1,360 research outputs found

    Parallel performance prediction for multigrid codes on distributed memory architectures

    Get PDF
    We propose a model for describing the parallel performance of multigrid software on distributed memory architectures. The goal of the model is to allow reliable predictions to be made as to the execution time of a given code on a large number of processors, of a given parallel system, by only benchmarking the code on small numbers of processors. This has potential applications for the scheduling of jobs in a Grid computing environment where reliable predictions as to execution times on different systems will be valuable. The model is tested for two different multigrid codes running on two different parallel architectures and the results obtained are discussed

    Implementation of Sub-Grid-Federation Model for Performance Improvement in Federated Data Grid

    Get PDF
    In this work, a new model for federation data grid system called Sub-Grid-Federation was designed to improve access latency by accessing data from the nearest possible sites. The strategy in optimising data access was based on the process of searching into the area identified as ‘Network Core Area’ (NCA). The performance of access latency in Sub-Grid-Federation was tested based on the mathematical proving and simulated using OptorSim simulator. Four case studies were carried out and tested in Optimal Downloading Replication Strategy (ODRS) and the Sub-Grid-Federation. The results show that Sub-Grid-Federation is 20% better in terms of access latency and 21% better in terms of reducing remotes sites access compared to ODRS. The results indicate that the Sub-Grid-Federation is a better alternative for the implementation of collaboration and data sharing in data grid system.                                                                                    Keywords: Data grid, replication, scheduling, access latenc

    Parallelising wavefront applications on general-purpose GPU devices

    Get PDF
    Pipelined wavefront applications form a large portion of the high performance scientific computing workloads at supercomputing centres. This paper investigates the viability of graphics processing units (GPUs) for the acceleration of these codes, using NVIDIA's Compute Unified Device Architecture (CUDA). We identify the optimisations suitable for this new architecture and quantify the characteristics of those wavefront codes that are likely to experience speedups

    Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    Get PDF
    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly-structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-flow and irregular memory accesses. Furthermore, these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-flow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-flow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-flow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization

    Transaction-filtering data mining and a predictive model for intelligent data management

    Get PDF
    This thesis, first of all, proposes a new data mining paradigm (transaction-filtering association rule mining) addressing a time consumption issue caused by the repeated scans of original transaction databases in conventional associate rule mining algorithms. An in-memory transaction filter is designed to discard those infrequent items in the pruning steps. This filter is a data structure to be updated at the end of each iteration. The results based on an IBM benchmark show that an execution time reduction of 10% - 19% is achieved compared with the base case. Next, a data mining-based predictive model is then established contributing to intelligent data management within the context of Centre for Grid Computing. The capability of discovering unseen rules, patterns and correlations enables data mining techniques favourable in areas where massive amounts of data are generated. The past behaviours of two typical scenarios (network file systems and Data Grids) have been analyzed to build the model. The future popularity of files can be forecasted with an accuracy of 90% by deploying the above predictor based on the given real system traces. A further step towards intelligent policy design is achieved by analyzing the prediction results of files’ future popularity. The real system trace-based simulations have shown improvements of 2-4 times in terms of data response time in network file system scenario and 24% mean job time reduction in Data Grids compared with conventional cases.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mining Large Data Sets on Grids: Issues and Prospects

    Get PDF
    When data mining and knowledge discovery techniques must be used to analyze large amounts of data, high-performance parallel and distributed computers can help to provide better computational performance and, as a consequence, deeper and more meaningful results. Recently grids, composed of large-scale, geographically distributed platforms working together, have emerged as effective architectures for high-performance decentralized computation. It is natural to consider grids as tools for distributed data-intensive applications such as data mining, but the underlying patterns of computation and data movement in such applications are different from those of more conventional high-performance computation. These differences require a different kind of grid, or at least a grid with significantly different emphases. This paper discusses the main issues, requirements, and design approaches for the implementation of grid-based knowledge discovery systems. Furthermore, some prospects and promising research directions in datacentric and knowledge-discovery oriented grids are outlined

    Low-latency, query-driven analytics over voluminous multidimensional, spatiotemporal datasets

    Get PDF
    2017 Summer.Includes bibliographical references.Ubiquitous data collection from sources such as remote sensing equipment, networked observational devices, location-based services, and sales tracking has led to the accumulation of voluminous datasets; IDC projects that by 2020 we will generate 40 zettabytes of data per year, while Gartner and ABI estimate 20-35 billion new devices will be connected to the Internet in the same time frame. The storage and processing requirements of these datasets far exceed the capabilities of modern computing hardware, which has led to the development of distributed storage frameworks that can scale out by assimilating more computing resources as necessary. While challenging in its own right, storing and managing voluminous datasets is only the precursor to a broader field of study: extracting knowledge, insights, and relationships from the underlying datasets. The basic building block of this knowledge discovery process is analytic queries, encompassing both query instrumentation and evaluation. This dissertation is centered around query-driven exploratory and predictive analytics over voluminous, multidimensional datasets. Both of these types of analysis represent a higher-level abstraction over classical query models; rather than indexing every discrete value for subsequent retrieval, our framework autonomously learns the relationships and interactions between dimensions in the dataset (including time series and geospatial aspects), and makes the information readily available to users. This functionality includes statistical synopses, correlation analysis, hypothesis testing, probabilistic structures, and predictive models that not only enable the discovery of nuanced relationships between dimensions, but also allow future events and trends to be predicted. This requires specialized data structures and partitioning algorithms, along with adaptive reductions in the search space and management of the inherent trade-off between timeliness and accuracy. The algorithms presented in this dissertation were evaluated empirically on real-world geospatial time-series datasets in a production environment, and are broadly applicable across other storage frameworks
    corecore