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Abstract—Pipelined wavefront applications form a large
portion of the high performance scientific computing workloads
at supercomputing centres such as LANL in the United States
and AWE in the United Kingdom. This paper investigates the
viability of utilising graphics processing units (GPUs) for the
acceleration of these codes, using NVIDIA’s Compute Unified
Device Architecture (CUDA). Wavefront applications differ
from the massively data-parallel codes typically selected for
execution on GPUs in that their computation must obey a strict
data dependency, limiting the achievable level of parallelism.
In this work, we identify a number of optimisations suitable for
wavefront codes ported to this new architecture and attempt to
quantify the characteristics of those codes that are most likely
to experience speedups.
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I. INTRODUCTION

The high performance computing (HPC) community is cur-
rently experiencing an increased interest in the utilisation
of massively data parallel architectures. Graphics process-
ing units (GPUs), in particular, have attracted significant
attention as an alternative low-cost commodity platform for
general-purpose HPC work that would traditionally be run
on multi-core processors. With the introduction of program-
ming models such as NVIDIA’s Compute Unified Device
Architecture (CUDA) [1] and the Open Compute Language
(OpenCL) [3], GPU devices are emerging as a viable al-
ternative for the acceleration of select HPC applications.
Given the potential of GPU accelerated platforms but the
apparent complexities associated with the porting of codes,
significant interest remains in understanding the achievable
performance of full applications, not only at individual
device level but also multi-node scale.

The research presented in this paper investigates the
utilisation of general-purpose GPUs for improving the per-
formance of pipelined wavefront applications, which form
a large portion of the HPC workloads at supercomputing
centres such as the Los Alamos National Laboratory (LANL)
in the United States and the Atomic Weapons Establishment
(AWE) in the United Kingdom. This class of application
differs from general data-parallel problems in that there are
significant dependencies between grid-points, which limits
achievable level of parallelism from the outset.

A range of different implementations of Lamport’s orig-
inal parallel pipelined wavefront “hyperplane” algorithm
[9] now exist for a multitude of application domains (e.g.
NAS-LU [7], ASCI Sweep3D [4], AWE Chimaera [13]
and Smith-Waterman [19]). Considerable effort continues to
be spent on the selection of suitable HPC architectures to
ensure performant execution of these codes, as witnessed by
the continued development and application of high fidelity
performance models.

The purpose of this study is to identify which wavefront
codes are suitable to be ported to general-purpose GPU
computing. Using an implementation of a general wavefront
code on the GPU, we illustrate the potential benefits of a
number of optimisations. In so doing, we identify the charac-
teristics of wavefront codes which make them amenable for
porting. Specifically, we make the following contributions:

• We present an incremental strategy for accelerating
general pipelined wavefront applications on modern
high-end GPU hardware. The work utilises a gener-
alised demonstrator code that is not specific to any
application domain, but replicates the behaviour of real-
istic wavefront applications. The utility of this approach
allows us to arbitrarily scale the problem size and
complexity, permitting flexible exploration of a range
of realistic memory access patterns.

• The GPU accelerated code is compared to an equivalent
CPU implementation running on an efficient HPC-
capable multi-core processor. We present the runtime of
the code for different numbers of processor cores com-
municating via the Message Passing Interface (MPI).

• The different behaviours of a range of realistic wave-
front codes are simulated by means of the demonstrator
code. These results are used to determine the key char-
acteristics of a given wavefront code that can benefit
from GPU acceleration.

The rest of this paper is arranged as follows: Section II
discusses related work; Section III provides a brief intro-
duction to the operation of pipelined wavefront applications;
Section IV details the targeted optimisations applied to the
wavefront algorithm for execution on the GPU; Section V
compares the performance of an optimised GPU implemen-
tation of the demonstrator wavefront code to its equivalent



CPU implementation; and Section VI offers conclusions and
suggestions for future work.

II. RELATED WORK

There have been several previous attempts to accelerate
wavefront codes using data-parallel architectures.

