1,540,028 research outputs found
A reverse predictive model towards design automation of microfluidic droplet generators
This work has been presented in the 10th IWBDA workshop.Droplet-based microfluidic devices in comparison to test tubes can reduce reaction volumes 10^9 times and more due to the encapsulation of reactions in micro-scale droplets [4]. This volume reduction, alongside higher accuracy, higher sensitivity and faster reaction time made droplet microfluidics a superior platform particularly in biology, biomedical, and chemical engineering. However, a high barrier of entry prevents most of life science laboratories to exploit the advantages of microfluidics. There are two main obstacles to the widespread adoption of microfluidics, high fabrication costs, and lack of design automation tools. Recently, low-cost fabrication methods have reduced the cost of fabrication significantly [7]. Still, even with a low-cost fabrication method, due to lack of automation tools, life science research groups are still reliant on a microfluidic expert to develop any new microfluidic device [3, 5]. In this work, we report a framework to develop reverse predictive models that can accurately automate the design process of microfluidic droplet generators. This model takes prescribed performance metrics of droplet generators as the input and provides the geometry of the microfluidic device and the fluid and flow settings that result in the desired performance. We hope this automation tool makes droplet-based microfluidics more accessible, by reducing the time, cost, and knowledge needed for developing a microfluidic droplet generator that meets certain performance requirement
Model Predictive Regulation
We show how optimal nonlinear regulation can be achieved in a model
predictive control fashion
Adaptive reference model predictive control for power electronics
An adaptive reference model predictive control (ARMPC) approach is proposed as an alternative means of controlling power converters in response to the issue of steady-state residual errors presented in power converters under the conventional model predictive control (MPC). Differing from other methods of eliminating steady-state errors of MPC based control, such as MPC with integrator, the proposed ARMPC is designed to track the so-called virtual references instead of the actual references. Subsequently, additional tuning is not required for different operating conditions. In this paper, ARMPC is applied to a single-phase full-bridge voltage source inverter (VSI). It is experimentally validated that ARMPC exhibits strength in substantially eliminating the residual errors in environment of model mismatch, load change, and input voltage change, which would otherwise be present under MPC control. Moreover, it is experimentally demonstrated that the proposed ARMPC shows a consistent erasion of steady-state errors, while the MPC with integrator performs inconsistently for different cases of model mismatch after a fixed tuning of the weighting factor
Optimal predictive model selection
Often the goal of model selection is to choose a model for future prediction,
and it is natural to measure the accuracy of a future prediction by squared
error loss. Under the Bayesian approach, it is commonly perceived that the
optimal predictive model is the model with highest posterior probability, but
this is not necessarily the case. In this paper we show that, for selection
among normal linear models, the optimal predictive model is often the median
probability model, which is defined as the model consisting of those variables
which have overall posterior probability greater than or equal to 1/2 of being
in a model. The median probability model often differs from the highest
probability model
Single-layer economic model predictive control for periodic operation
In this paper we consider periodic optimal operation of constrained periodic linear systems. We propose an economic model predictive controller based on a single layer that unites dynamic real time optimization and control. The proposed controller guarantees closed-loop convergence to the optimal periodic trajectory that minimizes the average operation cost for a given economic criterion. A priori calculation of the optimal trajectory is not required and if the economic cost function is changed, recursive feasibility and convergence to the new periodic optimal trajectory is guaranteed. The results are demonstrated with two simulation examples, a four tank system, and a simplified model of a section of Barcelona's water distribution network.Peer ReviewedPostprint (author’s final draft
Interval model predictive control
6TH INTERNATIONAL WORKSHOP ON ALGORITHMS AND ARCHITECTURES FOR REAL TIME CONTROL (6) (6.2000.PALMA DE MALLORCA. ESPAÑA)Model Predictive Control is one of the most popular control strategy in the process industry. One of the reason for this success can be attributed to the fact that constraints and uncertainties can be handled. There are many techniques based on interval mathematics that are used in a wide range of applications. These interval techniques can mean an important contribution to Model Predictive Control giving algorithms to achieve global optimization and constraint satisfaction
The disturbance model in model based predictive control
Model Based Predictive Control (MBPC) is a control methodology which uses a process model on-line in the control computer; this model is used for calculating output predictions and optimizing control actions. The importance of the system model has been generally recognized, but less attention has been paid to the role of the disturbance model. In this paper the importance of the disturbance model is indicated with respect to the EPSAC approach to MBPC. To illustrate this importance, an example of this advanced control methodology applied to a typical mechatronic system is presented, to compare the performances obtained by using different disturbance models. It clearly shows the benefits of using an "intelligent" disturbance model instead of the "default" model generally adopted in practice
Preconditioned Continuation Model Predictive Control
Model predictive control (MPC) anticipates future events to take appropriate
control actions. Nonlinear MPC (NMPC) describes systems with nonlinear models
and/or constraints. A Continuation/GMRES Method for NMPC, suggested by T.
Ohtsuka in 2004, uses the GMRES iterative algorithm to solve a forward
difference approximation of the Continuation NMPC (CNMPC) equations on
every time step. The coefficient matrix of the linear system is often
ill-conditioned, resulting in poor GMRES convergence, slowing down the on-line
computation of the control by CNMPC, and reducing control quality. We adopt
CNMPC for challenging minimum-time problems, and improve performance by
introducing efficient preconditioning, utilizing parallel computing, and
substituting MINRES for GMRES.Comment: 8 pages, 6 figures. To appear in Proceedings SIAM Conference on
Control and Its Applications, July 8-10, 2015, Paris, Franc
Frequency-Aware Model Predictive Control
Transferring solutions found by trajectory optimization to robotic hardware
remains a challenging task. When the optimization fully exploits the provided
model to perform dynamic tasks, the presence of unmodeled dynamics renders the
motion infeasible on the real system. Model errors can be a result of model
simplifications, but also naturally arise when deploying the robot in
unstructured and nondeterministic environments. Predominantly, compliant
contacts and actuator dynamics lead to bandwidth limitations. While classical
control methods provide tools to synthesize controllers that are robust to a
class of model errors, such a notion is missing in modern trajectory
optimization, which is solved in the time domain. We propose frequency-shaped
cost functions to achieve robust solutions in the context of optimal control
for legged robots. Through simulation and hardware experiments we show that
motion plans can be made compatible with bandwidth limits set by actuators and
contact dynamics. The smoothness of the model predictive solutions can be
continuously tuned without compromising the feasibility of the problem.
Experiments with the quadrupedal robot ANYmal, which is driven by
highly-compliant series elastic actuators, showed significantly improved
tracking performance of the planned motion, torque, and force trajectories and
enabled the machine to walk robustly on terrain with unmodeled compliance
- …
