1,540,028 research outputs found

    A reverse predictive model towards design automation of microfluidic droplet generators

    Get PDF
    This work has been presented in the 10th IWBDA workshop.Droplet-based microfluidic devices in comparison to test tubes can reduce reaction volumes 10^9 times and more due to the encapsulation of reactions in micro-scale droplets [4]. This volume reduction, alongside higher accuracy, higher sensitivity and faster reaction time made droplet microfluidics a superior platform particularly in biology, biomedical, and chemical engineering. However, a high barrier of entry prevents most of life science laboratories to exploit the advantages of microfluidics. There are two main obstacles to the widespread adoption of microfluidics, high fabrication costs, and lack of design automation tools. Recently, low-cost fabrication methods have reduced the cost of fabrication significantly [7]. Still, even with a low-cost fabrication method, due to lack of automation tools, life science research groups are still reliant on a microfluidic expert to develop any new microfluidic device [3, 5]. In this work, we report a framework to develop reverse predictive models that can accurately automate the design process of microfluidic droplet generators. This model takes prescribed performance metrics of droplet generators as the input and provides the geometry of the microfluidic device and the fluid and flow settings that result in the desired performance. We hope this automation tool makes droplet-based microfluidics more accessible, by reducing the time, cost, and knowledge needed for developing a microfluidic droplet generator that meets certain performance requirement

    Model Predictive Regulation

    Get PDF
    We show how optimal nonlinear regulation can be achieved in a model predictive control fashion

    Adaptive reference model predictive control for power electronics

    Get PDF
    An adaptive reference model predictive control (ARMPC) approach is proposed as an alternative means of controlling power converters in response to the issue of steady-state residual errors presented in power converters under the conventional model predictive control (MPC). Differing from other methods of eliminating steady-state errors of MPC based control, such as MPC with integrator, the proposed ARMPC is designed to track the so-called virtual references instead of the actual references. Subsequently, additional tuning is not required for different operating conditions. In this paper, ARMPC is applied to a single-phase full-bridge voltage source inverter (VSI). It is experimentally validated that ARMPC exhibits strength in substantially eliminating the residual errors in environment of model mismatch, load change, and input voltage change, which would otherwise be present under MPC control. Moreover, it is experimentally demonstrated that the proposed ARMPC shows a consistent erasion of steady-state errors, while the MPC with integrator performs inconsistently for different cases of model mismatch after a fixed tuning of the weighting factor

    Optimal predictive model selection

    Full text link
    Often the goal of model selection is to choose a model for future prediction, and it is natural to measure the accuracy of a future prediction by squared error loss. Under the Bayesian approach, it is commonly perceived that the optimal predictive model is the model with highest posterior probability, but this is not necessarily the case. In this paper we show that, for selection among normal linear models, the optimal predictive model is often the median probability model, which is defined as the model consisting of those variables which have overall posterior probability greater than or equal to 1/2 of being in a model. The median probability model often differs from the highest probability model

    Single-layer economic model predictive control for periodic operation

    Get PDF
    In this paper we consider periodic optimal operation of constrained periodic linear systems. We propose an economic model predictive controller based on a single layer that unites dynamic real time optimization and control. The proposed controller guarantees closed-loop convergence to the optimal periodic trajectory that minimizes the average operation cost for a given economic criterion. A priori calculation of the optimal trajectory is not required and if the economic cost function is changed, recursive feasibility and convergence to the new periodic optimal trajectory is guaranteed. The results are demonstrated with two simulation examples, a four tank system, and a simplified model of a section of Barcelona's water distribution network.Peer ReviewedPostprint (author’s final draft

    Interval model predictive control

    Get PDF
    6TH INTERNATIONAL WORKSHOP ON ALGORITHMS AND ARCHITECTURES FOR REAL TIME CONTROL (6) (6.2000.PALMA DE MALLORCA. ESPAÑA)Model Predictive Control is one of the most popular control strategy in the process industry. One of the reason for this success can be attributed to the fact that constraints and uncertainties can be handled. There are many techniques based on interval mathematics that are used in a wide range of applications. These interval techniques can mean an important contribution to Model Predictive Control giving algorithms to achieve global optimization and constraint satisfaction

    The disturbance model in model based predictive control

    Get PDF
    Model Based Predictive Control (MBPC) is a control methodology which uses a process model on-line in the control computer; this model is used for calculating output predictions and optimizing control actions. The importance of the system model has been generally recognized, but less attention has been paid to the role of the disturbance model. In this paper the importance of the disturbance model is indicated with respect to the EPSAC approach to MBPC. To illustrate this importance, an example of this advanced control methodology applied to a typical mechatronic system is presented, to compare the performances obtained by using different disturbance models. It clearly shows the benefits of using an "intelligent" disturbance model instead of the "default" model generally adopted in practice

    Preconditioned Continuation Model Predictive Control

    Full text link
    Model predictive control (MPC) anticipates future events to take appropriate control actions. Nonlinear MPC (NMPC) describes systems with nonlinear models and/or constraints. A Continuation/GMRES Method for NMPC, suggested by T. Ohtsuka in 2004, uses the GMRES iterative algorithm to solve a forward difference approximation Ax=bAx=b of the Continuation NMPC (CNMPC) equations on every time step. The coefficient matrix AA of the linear system is often ill-conditioned, resulting in poor GMRES convergence, slowing down the on-line computation of the control by CNMPC, and reducing control quality. We adopt CNMPC for challenging minimum-time problems, and improve performance by introducing efficient preconditioning, utilizing parallel computing, and substituting MINRES for GMRES.Comment: 8 pages, 6 figures. To appear in Proceedings SIAM Conference on Control and Its Applications, July 8-10, 2015, Paris, Franc

    Frequency-Aware Model Predictive Control

    Full text link
    Transferring solutions found by trajectory optimization to robotic hardware remains a challenging task. When the optimization fully exploits the provided model to perform dynamic tasks, the presence of unmodeled dynamics renders the motion infeasible on the real system. Model errors can be a result of model simplifications, but also naturally arise when deploying the robot in unstructured and nondeterministic environments. Predominantly, compliant contacts and actuator dynamics lead to bandwidth limitations. While classical control methods provide tools to synthesize controllers that are robust to a class of model errors, such a notion is missing in modern trajectory optimization, which is solved in the time domain. We propose frequency-shaped cost functions to achieve robust solutions in the context of optimal control for legged robots. Through simulation and hardware experiments we show that motion plans can be made compatible with bandwidth limits set by actuators and contact dynamics. The smoothness of the model predictive solutions can be continuously tuned without compromising the feasibility of the problem. Experiments with the quadrupedal robot ANYmal, which is driven by highly-compliant series elastic actuators, showed significantly improved tracking performance of the planned motion, torque, and force trajectories and enabled the machine to walk robustly on terrain with unmodeled compliance
    corecore