In [16], the IBM Cell Broadband Engine (Cell/BE) is
utilised to accelerate the Sweep3D benchmark code. The
benchmark is migrated to the Cell/BE exploiting five levels
of parallelisation: MPI level (which is already implemented
on the original benchmark), thread-level, data-streaming
level, vector and pipelining. The performance benefits of
implementing each of these parallelisation levels are shown
in order, demonstrating a path to porting the Sweep3D
code to the target architecture. Additionally, a further set
of fine-tuning operations are carried out that specifically
target the Cell architecture. The Cell/BE implementation is
shown to be approximately 4.5 and 5.5 times faster than
Sweep3D on a 1.9GHz POWER 5 processor and a 2.6 GHz
AMD Opteron processor respectively. It is not made clear
how many cores the Opteron processor has, nor whether
the Cell/BE’s performance is compared against a single
processor core, or multiple cores utilising MPI.

Similarly, [6] presents a parallelisation of a two-
dimensional wavefront code – the Smith-Waterman string-
matching algorithm – on the Cell/BE. Linear speedup is
shown, comparing a single dedicated dual-processor Cell/BE
blade to a serial implementation running on 2.8GHz dual-
core Intel processor. This implementation of the Smith-
Waterman algorithm is used to evaluate a performance model
for general tiled wavefronts running on the Cell/BE.

In [5], the Smith-Waterman algorithm is implemented on
an NVIDIA GeForce GTX 280 using CUDA. The optimi-
sation process is described stage-by-stage, identifying four
important techniques: the mapping of a one-dimensional
thread-block to two-dimensional tiles, coalescence of mem-
ory accesses, tiled wavefronts and inter-block synchroni-
sation. The issue of inter-block synchronisation is further
explored in [20]. The authors report a 9x speedup over a
serial implementation running on a 2.2GHz Intel Core 2
Duo E4500.

Another CUDA implementation of the Smith-Waterman
algorithm [11], making use of an NVIDIA GeForce 8800
GTX, reports a 2x to 30x speedup compared to several
previous implementations: a traditional implementation run-
ning on a 3GHz Pentium 4 processor and an implementation
running on the same GPU using OpenGL.

With the exception of [6], these works differ from our
own because they are concerned with the acceleration of
one wavefront application in particular, rather than the class
of wavefront applications in general. Though [6] presents a
performance model for general tiled wavefronts, it is not ap-
plicable to GPUs and concerned only with two-dimensional
wavefronts. Additionally, none of these works demonstrate

t o p = ( i , j , k−1)
n o r t h = ( i , j −1, k )
wes t = ( i −1, j , k )

r e s u l t = ( i , j , k )
r e s u l t = fmod ( r e s u l t + t o p + n o r t h + west , c )

Listing 1: Computation per grid-point in the demonstrator
wavefront code.

the porting of a three-dimensional wavefront code to the
GPU, yet the majority of high-complexity scientific codes
operate on three-dimensional data grids. Three-dimensional
wavefronts present a challenge because, though they provide
the opportunity of more parallelism, they occupy O(N3)
memory rather than O(N2) which in turn may require
different optimisation strategies or present difficulties in
the memory limited context of a GPU. Finally, this work
compares a GPU implementation to a parallel multi-core
solution, providing a more accurate representation of per-
formance than many previous studies. From the outset, this
paper compares the potential performance of two devices,
not just a full GPU device to a single CPU core. We note
that, traditionally, GPU-based porting studies rarely compare
against multiple cores, which is how many HPC users will
in fact make the comparison.

III. WAVEFRONT APPLICATIONS ON THE GPU

Typical three-dimensional implementations of the parallel
wavefront algorithm operate over a grid of Nx ×Ny ×Nz

grid-points. Computation starts at one of the grid’s vertices
and progresses to the opposite. By way of example, we
consider a sweep through the data-grid from (0, 0, 0) to
(Nx − 1, Ny − 1, Nz − 1), in which the computation re-
quired by each grid-point (i, j, k) is dependent upon the
values of three neighbours: (i − 1, j, k), (i, j − 1, k) and
(i, j, k − 1). In [9], Lamport showed that, for a given value
of f , all grid-points that lie on the hyperplane defined by
i + j + k = f can be computed in parallel. Furthermore,
all of the grid-points upon which this computation depends
satisfy i + j + k = f − 1; by stepping in f and computing
all satisfied grid-points, the dependency is preserved.

