 (2020).

[172] Jan Karel Lenstra, David B Shmoys, and Eva Tardos. “Approximation algorithms for
scheduling unrelated parallel machines”. In: Mathematical programming 46.1-3 (1990),
pp. 259–271.

[173] Maurice Queyranne and Maxim Sviridenko. “A (2+ epsilon)-approximation algorithm for
the generalized preemptive open shop problem with minsum objective”. In: Journal of
Algorithms 45.2 (2002), pp. 202–212.

[174] Andreas S Schulz and Martin Skutella. “Random-based scheduling new approximations
and LP lower bounds”. In: International Workshop on Randomization and Approximation
Techniques in Computer Science. Springer. 1997, pp. 119–133.

[175] Philip Hall. “On representatives of subsets”. In: Journal of the London Mathematical So-
ciety 1.1 (1935), pp. 26–30.

[176] Gurobi Optimization LLC. Gurobi Optimizer. 2018.

[177] Edward R Scheinerman and Daniel H Ullman. Fractional graph theory: a rational ap-
proach to the theory of graphs. Courier Corporation, 2011.

[178] Edward G Coffman Jr et al. “Performance bounds for level-oriented two-dimensional pack-
ing algorithms”. In: SIAM Journal on Computing 9.4 (1980), pp. 808–826.

[179] Kristi Morton, Magdalena Balazinska, and Dan Grossman. “ParaTimer: a progress indi-
cator for MapReduce DAGs”. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM. 2010, pp. 507–518.

[180] Andrew D Ferguson et al. “Jockey: guaranteed job latency in data parallel clusters”. In:
Proceedings of the 7th ACM european conference on Computer Systems. ACM. 2012,
pp. 99–112.

206

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	Introduction
	Flow Scheduling
	Load Balancing in A General Network Topology
	Coflow Scheduling
	Scheduling Coflows of Multi-Stage Jobs

	Task Scheduling
	Max-Min Fairness of Completion Times
	Minimizing Weighted Average of Completion Times

	Load Balancing in A General Network Topology
	Introduction
	Related Work
	Contributions
	Notations

	Model and Problem Statement
	data center Network Model
	Traffic Model
	Problem Formulation

	Algorithm Description
	Performance Analysis via Fluid Limits
	Informal Description of Fluid Limit Process
	Main Result and Asymptotic Optimality
	Proof of Proposition 1

	Simulation Results
	Experimental Results for FatTree
	Experimental Results for JellyFish

	Randomized Myopic Algorithms
	Experimental Results for FatTree
	Experimental Results for JellyFish

	Formal Proofs of Fluid Limits and Theorem 1
	Proof of Fluid Limits
	Proof of Theorem 1

	Coflow Scheduling to Minimize The Weighted Average Completion Time
	Introduction
	Related Work
	Main Contributions

	System Model and Problem Formulation
	Motivations and Challenges
	Linear Programing (LP) Relaxation
	Coflow Scheduling Algorithm
	Proof Sketch of Main Results
	Bounded Completion Time for The Collection of Coflows
	Proof of Theorem 2 and Corollary 1

	Extension to Online Algorithm
	Empirical Evaluations
	Workload
	Algorithms
	Evaluation Results
	Incorporating Fairness
	Discussion on Algorithm's Complexity

	NP–Completeness And Counter Example

	Scheduling Coflows with Dependency Graph
	Introduction
	Related Work
	Main Contributions

	Model and Problem Statement
	Definitions and Preliminaries
	Definitions
	Complexity of Minimizing Makespan
	Optimal Makespan for A Path Job

	Makespan Minimization for Scheduling Multiple General DAG Jobs
	DMA (Delay-and-Merge Algorithm)
	Performance Guarantee of DMA
	De-Randomization

	Makespan Minimization For Scheduling Multiple Rooted Tree Jobs
	DMA-SRT (Delay-and-Merge Algorithm For A Single Rooted Tree)
	Multiple Rooted Tree Jobs
	Performance Guarantee of DMA-SRT and DMA-RT

	Total Weighted Completion Time Minimization
	Job Ordering
	Job Ordering
	Grouping Jobs
	Scheduling Each Group Jb
	Performance Guarantee of G-DM

	Empirical Evaluation
	Impact of Random Delays and
	Evaluation Results for General GADs
	Evaluation Results for Rooted Trees

	Discussion on Approximation Results
	Proofs of Main Results
	Proofs Related To DMA
	Proofs Related To DMA-SRT and DMA-RT
	Proofs Related to G-DM

	Max-Min Fairness of Completion Times for Multi-Task Job Scheduling
	Introduction
	Related Work
	Main Contributions

	Model and problem statement
	Lexicographic Max-Min Fair Schedule and NP-hardness
	Structure of Optimal Schedule
	NP-Hardness

	Defining Approximation Solutions
	k-Min-Max Fair Approximation
	Single-Objective Approximation

	Approximation Algorithms for Equal Utility Functions
	k-Max-Min Scheduling Algorithm
	Perturbation-Based Scheduling Algorithm

	General Utility Functions
	Simulation Results
	Offline Setting
	Online Setting

	Scheduling Parallel-Task Jobs Subject to Packing and Placement Constraints
	Introduction
	Related Work
	Main Contributions

	Formal Problem Statement
	Scheduling When Migration is Allowed
	Relaxed Linear Program (LP1)
	Scheduling Algorithm: SynchPack-1
	Performance Guarantee

	Scheduling When Migration is not Allowed
	Relaxed Linear Program (LP2)
	Scheduling Algorithm: SynchPack-2
	Performance Guarantee

	Special Case: Preemption and Single-Machine Placement set
	Relaxed Linear Program (LP3)
	Scheduling Algorithm: SynchPack-3
	Performance Guarantee

	Complexity of Algorithms
	Evaluation Results
	Results in Offline Setting
	Results in Online Setting

	Complexity of Algorithms
	Proofs Related to SynchPack-1
	Proof of Lemma 21
	Proof of Lemma 23
	Proof of Lemma 24

	De-randomization
	Proofs Related to SynchPack-2
	Proof of Lemma 25
	Proof of corollary 5
	Proof of Lemma 26
	Proof of Lemma 27
	Proof of Lemma 28
	Proof of Lemma 29
	Proof of Lemma 30

	Proofs Related to SynchPack-3
	Supplementary Material Related to Simulations
	Data Set
	Algorithms

	Pseudocodes of (6+)-Approximation Algorithm
	Pseudocode of 24-Approximation Algorithm
	Pseudocodes of (4)-Approximation Algorithm

	Conclusion and Discussion
	Summary of Results
	Future Directions

	References

