43 research outputs found

    Predictive and core-network efficient RRC signalling for active state handover in RANs with control/data separation

    Get PDF
    Frequent handovers (HOs) in dense small cell deployment scenarios could lead to a dramatic increase in signalling overhead. This suggests a paradigm shift towards a signalling conscious cellular architecture with intelligent mobility management. In this direction, a futuristic radio access network with a logical separation between control and data planes has been proposed in research community. It aims to overcome limitations of the conventional architecture by providing high data rate services under the umbrella of a coverage layer in a dual connection mode. This approach enables signalling efficient HO procedures, since the control plane remains unchanged when the users move within the footprint of the same umbrella. Considering this configuration, we propose a core-network efficient radio resource control (RRC) signalling scheme for active state HO and develop an analytical framework to evaluate its signalling load as a function of network density, user mobility and session characteristics. In addition, we propose an intelligent HO prediction scheme with advance resource preparation in order to minimise the HO signalling latency. Numerical and simulation results show promising gains in terms of reduction in HO latency and signalling load as compared with conventional approaches

    Memory-full context-aware predictive mobility management in dual connectivity 5G networks

    Get PDF
    Network densification with small cell deployment is being considered as one of the dominant themes in the fifth generation (5G) cellular system. Despite the capacity gains, such deployment scenarios raise several challenges from mobility management perspective. The small cell size, which implies a small cell residence time, will increase the handover (HO) rate dramatically. Consequently, the HO latency will become a critical consideration in the 5G era. The latter requires an intelligent, fast and light-weight HO procedure with minimal signalling overhead. In this direction, we propose a memory-full context-aware HO scheme with mobility prediction to achieve the aforementioned objectives. We consider a dual connectivity radio access network architecture with logical separation between control and data planes because it offers relaxed constraints in implementing the predictive approaches. The proposed scheme predicts future HO events along with the expected HO time by combining radio frequency performance to physical proximity along with the user context in terms of speed, direction and HO history. To minimise the processing and the storage requirements whilst improving the prediction performance, a user-specific prediction triggering threshold is proposed. The prediction outcome is utilised to perform advance HO signalling whilst suspending the periodic transmission of measurement reports. Analytical and simulation results show that the proposed scheme provides promising gains over the conventional approach

    Introducing a Novel Minimum Accuracy Concept for Predictive Mobility Management Schemes

    Get PDF
    In this paper, an analytical model for the minimum required accuracy for predictive methods is derived in terms of both handover (HO) delay and HO signaling cost. After that, the total HO delay and signaling costs are derived for the worst-case scenario (when the predictive process has the same performance as the conventional one), and simulations are conducted using a cellular environment to reveal the importance of the proposed minimum accuracy framework. In addition to this, three different predictors; Markov Chains, Artificial Neural Network (ANN) and an Improved ANN (IANN) are implemented and compared. The results indicate that under certain circumstances, the predictors can occasionally fall below the applicable level. Therefore, the proposed concept of minimum accuracy plays a vital role in determining this corresponding threshold