To investigate the wavefront algorithm without being
specific to any application domain, we have developed a
generalised wavefront demonstrator code that replicates the
behaviour of a realistic wavefront application. The demon-
strator code is capable of performing three-dimensional
sweeps through data grids of size N ×N ×N , where it is
designed to implement a non-trivial bounded mathematical
operation per grid-point in the form of a floating-point
modulo, thus preventing data values from diverging or con-
verging over successive wavefront steps. The utility of this
approach allows us to arbitrarily scale the problem size and
explore realistic memory access patterns. The pseudocode in



CPU GPU
Model Intel Xeon X5550 Tesla C1060

PEs 4 x86 64 Cores 30 SMs
SMT enabled 240 SPs

Clock Rate 2.66GHz/Core 1.3GHz/SP
Memory 12GB RAM 4GB DRAM
Runtime 64-bit Debian CUDA v3.0

Environment gcc 4.3.2 Driver 195.36.15

Table I: Experimental setup.

Listing 1 details the computation performed for each grid-
point – the wavefront results from the dependency upon the
grid-points above, to the north and to the west.

Given the availability of an infinite number of processing
elements (PEs), an implementation of the algorithm would
assign one grid point per PE and solve the hyperplane de-
fined by i+j+k = f for f = 0...Nx+Ny+Nz−3. However,
realistic data parallel systems will have limited resources,
such as the number of available PEs and available memory
per device. Thus, decomposing the problem into manageable
chunks of work is necessary if any GPU implementation is
to scale up to many processor cores, allowing the solution
of an arbitrarily large problem size.

A. CUDA Programming Model

In this paper, we implement the wavefront algorithm using
the NVIDIA CUDA programming model [1] on a CUDA-
capable GPU. The CUDA programming model is, at the
time of this research, the most mature programming model
compared to its alternatives. There are a wider range of
programming and debugging tools available and a CUDA
program is more likely to better represent the peak per-
formance of an NVIDIA GPU than one written with a
third-party API. However, due to the similarities between
CUDA and OpenCL, it should be noted that the optimisation
strategy detailed here is applicable to all GPUs based upon
the CUDA architecture, irrespective of which is used for
development.

A CUDA-capable GPU is a collection of relatively low-
powered stream multiprocessors (SMs), each consisting of a
number of stream processors (SPs) that share control logic
and an instruction cache [18]. The amount of global memory
(DRAM) and shared memory (SMem) available differs by
model; as shown in Table I, the Tesla C1060 used in our
experiments provides 4GB of DRAM for the entire GPU
and 16KB of SMem per SP. All communication between
the CPU and GPU is carried out across a 16x PCI Express
(PCIe) 2.0 bus, which has a theoretical bandwidth of 8GB/s.

It should also be noted that the Tesla C1060 is optimised
for single precision floating-point operations. Though it
supports double precision, the difference in performance be-
tween single and double precision is known to be significant,
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Figure 1: A three-dimensional wavefront operating at two
levels of parallelism.

with NVIDIA quoting peak performance figures of 933 and
78 GFLOP/s respectively [2]. As we are interested in the
suitability of the GPU architecture for general wavefront
codes, both single and double precision performance is
discussed in Section V. However, for the sake of simplicity,
Section IV lists results from single precision runs exclu-
sively.

GPU functions in the CUDA programming model are
written as kernels which, when launched, are executed
simultaneously in a single-instruction-multiple-data (SIMD)
fashion by a large number of threads. These threads are
arranged into one-, two- or three-dimensional blocks, with
blocks forming a one- or two-dimensional grid. Thus the
programming model allows for parallelism at two levels
– the thread-blocks are assigned to SMs and executed in
parallel, whilst the threads themselves are scheduled for
execution in groups of 32 known as warps.

B. A Naı̈ve Port

In order to implement the hyperplane algorithm using the
CUDA programing model, we decompose the parallelisation
in such a way that we benefit from both levels of parallelism.
Figure 1 shows a three-dimensional wavefront mapping
when executed under the CUDA programming model.

At the first level, the total problem grid is decomposed
into coarse sub-grids, solved via a coarse wavefront op-
eration over thread-blocks. The thread-blocks coloured in
Figure 1 represent the last three wavefront steps of a
sweep starting at cell (0, 0, 0) and progressing towards
(Nx−1, Ny−1, Nz−1) – the least recent step is dark grey,
the next light grey and the final step white. Thread-blocks
can be scheduled for execution in any order, which allows
the GPU to increase performance and hide memory latency
via timeslicing but may potentially violate the wavefront
dependency. Thus, in order to implement this first level of
parallelisation it is necessary to introduce synchronisation
statements. Since the CUDA toolkit does not provide a
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Figure 2: Graph of execution times for the naı̈ve GPU and
CPU implementations operating in single precision.

function for block synchronisation, we implement it through
multiple kernel calls. For each wavefront step, a different
kernel is launched and only those thread-blocks lying on
the wavefront are scheduled for execution.

At the second level, each thread-block is solved by threads
operating in a wavefront over the local grid-points assigned
to each subgrid. In this naı̈ve implementation, there is a one-
to-one mapping from threads to grid-points – each thread in
a thread-block is responsible for computing the value of a
single grid-point and therefore active in only one wavefront
step. The amount of parallelism at this level is further limited
by the resources allocated to a thread-block by a GPU; for
devices of compute capability 1.3 and below, each thread-
block can contain a maximum of 512 threads. Parallelising
at both levels is necessary to overcome this limitation and
allow the solution of arbitrarily large problem sizes.

IV. OPTIMISATIONS

Figure 2 compares the performance of the naı̈ve GPU
implementation described in Section III-B to that of single-
and quad-core CPU implementations utilising MPI. The
execution times shown include the overheads of message
passing via MPI for multi-core CPU implementations and
of moving data to and from the device via the PCIe bus
for the GPU implementation. It should also be noted that
due to the difficulty of predicting the effect of a change
in block size upon execution time, the fastest times were
selected from experiments repeated across all valid launch
configurations.

At small problem sizes the speedup is negligible, as the
amount of computation is not sufficient to hide the overheads
of communication via the PCIe bus and kernel invocation.
The speedup figure is more impressive for larger problem
sizes, such as 320 × 320 × 320, and we list speedups for
several different values of N in Table II to account for this.

Though the GPU implementation of the demonstrator
code is consistently between 1.5x to 2x faster than the

N 1-Core 4-Core
40 0.9x 0.9x
80 1.6x 0.9x
120 1.6x 0.7x
160 1.5x 0.7x
200 1.6x 0.7x
240 1.7x 0.8x
280 1.7x 0.7x
320 1.4x 0.6x
360 1.6x 0.7x
400 1.6x 0.7x
440 1.6x 0.7x
480 1.9x 0.8x
520 2.6x 1.1x
560 1.8x 0.8x
600 1.6x 0.7x
640 1.5x 0.6x

Table II: Speedup of the naı̈ve GPU implementation,
corresponding to the results in Figure 2.

equivalent CPU implementation on a single core, it is
approximately 2x slower than a quad-core implementation,
even at large problem sizes. Furthermore, there are some
problem sizes for which execution time is up to 2.7x times
slower than four CPU cores, typically those for which N is
a power of two. This slowdown is caused by an inefficient
memory layout, which results in partition camping [17].
Partition camping occurs when some of the threads of a
given half-warp attempt to access memory locations within
the same partition of global memory. In these situations, all
such memory requests will be serialised, resulting in poor
performance.

It is clear that the performance of the naı̈ve port is
sub-optimal. In the following sections, we describe three
targeted optimisations designed to decrease execution time
and smooth the spikes in performance. Previous works [11],
[10] have shown that thread recycling, data rearrangement
for coalesced memory accesses and utilisation of shared
memory are applicable to two-dimensional wavefront codes;
we demonstrate how they can be adapted to a general three-
dimensional case.

A. Thread Recycling

The maximum thread-block size permitted under the one-to-
one mapping used by the naı̈ve port is 8×8×8, owing to the
limit of 512 threads per SM. This mapping is significantly
inefficient; even at the sweep’s most active wavefront step,
less than 10% of the threads in the block will be carrying
out any computation.