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design

    ON ANALYTICAL MODELING OF MOBILITY SIGNALLING IN ULTRA DENSE HETNETS

    Get PDF
    Multi-band and multi-tier network densification is being considered as the most promising solution to overcome the capacity crunch problem in emerging cellular networks. To this end, small cells (SCs) are being deployed within macro cells (MC) to off-load some of the users associated with the MCs. This deployment scenario gives birth to several new problems. Amongst others, handovers (HOs), signalling overhead and mobility management are becoming increasingly critical challenges. Frequent HOs in ultra-dense SC deployments can lead to a degraded mobility performance and increase signalling overhead significantly. Recently, a new cellular architecture with control/data plane separation has been proposed to overcome these challenges. However, the state of the art analysis of the feasibility of the CDSA remains mostly qualitative. There is dire need for mathematical models to analyze the performance of various aspects of CDSA and quantify its gains, if any, compared to conventional architecture. In this dissertation, we derive several analytical models to compare HO performance in the control/data separation architecture (CDSA) and conventionally deployed networks under various scenarios and configurations. Our developed mathematical framework advances the state of the art by considering HO success, HO failure and no HO scenarios. The proposed models can be used to quantify HO signalling as a function of key cellular system design parameter such as cell density, session duration, velocity, HO duration(s) and intercell overlap coverage factor. Using the developed analytical models, we perform a comparative analysis of HO signalling generated during various HO scenarios in CDSA and conventionally deployed networks. Building on the insights drawn from this analysis, we introduce new parameters for improving the HO execution process in emerging cellular networks viz-a-viz 5G and beyond. These new parameters, when tuned optimally, can significantly reduce the HO signalling load. Closed form expressions are also derived for continuous and continual (intermittent) mobility scenarios, while considering both HO success and HO failure likelihoods. In addition, we propose an analytical model which enables more radio resource efficient network planning by quantifying HO signalling and success probabilities as function of intercell overlap coverage factor. Analysis indicates that cell density, actual HO time duration and average velocity can be used as the key metrics to optimally plan intercell overlap coverage factor in order to minimize mobility signalling load. Numerical results and analysis based on the developed overall analytical framework indicate that, compared to conventional networks, CDSA offers promising gains in terms HO performance and reduced HO signaling overhead

    Automotive Cognitive Access: Towards customized vehicular communication system

    Get PDF
    The evolution of Software Defined Networking (SDN) and Virtualization of mobile Network Functions (NFV) have enabled the new ways of managing mobile access systems and are seen as a major technological foundation of the Fifth Generation (5G) of mobile networks. With the appearance of 5G specifications, the mobile system architecture has the transition from a network of entities to a network of functions. This paradigm shift led to new possibilities and challenges. Existing mobile communication systems rely on closed and inflexible hardware-based architectures both at the access and core network. It implies significant challenges in implementing new techniques to maximize the network capacity, scalability and increasing performance for diverse data services. This work focuses preliminary on the architectural evolutions needed to solve challenges perceived for the next generation of mobile networks. I consider Software defined plus Virtualization featured Mobile Network (S+ MN) architecture as a baseline reference model, aiming at the further improvements to support the access requirements for diverse user groups. I consider an important class of things, vehicles, which needs efficient mobile internet access at both the system and application levels. I identify and describe key requirements of emerging vehicular communications and assess existing standards to determine their limitations. To provide optimized wireless communications for the specific user group, the 5G systems come up with network slicing as a potential solution to create customized networks. Network slicing has the capability to facilitates dynamic and efficient allocation of network resources and support diverse service scenarios and services. A network slice can be broadly defined as an end-to-end logically isolated network that includes end devices as well as access and core network functions. To this effect, I describe the enhanced behaviour of S+ MN architecture for the collection of network resources and details the potential functional grouping provided by S+ MN architecture that paves the way to support automotive slicing. The proposed enhancements support seamless connection mobility addressing the automotive access use case highly mobile environment. I follow the distribution of gateway functions to solve the problem of unnecessary long routes and delays. Exploiting the open SDN capabilities, the proposed S+ NC is able to parallelize the execution of certain control plane messages thus enabling the signalling optimisation. Furthermore, it enables the (Re)selection of efficient data plane paths with implied upper-layer service continuity mechanisms that remove the chains of IP address preservation for session continuity during IP anchor relocation. An implementation setup validates the proposed evolutions, including its core functionalities implemented using the ns-3 network simulator. The proposed slicing scheme has been evaluated through a number of scenarios such as numbers of signalling messages processed by control entities for an intersystem handover procedure relative to current mobile network architecture. I also perform the performance improvement analysis based on simulation results. Furthermore, I experimentally prove the feasibility of using Multipath TCP for connection mobility in intersystem handover scenario. The experiments run over the Linux Kernel implementation of Multipath TCP developed over the last years. I extend the Multipath TCP path management to delegates the management of the data paths according to the application needs. The implementation results have shown that the proposed S+ MN slicing architecture and enhancements achieve benefits in multiple areas, for example improving the mobility control and management, maintaining QoS, smooth handover, session continuity and efficient slice management and orchestration