In order to increase efficiency, it is necessary to recycle
threads, i.e to use an appropriate one-to-many mapping from
threads to grid-points. Reducing the number of threads per
thread-block in this way has three benefits: decreased thread
synchronisation time, a lower register requirement which
may permit more efficient block scheduling and the ability
to run larger thread-blocks. Ideally, the number of threads in
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process, operating in single precision.
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Figure 4: A mapping of threads to a three-dimensional
sub-grid.

a block should be equal to the number of grid-points on the
largest hyperplane. However, such a complicated mapping is
difficult to implement (with support for variable block sizes)
without utilising a lookup table stored in global or constant
memory.

We have instead opted for a less complicated but sub-
optimal thread mapping. In this mapping, as demonstrated
for a 3×3×3 sub-grid by Figure 4, N threads are responsible
for the computation at any given level of the sub-grid.
Consider the threads that map to the first of these levels,
namely threads T0, T1 and T2 – T0 is active at every step
and computes the values of the grid-points shaded in grey,
whilst threads T1 and T2 become active only for steps that
update enough grid-points to warrant their execution.

This system essentially models the hyperplane as a series
of two-dimensional wavefronts operating in parallel, each
one step behind that of the previous level. The mapping

N Thread Recycling Data Rearrangement Shared Memory
40 1.1x 0.7x 0.9x
80 1.3x 1.2x 1.4x
120 1.3x 1.7x 2.1x
160 1.2x 2.1x 2.5x
200 1.1x 1.9x 2.4x
240 1.2x 1.9x 2.3x
280 1.1x 2.0x 2.5x
320 1.2x 2.4x 3.0x
360 1.1x 2.1x 2.5x
400 1.2x 2.3x 2.7x
440 1.1x 2.3x 2.8x
480 1.1x 1.9x 2.2x
520 1.3x 1.4x 1.6x
560 1.1x 2.1x 2.5x
600 1.2x 2.2x 2.7x
640 1.6x 2.5x 3.0x

Table III: Cumulative speedup yielded by each stage of
the GPU optimisation, corresponding to the results in

Figure 3.

of threads to each of these two-dimensional wavefronts is
optimal, as the number of threads at each level is equal
to the number of grid-points on a level’s leading diagonal.
However, in a three-dimensional wavefront, these leading
diagonals are never computed simultaneously; there is no
wavefront step in which all threads of a block will be active.

The resulting decrease in the number of threads (from
N3 to N2) sufficiently demonstrates the effects of thread
recycling upon execution time. As shown by Table III, we
see a speedup of between 1.1x and 1.6x over the original
naı̈ve GPU implementation. In our experience, it is the
ability to run larger blocks (up to 22× 22× 22) that makes
the most significant difference. By way of example, we see
that solving a 16×16×16 grid using a single thread-block is
1.8x faster than solving its decomposition into four 8×8×8
sub-grids.

For large block sizes, the threads in a single warp still
access memory locations in different segments; in the worst
case, each memory request will be served by a separate 32-
byte transaction. For best performance, memory accesses
should be coalesced according to the coalescence crite-
ria outlined by NVIDIA in [15]. Coalescence of memory
accesses requires the rearrangement of the data in global
memory.

B. Data Rearrangement

To ensure that memory accesses are coalesced across devices
of different CUDA compute capability, data should ideally
be rearranged such that the 16 threads of a half-warp access
memory locations from within the same 128-byte segment
and thus the design of an appropriate new data layout
is dependent upon the selected mapping from threads to
grid-points. For the mapping detailed in Section IV-A, the
simplest way to achieve this is to place all grid-points from
the same wavefront step into contiguous memory, calculating
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Figure 5: Graph of execution times for the optimised GPU
and CPU implementations.

the location of a given grid-point by way of a lookup table
stored in constant memory.

However, a rearrangement of this nature is non-trivial.
Reading from, and writing to, different data layouts means
that one of the two steps cannot be coalesced; the problem
of inefficient memory accesses is moved from the wave-
front kernel and into a separate data rearrangement kernel.
However it is still beneficial for two reasons: firstly, the
rearrangement kernels access each memory location only
once and secondly, the execution time of the rearrangement
kernel is insignificant for large problem sizes.

In addition to this re-ordering of data points, the rear-
rangement step introduces two contiguous buffers represent-
ing the east and south planes of each sub-grid. The main
benefit of this to the demonstrator code is that it becomes
simpler to compute the memory locations of a grid-point’s
north and west neighbours when it lies upon a thread-block
boundary. For wavefront codes operating at scale, these
buffers also allow border data to be easily shared across
processors using MPI.

Data rearrangement enables each thread’s memory access
requests to be served efficiently, leading to a 1.5x speedup
over thread recycling and a 1.9x speedup over the naı̈ve
implementation. As shown by Figure 2 and Table III, the
code also performs much more consistently.

However, each memory location is accessed four times on
average – once during its own computation and once by each
of the three neighbours whose values depend upon it. This
problem is largely an issue with devices of CUDA compute
capability below 2.0; NVIDIA’s newest Fermi architecture
introduces a caching mechanism that is likely to improve
the performance of such codes. For devices without such
a cache, it is possible to use the 16KB of shared memory
available to each SM for the same purpose.

Single Precision Double Precision
N Loops 1-Core 4-Core 1-Core 4-Core
40 1 0.8x 0.8x 0.6x 0.4x
80 1 2.2x 1.2x 1.3x 0.8x

160 1 3.8x 1.7x 1.8x 0.8x
320 1 4.3x 1.9x 2.1x 0.9x
640 1 4.4x 1.9x 2.2x 0.9x
40 5 2.5x 0.9x 1.4x 0.7x
80 5 7.5x 2.5x 2.6x 0.9x

160 5 12.9x 3.3x 4.2x 1.4x
320 5 15.6x 4.9x 4.9x 1.6x
640 5 17.2x 5.7x 5.4x 1.8x
40 10 2.9x 1.1x 1.8x 0.7x
80 10 9.1x 3.0x 3.4x 1.1x

160 10 16.9x 5.4x 4.9x 1.6x
320 10 20.1x 6.7x 5.8x 1.8x
640 10 21.3x 7.0x 5.7x 1.8x

Table IV: Speedup of the optimised GPU implementation,
operating in both single and double precision.

C. Shared Memory

If one element of shared memory is allocated for each grid-
point of sub-grid, then the entire sub-grid and its borders
can be pre-fetched with a single contiguous memory access.
After a thread-block carries out the computation for its
sub-grid, the results can then be transferred back to global
memory, again with a single contiguous memory access.
However, this approach requires O(N3) shared memory,
which is large enough to have an adverse affect upon the
GPU’s ability to schedule blocks efficiently. For the demon-
strator code, the effects of this shared memory overhead
are twofold; due to the 16KB memory limit per SM, the
maximum thread-block size and the number of thread-blocks
running concurrently per SM are both reduced.

An alternative and more flexible approach is to recycle
shared memory in a similar way to that of recycling threads,
where each thread is assigned three shared memory loca-
tions, representing each of the three neighbours from which
it must read values. At the end of a given wavefront step,
each thread then writes its result into those locations in
shared memory that belong to its neighbours.

The utilisation of shared memory leads to a 1.2x speedup
over a coalesced thread recycling solution, which yields a
combined 2.3x speedup overall. As shown by Table III, this
is not as impressive a gain as from the other optimisations,
which we believe to be the result of an increase in the
number of branching instructions introduced by our shared
memory recycling strategy.

V. PERFORMANCE RESULTS

Figure 5 and Table IV compare the performance of the fully-
optimised GPU implementation of the demonstrator wave-
front code with the CPU implementation running on one and
four cores. For the largest problems size (640× 640× 640)
in single precision, we see a 4.4x and 1.9x speedup over
the single- and quad-core implementations respectively. In



r e s u l t = ( i , j , k )
f o r ( i = 0 ; i < m a x i t e r a t i o n s ; i ++) {

r e s u l t = fmod ( r e s u l t + t o p + n o r t h + west , c
)

t o p = ( t c ∗ t o p ) + t d ;
n o r t h = ( nc ∗ n o r t h ) + nd ;
wes t = ( wc ∗ west ) + wd ;
r e s u l t = ( r c ∗ r e s u l t ) + rd ;
}

Listing 2: Computation per grid-point in the modified
demonstrator code.

double precision, however, we see only a 2.2x and 0.9x
speedup – the performance of the GPU is roughly equal
to that of the four Nehalem cores.