    Network slicing for beyond 5G system: an overview of the smart port use case

    Get PDF
    As the idea of a new wireless communication standard (5G) started to circulate around the world, there was much speculation regarding its performance, making it necessary to carry out further research by keeping in view the challenges presented by it. 5G is considered a multi-system support network due to its ability to provide benefits to vertical industries. Due to the wide range of devices and applications, it is essential to provide support for massively interconnected devices. Network slicing has emerged as the key technology to meet the requirements of the communications network. In this paper, we present a review of the latest achievements of 5G network slicing by comparing the architecture of The Next Generation Mobile Network Alliance’s (NGMN’s) and 5G-PPP, using the enabling technologies software-defined networking (SDN) and network function virtualization (NFV). We then review and discuss machine learning (ML) techniques and their integration with network slicing for beyond 5G networks and elaborate on how ML techniques can be useful for mobility prediction and resource management. Lastly, we propose the use case of network slicing based on ML techniques in a smart seaport environment, which will help to manage the resources more efficiently

    SLICING-BASED RESOURCE ALLOCATION AND MOBILITY MANAGEMENT FOR EMERGING WIRELESS NETWORKS

    Get PDF
    The proliferation of smart mobile devices and user applications has continued to contribute to the tremendous volume of data traffic in cellular networks. Moreover, with the feature of heterogeneous connectivity interfaces of these smart devices, it becomes more complex for managing the traffic volume in the context of mobility. To surmount this challenge, service and resource providers are looking for alternative mechanisms that can successfully facilitate managing network resources and mobility in a more dynamic, predictive and distributed manner. New concepts of network architectures such as Software-Defined Network (SDN) and Network Function Virtualization (NFV) have paved the way to move from static to flexible networks. They make networks more flexible (i.e., network providers capable of on-demand provisioning), easily customizable and cost effective. In this regard, network slicing is emerging as a new technology built on the concepts of SDN and NFV. It splits a network infrastructure into isolated virtual networks and allows them to manage network resources based on their requirements and characteristics. Most of the existing solutions for network slicing are facing challenges in terms of resource and mobility management. Regarding resource management, it creates challenges in terms of provisioning network throughput, end-to-end delay, and fairness resources allocation for each slice, whereas, in the case of mobility management, due to the rapid change of user mobility the network slice operator would like to hold the mobility controlling over its clients across different access networks, rather than the network operator, to ensure better services and user experience. In this thesis, we propose two novel architectural solutions to solve the challenges identified above. The first proposed solution introduces a Network Slicing Resource Management (NSRM) mechanism that assigns the required resources for each slice, taking into consideration resource isolation between different slices. The second proposed v solution provides a Mobility Management architecture-based Network Slicing (MMNS) where each slice manages its users across heterogeneous radio access technologies such as WiFi, LTE and 5G networks. In MMNS architecture, each slice has different mobility demands (e.g,. latency, speed and interference) and these demands are governed by a network slice configuration and service characteristics. In addition, NSRM ensures isolating, customizing and fair sharing of distributed bandwidths between various network slices and users belonging to the same slice depending on different requirements of each one. Whereas, MMNS is a logical platform that unifies different Radio Access Technologies (RATs) and allows all slices to share them in order to satisfy different slice mobility demands. We considered two software simulations, namely OPNET Modeler and OMNET++, to validate the performance evaluation of the thesis contributions. The simulation results for both proposed architectures show that, in case of NSRM, the resource blocking is approximately 35% less compared to the legacy LTE network, which it allows to accommodate more users. The NSRM also successfully maintains the isolation for both the inter and intra network slices. Moreover, the results show that the NSRM is able to run different scheduling mechanisms where each network slice guarantee perform its own scheduling mechanism and simultaneously with other slices. Regarding the MMNS, the results show the advantages of the proposed architecture that are the reduction of the tunnelling overhead and the minimization of the handover latency. The MMNS results show the packets delivery cost is optimal by reducing the number of hops that the packets transit between a source node and destination. Additionally, seamless session continues of a user IP-flow between different access networks interfaces has been successfully achieved
    corecore