These speedups are not as high as those that have pre-
viously been reported in the literature. It is possible that
this is due to the latency of global memory, as the number
of floating-point operations performed by the demonstrator
code is not high enough to facilitate latency hiding. A
sufficient ratio of computation to global memory accesses
is required to permit the GPU’s thread scheduler to hide la-
tency by executing arithmetic instructions from other warps
[14]. The demonstrator code carries out approximately six
floating-point operations per grid-point, or three floating-
point operations for each memory access, which is not
sufficient. It should be noted that these numbers discount
setup costs and the extra memory accesses required for
border cases; the computation at each grid-point is modelled
as one read, one write, three additions and one floating-point
modulo operation.

To investigate whether a more realistic wavefront code
performing heavier computation would experience more
impressive speedups, we increase the per-cell computation in
the code by introducing an arbitrarily extensible for loop as
shown in Listing 2. In this modified code, tc, td, nc, nd,
wc, wd, rc and rd are all arbitrary floating-point constants
defined at run-time, preventing the compiler from carrying
out any constant-based code optimisations.

An iteration of the loop requires seven additions, four
multiplications and one floating-point modulo, which we
model as 14 floating-point operations in total. Adjusting the
maximum number of iterations allows this number to be in-
creased artificially, and Table IV lists the GPU speedup over
the CPU implementations for one, five and ten iterations.
These iteration counts are equivalent to 7, 35 and 70 floating-
point operations per memory access respectively. Though
such a large number of floating-point operations may appear
unrealistic, it is not an unusual level of computation for
scientific codes. For example, ASCI Sweep3D requires 40
floating-point operations per grid-point [8], [12], whilst the
NAS-LU benchmark requires approximately 150. The table
shows that as the number of loop iterations increases, so too

does the relative speedup. In single precision, the speedup
increases to a maximum of 21x for a single core and 7x
for four; in double precision, the speedup increases to a
maximum of 6x for a single core and 2x for four.

Also of interest is the effect of an increase in the number
of loops upon the earlier, unoptimised, GPU implementa-
tions. As with the optimised code, the GPU is better able
to schedule warps to hide memory latencies; the effects
of memory optimisations (discussed in Sections IV-B and
IV-C) become less noticeable as global memory loads be-
come more efficient. For certain problem sizes and launch
configurations, the extra mathematical operations required
for index calculations and extra writes to shared memory
appear to dominate – a thread recycling solution is up to
1.2x faster than one utilising shared memory.

VI. CONCLUSIONS

This paper has detailed an incremental strategy for the port-
ing and acceleration of three-dimensional wavefront codes
to general-purpose GPU devices. It has shown that, despite
the limited level of parallelism presented by Lamport’s
hyperplane method, there is the potential for such codes
to experience considerable speedups over traditional serial
implementations. However, speedup is less impressive when
compared to that of an existing parallel solution utilising
MPI, highlighting the necessity of comparing the full po-
tential performance at a device to device level.

The performance of the code was examined when using
both single and double precision floating-point arithmetic,
and the maximum speedup for double precision shown to
be reasonable at best. This is significant, as single precision
is not sufficient for the majority of scientific codes.

As part of the porting process, we have demonstrated the
importance of thread recycling, data rearrangement and the
utilisation of shared memory by examining their cumulative
effects upon execution time. It is clear that the porting of
a three-dimensional wavefront code requires that significant
attention be paid to its memory access pattern. In particular,
a naı̈ve GPU implementation of such a code is likely to
suffer performance degradations not only as a result of
inefficient half-warp alignment, but also due to partition
camping. The global memory cache introduced in NVIDIA’s
new Fermi architecture should go some way to increasing
the performance of such unoptimised code ports, however
we do not expect such codes to outperform those with data
layouts adjusted to target a specific application.

We have also investigated the effects of a change in the
amount of computation per grid-point upon speedup. These
results conclusively show that wavefront codes with a high
ratio of compute to global memory access will be more
amenable to porting than other, more memory-intensive
codes.

Future work will attempt to apply the optimisations
discussed in this paper to an existing scientific wavefront



benchmark, such as NAS-LU or Sweep3D. By producing a
performance model of its execution, we intend to be able to
predict the behaviour of such codes across different CUDA
architectures and specific GPU chipsets. These models will
also enable us to comment upon the performance of these
codes at scale, such as when run in a GPU cluster environ-
ment in which nodes communicate via MPI.
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